The Knapsack Problem - an Introduction to Dynamic Programming
Different Problem Solving Approaches

Greedy Algorithms
- Build up solutions in small steps
- Make local decisions
- Previous decisions are never reconsidered
- We will solve the Divisible Knapsack problem with a greedy approach

Dynamic Programming
- Solves larger problem by relating it to overlapping subproblems and then solves the subproblems
 - Important to store the results from subproblems so that they aren’t computed repeatedly
- We will solve the Indivisible Knapsack problem with dynamic programming

Backtracking
- Solve by brute force searching the solution space, pruning when possible
The Knapsack Problem

We are given:
- A collection of n items
- Each item has an associated non-negative weight, w_i
- Each item has an associated value (cost), c_i
- And we are given a knapsack that can hold total weight W

Our task is:
- Determine the set S of items of maximum total value (cost) that can be contained in the knapsack subject to the constraint that the total weight is no greater than W
The Knapsack Problem

A first version: the Divisible Knapsack Problem
- Items do not have to be included in their entirety
- Arbitrary fractions of an item can be included
- This problem can be solved with a GREEDY approach
- Complexity - $O(n \log n)$ to sort, then $O(n)$ to include, so $O(n \log n)$

```
KNAPSACK-DIVISIBLE(n,c,w,W)
1. sort items in decreasing order of $c_i/w_i$
2. $i = 1$
3. currentW = 0
4. while (currentW + $w_i < W$) {
5.     take item of weight $w_i$ and cost $c_i$
6.     currentW += $w_i$
7.     i++
8. }
9. take $W$-currentW portion of item i
```
The Indivisible Knapsack Problem

We are given:
- A collection of \(n \) items
- Each item has an associated non-negative weight, \(w_i \)
- Each item has an associated value (cost), \(c_i \)
- And we are given a knapsack that can hold total weight \(W \)

Our task is:
- Determine the set \(S \) of items of maximum total value that can be contained in the knapsack subject to the constraint that the total weight is no greater than \(W \)
- Items must be included in their entirety or not at all
The Indivisible Knapsack Problem

Possible Solutions:

- **Greedy approaches**
 - Sort by cost, and include from highest on down until full
 - Sort by cost per unit weight, and include from highest on down until full
 - Sort by weight, and include from lightest upward until full

- **No known greedy approach is optimal**
 - For each greedy algorithm, we can design at least one case in which it fails to produce the optimal result

- **Backtracking** - consider all possible solutions
 - How big is the solution space - all possible subsets of n items

- **Dynamic Programming**
Dynamic Programming

General Idea:
- Solves larger problem by relating it to overlapping subproblems and then solves the subproblems
- It works through the exponential set of solutions, but doesn’t examine them all explicitly
- Stores intermediate results so that they aren’t recomputed
Dynamic Programming

For dynamic programming to be applicable:
- At most polynomial number of subproblems (else still exponential-time solution)
- Solution to original problem is easily computed from the solutions to the subproblems
- There is a natural ordering on subproblems from “smallest” to “largest” and an easy to compute recurrence that allows solving a subproblem from smaller subproblems
Dynamic Programming – A First Example

Fibonacci Numbers
- 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...
- F(0) = 0, F(1) = 1
- F(n) = F(n-1) + F(n-2)

Computing the Fibonacci Numbers
- Each nth number is a function of previous solutions
- A recursive solution:

```
Fib(n)
1. if n < 0 then RETURN “undefined”
2. if n ≤ 1 then RETURN n
3. RETURN Fib(n-1) + Fib(n-2)
```

What’s the drawback to this solution?
- Complexity is exponential
Dynamic Programming - A First Example

Computing Fibonacci Numbers - Can we do better than exponential?

- Yes - “Memoization”
- Each time you encounter a new subproblem and compute the result, store it so that you never need to recompute that subproblem

- Each subproblem is computed just once, and is based on the results of smaller subproblems
 - This leads naturally to converting the recursive solution to an iterative solution

```
FibDynProg(n)
1. Fib[0] = 0
2. Fib[1] = 1
3. for i=2 to n do
4.     Fib[i] = Fib[i-1] + Fib[i-2]
5. RETURN Fib[n]
```
Dynamic Programming - Returning to the Knapsack Problem

How can we solve the Knapsack Problem using Dynamic Programming?

