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Outline - Triangles Everywhere
or avoiding K3 in some/most colors

1 Ramsey Numbers - Two Colors
Some known and computed facts
R(3,10) is hard
Some things to do, computationally

2 Ramsey Numbers - More Colors
Some general bounds
R(3,3,4),R(3,3,3,3) are hard
Things to do

3 Most Wanted Folkman Number
Edge-arrowing (3,3)
K4-free edge-arrowing (3,3)
Things to do

4 So, what to do next?
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Ramsey Numbers

• R(G,H) = n iff
n = least positive integer such that in any 2-coloring of the
edges of Kn there is a monochromatic G in the first color or
a monochromatic H in the second color

• R(k , l) = R(Kk ,Kl)

• generalizes to r colors, R(G1, · · · ,Gr )

• 2-edge-colorings ∼= graphs

• Theorem (Ramsey 1930): Ramsey numbers exist
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Unavoidable classics

R(3,3) = 6 R(3,5) = 14 [GRS’90]
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Basic upper bounds

• R(k , l) = R(l , k), R(k ,2) = k

• Erdős, Szekeres 1935
Greenwood, Gleason 1955

R(k , l) ≤ R(k − 1, l) + R(k , l − 1)

with < if both RHS terms are even, and

R(k + 1, l + 1) ≤
(

k + l
k

)

• R(3,3) = 6, R(3,4) = 9, R(3,5) = 14, R(4,4) = 18
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Unavoidable classics

R(4,4) > 17, dist = {1,2,4,8}
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A messy case

R(K5 − e,K5 − e) > 21, double ring + outlier
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Diagonal Cases
asymptotics

• Bounds (Erdős 1947, Spencer 1975, Thomason 1988)
√

2
e

2n/2n < R(n,n) <

(
2n − 2
n − 1

)
n−1/2+c/

√
log n

• Newest upper bound (Conlon, 2010)

R(n + 1,n + 1) ≤
(

2n
n

)
n−c log n

log log n

• Conjecture (Erdős 1947, $100)
limn→∞R(n,n)1/n exists.
If it exists, it is between

√
2 and 4 ($250 for value).
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Diagonal Cases
concretely

• Best construction (Frankl, Wilson 1981)

nc log n/ log log n < R(n,n)

• First open case (Exoo 1989, MR 1997)

43 ≤ R(5,5) ≤ 49

• Second open case (Kalbfleisch 1965, Mackey 1994)

102 ≤ R(6,6) ≤ 165
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Off-Diagonal Cases
asymptotics

• R(3, ∗) - discussed later in the talk

• Bounds (Spencer 1977, Li and Rousseau 2000)

ck

(
n

log n

)(k+1)/2

< R(k ,n) < (1 + o(1))
nk−1

logk−2 n

• A generalization (Krivelevich 1995)
ρ(H) = largest density (e − 1)/(v − 2) of subgraphs of H
ρ(Kk ) = (k + 1)/2

cH

(
n

log n

)ρ(H)

< R(H,n)
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Off-Diagonal Cases
fixing small k

• R(3, ∗) - later in these slides
• McKay-R 1995, R(4,5) = 25
• Bohman triangle-free process - 2009

R(4,n) = Ω(n5/2/ log2 n)

• Kostochka, Pudlák, Rődl - 2010
constructive lower bounds

R(4,n) = Ω(n8/5), R(5,n) = Ω(n5/3), R(6,n) = Ω(n2)

(vs. probabilistic 5/2,6/2,7/2 with /logs)
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Values and Bounds on R(k , l)
two colors, avoiding cliques

[ElJC survey Small Ramsey Numbers, revision #12, 2009]
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General lower bound constructions
aren’t that good

Theorem Burr, Erdős, Faudree, Schelp, 1989
R(k ,n) ≥ R(k ,n − 1) + 2k − 3 for k ≥ 2, n ≥ 3 (not n ≥ 2)

Theorem (Xu-Xie-Shao-R 2004, 2010)
If 2 ≤ p ≤ q and 3 ≤ k, then R(k ,p + q − 1) ≥

R(k ,p) + R(k ,q) +


k − 3, if 2 = p
k − 2, if 3 ≤ p or 5 ≤ k
p − 2, if 2 = p or 3 = k
p − 1, if 3 ≤ p and 4 ≤ k

For p = 2, n = q + 1, we have R(k ,p) = k ,
which implies BEFR’89
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Proof by construction
2004 cases

Given
(k ,p)-graph G, (k ,q)-graph H, k ≥ 3, p,q ≥ 2
G and H contain induced Kk−1-free graph M

construct
(k ,p + q − 1)-graph F , n(F ) = n(G) + n(H) + n(M)

VG = {v1, v2, ..., vn1}, VH = {u1,u2, ...,un2}
VM = {w1, ...,wm}, m ≤ n1,n2, Kk−1 6⊂ M
G[{v1, ..., vm}], H[{u1, ...,um}] ∼= M
φ(wi) = vi , ψ(wi) = ui isomorphisms

VF = VG ∪ VH ∪ VM
E(G,H) = {{vi ,ui} | 1 ≤ i ≤ m}
E(G,M) = {{vi ,wj} | 1 ≤ i ≤ n1,1 ≤ j ≤ m, {vi , vj} ∈ E(G)}
E(H,M) = {{ui ,wj} | 1 ≤ i ≤ n2,1 ≤ j ≤ m, {ui ,uj} ∈ E(H)}
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#vertices / #graphs
no exhaustive searches beyond 13

4 11
5 34
6 156
7 1044
8 12346
9 274668
10 12005168
11 1018997864
12 165091172592 ≈ 1.6 ∗ 1011

——————–too many to process——————–
13 50502031367952 ≈ 5 ∗ 1013

14 29054155657235488
15 31426485969804308768
16 64001015704527557894928
17 245935864153532932683719776
18 ≈ 2 ∗ 1030
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#vertices / #triangle-free graphs
no exhaustive searches beyond 17

4 7
5 14
6 38
7 107
8 410
9 1897
10 12172
11 105071
12 1262180
13 20797002
14 467871369
15 14232552452
16 581460254001 ≈ 6 ∗ 1011

——————–too many to process——————–
17 ≈ 3 ∗ 1012
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Asymptotics
Ramsey numbers avoiding K3

• Recursive construction yielding
R(3,4k + 1) ≥ 6R(3, k + 1)− 5
Ω(k log 6/ log 4) = Ω(k1.29)

Chung-Cleve-Dagum 1993

• Explicit Ω(k3/2) construction
Alon 1994, Codenotti-Pudlák-Giovanni 2000

• