Update on Luffa

@The Second SHA3 Candidate Conference
24th August 2010

Dai Watanabe
Hisayoshi Sato
Systems Development Laboratory, Hitachi, Ltd.

Christophe De Cannière
ESAT-COSIC, Katholieke Universiteit Leuven

Luffa is a registered trademark of Hitachi in Japan.
Outline

- Introduction to Luffa
- The specification changes
- Security status
- Implementation aspects
Running through *Luffa*
Where is Luffa?

Update on Luffa
C. De Cannièrè, H. Sato, D. Watanabe
Chaining

- Permutation based design
- Fixed length permutations for all hash length
 - An MDS code is applied to mix the internal states and a message block
 - Similar to Knudsen-Preneel construction of a CF
- The hash value is the sum of the outputs of Qj

Update on *Luffa*
C. De Cannière, H. Sato, D. Watanabe
Non-linear permutation

- **Input/Output**
 - 256 bits (8 32-bit words)

- **Functions**
 - tweak
 - Applied before step functions
 - Step functions
 - 8 steps
 - 4-bit Sboxes + XORs + rotations
Specification changes

- Application of a blank round
 - Ver.1: If the message length > 255
 - Ver.2: Always

- SubCrumb
 - The table
 - v_1: \{7, 13, 11, 10, 12, 4, 8, 3, 5, 15, 6, 0, 9, 1, 2, 14\}
 - v_2: \{13, 14, 0, 1, 5, 10, 7, 6, 11, 3, 9, 12, 15, 8, 2, 4\}
 - The order of the inputs
 - v_1: SubCrumb(a[4], a[5], a[6], a[7]);
 - v_2: SubCrumb(a[5], a[6], a[7], a[4]);
Updates on security status
Security of the permutation

- Not ideal from the beginning
 - Differential path with prob. 2^{-224} [in the proposal 2008]

- Later coming results
 - Zero-sum with 2^{82} comp. [Aumasson and Meier 2009]
 - Rotational property with $2^{116.3}$ comp. [Khovratovich et al. 2010]
 - Algebraic degree < 256 [Boura et al. 2010]
Attacks under relaxed settings

- Free-start setting
 - Second preimage attack (generic)
 - 1 comp. [Jia 2009]
 - Preimage attack (generic)
 - $2^{128}/2^{171}$ comp. for Luffa-256/512 [Jia 2009]

- Semi-free-start setting
 - Collision attack (generic) $2^{256^w/w-1}$ comp. [Ourselves 2009]
 - Collision attack (rebound) 2^{102} comp. for 7-steps of Luffa-256 [Khovratovich et al. 2010]
Attacks on reduced round variants

- Collision attack
 - Ongoing differential based analyses on Luffa-256 [Ourselves TBC]
 - 4 steps with 2^{90} comp.
 - 5 steps with $2^{216.2}$ comp.

- Distinguisher
 - HOD on 7 out of 8 steps of Luffa-256 v1 (no blank round) with 2^{216} comp. [Ourselves 2009]

Update on Luffa
C. De Cannière, H. Sato, D. Watanabe
Security margin?

- Differential probability of the permutation
 - If MDP < $2^{-170.7}$, it is hard to find an internal collision faster than the generic attacks for n-bit security.
 - MDP < 2^{-128} is sufficient for $n/2$-bit security.
 - For the best known differential path, $dp = 2^{-224}$.

- Interpretation of a semi-free-start attack
 - Khovratovich’s rebound attack (2^{102}) borrowed 512 bits of freedom from the internal state.
Implementation aspects
Some eBASH results

I'm around here!

Update on Luffa
C. De Cannière, H. Sato, D. Watanabe
More on software performances

- NIST platform (64-bit mode)

<table>
<thead>
<tr>
<th></th>
<th>[Ourselves 2009]</th>
<th>[Oliveira and López TBC]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASM</td>
<td></td>
<td>C with SSE intrinsics</td>
</tr>
<tr>
<td>Luffa-256</td>
<td>13.3</td>
<td>11.75</td>
</tr>
<tr>
<td>Luffa-384</td>
<td>15.0</td>
<td>14.78</td>
</tr>
<tr>
<td>Luffa-512</td>
<td>23.8</td>
<td>19.81</td>
</tr>
</tbody>
</table>

- 8-bit microprocessor [Ourselves 2009]
 - Luffa-256 on Atmel ATmega8515
 - Speed: 732.1 cycles/byte
 - Memory: 688 bytes code, 120 bytes constants, 134 bytes RAM

Atmel, AVR, and AVR Studio are registered trademarks of Atmel Corporation in the United States and/or other countries.

Update on Luffa
C. De Cannière, H. Sato, D. Watanabe
Update on *Luffa*
C. De Cannière, H. Sato, D. Watanabe
Another High-Speed Hardware

Throughput (Mbps) vs Size (KGE)

STM 90nm Standard CMOS library

A Hash Function Family Luffa
C. De Cannière, H. Sato, D. Watanabe
Another High-Speed Hardware

A Hash Function Family *Luffa*
C. De Cannière, H. Sato, D. Watanabe

Satoh et al. (2010)

STM 90nm Standard CMOS library
Another High-Speed Hardware

Satoh et al. (2010)

STM 90nm Standard CMOS library

A Hash Function Family Luffa
C. De Cannièr̈e, H. Sato, D. Watanabe
Compact HW implementations

TSMC 90nm Standard CMOS library

10.34 KGE 538 Mbps

13.98 KGE 3,220 Mbps

From compact to High-Speed!

TSMC is a registered trademark of TSMC in Taiwan and other countries.

Update on Luffa
C. De Cannière, H. Sato, D. Watanabe
Summary

- No security flaw
- Moderate software speeds
- Very good hardware performances
 - Fast!
 - Compact!
Summary

- No security flaw
- Moderate software speeds
- Very good hardware performances
 - Fast!
 - Compact!

I can be everywhere!
Thank you for attention!

See our web site for the most recent results.
http://www.sdl.hitachi.co.jp/crypto/luffa/