We are given:
- A collection of n items
- Each item has an associated non-negative weight, w_i
- Each item has an associated value (cost), c_i
- And we are given a knapsack that can hold total weight W

How can we break the problem down so that the overall solution is related to overlapping subproblems

We need to do two things:
- Define what our subproblems are
- Define a recurrence relation that links them to the original problem
Dynamic Programming – Returning to the Knapsack Problem

How can we define subproblems?:
- Consider an optimal solution
- Consider the items: 1,2,3,...n
- Either item n is in the solution or not
 - If n is in solution: \(Knapsack(n, W) = c_n + Knapsack(n-1, W-w_n) \)
 - If n is not in solution: \(Knapsack(n, W) = Knapsack(n-1, W) \)

How do we ultimately decide if item n is in the optimal solution?
- Solve the subproblems first
- Then choose which option (include or not) works out better

- \(Knapsack(n, W) = \max(c_n + Knapsack(n-1, W-w_n), Knapsack(n-1, W)) \)
Dynamic Programming - Returning to the Knapsack Problem

A Recursive Algorithm Solution

\[
\text{KNAP-IND-REC}(n, c, w, W) \\
1. \text{if } n \leq 0 \\
2. \quad \text{return } 0 \\
3. \text{if } W < w_n \\
4. \quad \text{withLastItem } = -1 \quad // \text{ undefined} \\
5. \text{else} \\
6. \quad \text{withLastItem } = c_n + \text{KNAP-IND-REC}(n-1, c, w, W-w_n) \\
7. \text{withoutLastItem } = \text{KNAP-IND-REC}(n-1, c, w, W) \\
8. \text{return } \max\{\text{withLastItem, withoutLastItem}\}
\]

NOTES:
• \(n\) is the number of items being considered (we’re working our way backwards)
• \(c\) is the vector of costs associated with the items
• \(w\) is the vector of weights associated with the item (assume integer)
• \(W\) is the capacity of the knapsack

Slides based on Kevin Wayne / Pearson-Addison Wesley
Dynamic Programming – Returning to the Knapsack Problem

What do we need to store?
- The solution to all of our subproblems

What are the subproblems?
- The solution considering every possible combination of remaining items and remaining weight
- Let \(S[k][v] := \) the solution to the subproblem corresponding to the first \(k \) items and available weight \(v \)
 - i.e. \(S[k][v] = \) the maximum cost of items that fit inside a knapsack of size (weight) \(v \), choosing from the first \(k \) items

\[
S[k][v] = \max(c_k + S[k-1][v-w_k], S[k-1][v])
\]

Note - we’re only considering \(S[k-1][v-w_k] \) if it can fit (i.e. \(v \geq w_k \)). If there isn’t room for it, the answer is just \(S[k-1][v] \).
Dynamic Programming – Returning to the Knapsack Problem

Converting to an Iterative Solution
- Build up an (n+1) x (W+1) array of subproblem solutions
- Computational Complexity: $O(nW)$
 - Referred to as pseudo-polynomial
 - The size of the problem grows exponentially with the size (number of digits) of W

```
KNAPSACK-INDIVISIBLE(n,c,w,W)
1. init S[0][v]=0 for every v=0,…,W
2. init S[k][0]=0 for every k=0,…,n
3. for v=1 to W do
4.     for k=1 to n do
5.         S[k][v] = S[k-1][v]
6.         if ($w_k \leq v$) and
7.             ($S[k-1][v-w_k]+c_k > S[k][v]$)
8.             then
9.                 S[k][v] = S[k-1][v-w_k]+c_k
10.            RETURN S[n][W]
```
Knapsack Example

<table>
<thead>
<tr>
<th>Increasing</th>
<th>(n)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\phi)</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>{ 1 }</td>
<td></td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>{ 1, 2 }</td>
<td></td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>{ 1, 2, 3 }</td>
<td></td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>18</td>
<td>19</td>
<td>24</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>{ 1, 2, 3, 4 }</td>
<td></td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>18</td>
<td>22</td>
<td>24</td>
<td>28</td>
<td>29</td>
<td>29</td>
<td>40</td>
</tr>
<tr>
<td>{ 1, 2, 3, 4, 5 }</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>18</td>
<td>22</td>
<td>28</td>
<td>29</td>
<td>34</td>
<td>35</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

Increasing \(W \)

\[
\text{OPT: } \{ 4, 3 \} \\
\text{value} = 22 + 18 = 40
\]

\(W = 11 \)

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>7</td>
</tr>
</tbody>
</table>

Slides based on Kevin Wayne / Pearson-Addison Wesley
Dynamic Programming - Returning to the Knapsack Problem

How do we Recover the list of Items actually included?

- Trace backwards through the matrix
- We know item n is included if:
 - \(S[k-1][W-w_n] + c_n \geq S[k-1][W] \)
- After determining the status of item n, continue working backwards through the remaining items, adjusting for what is already known