All Sources Shortest Path: The Floyd-Warshall Algorithm
All Sources Shortest Path Problem

Shortest path network.
- Directed graph $G = (V, E, w)$.
- Weight $w_e = \text{weight of edge } e$.

Shortest path problem: for all pairs of vertices (u,v), find shortest directed path from u to v.

Option #1: if all edge weights are non-negative, just run Dijkstra n times ($n = |V|$)
- Each iteration of Dijkstra takes $O(n^2)$ for array-based or $O(m \log n)$ for heap-based
- Total complexity is either $O(n^3)$ or $O(mn \log n)$

- This is a case where just repeatedly using a solution to a simpler problem works out fine.
All Sources Shortest Path Problem

Shortest path network.

- Directed graph $G = (V, E, w)$.
- Weight $w_e = \text{weight of edge } e$.

Shortest path problem: for all pairs of vertices (u,v), find shortest directed path from u to v.

Option #2: if some edge weights are negative

- We could use the Bellman-Ford algorithm n times.
 - However, it has complexity $O(nm)$ for a single source.
 - So all sources solution is $O(n^2m)$, which is $O(n^4)$ for dense graphs.
All Sources Shortest Path Problem

Shortest path network.

- Directed graph $G = (V, E, w)$.
- Weight w_e = weight of edge e.

Shortest path problem: for all pairs of vertices (u, v), find shortest directed path from u to v.

Option #3: if some edge weights are negative

- Floyd-Warshall algorithm
 - Dynamic programming solution to compute all sources shortest paths
 - Works with negative weights (or without) - we assume no negative cycles, however (what would a negative cycle mean to a shortest path algorithm?)
 - Complexity $O(n^3)$
Floyd-Warshall Algorithm

Floyd-Warshall algorithm.

- Build a 3-dimensional dynamic programming array (hence the $O(n^3)$ complexity) that keeps track of the shortest path between any two vertices, using only some subset of the entire collection of vertices as intermediate steps along the path.

- $S[i][j][k] :=$ shortest path from vertex i to vertex j, using only vertices $1,2,...,k$ as intermediate vertices along the path.

- Solution: for each i,j: $S[i][j][n]$ gives the shortest path from i to j allowing all vertices at intermediate steps.
Floyd-Warshall Algorithm

Floyd-Warshall algorithm.
- Number the vertices 1, 2, ..., n
- Consider subset 1, 2, ..., k
- For any i, j ∈ V, consider all paths from i to j whose intermediate vertices are restricted to 1, 2, ..., k

- Let p be a shortest path among these.
- p is a simple path (it has no cycles)
 - All cycles are assumed non-negative weight,
 - There can't be a positive weight cycle in a shortest path (we could just remove it and have a better path)
 - Any zero-weight cycle can be removed without affecting the shortest path
 - This means each vertex appears at most once along path p
Floyd-Warshall Algorithm

Floyd-Warshall algorithm.

- Recurrence relation: consider if vertex k is part of path p
 - If not, then all intermediate vertices are in 1,...,k-1, so the best solution for shortest path from i to j using 1,2,...,k will be the same as using 1,2,...,k-1
 - If yes, p can be split into two subpaths - p_1, the path from i to k, and p_2, the path from k to j
 - p_1 and p_2 are themselves shortest paths
 - Why? If not, we could form a better path from i to k than the path p by using the better subpaths

- Optimal subproblems:
 - p_1 is a shortest path from i to k using 1,2,...,k-1 (because no vertex is used twice in the simple path)
 - p_2 is a shortest path from k to j using 1,2,...,k-1
Floyd-Warshall Algorithm

Floyd-Warshall algorithm.

- Recurrence relation

 - \(S[i][j][k] = \min(S[i][j][k-1], S[i][k][k-1] + S[k][j][k-1]) \) for \(k > 0 \)

 - \(S[i][j][0] = w_{ij} \) if there is an edge \(e \) directed from \(i \) to \(j \)
 0 if \(i=j \)
 \(\infty \) otherwise

- We can build up from the bottom, considering more and more vertices along the intermediate path
Floyd-Warshall Algorithm

Floyd-Warshall algorithm.

- Complexity: $O(n^3)$, small constant factor makes practical use possible even for moderate size of n
- Initialization weights $w(i,j)$ are 0 if $i=j$ and ∞ if no edge exists

Floyd-Warshall ($G=(V,E,w)$)

1. For $i=1$ to $|V|$ do
2. For $j=1$ to $|V|$ do
3. $S[i,j,0] = w(i,j)$
4. For $k=1$ to $|V|$ do
5. For $i=1$ to $|V|$ do
6. For $j=1$ to $|V|$ do
7. $S[i,j,k] = \min \{$
8. $S[i,j,k-1],$
9. $S[i,k,k-1]+S[k,j,k-1] \}$
10. Return $S[:, :, n]$ # return 2d array with $n = |V|$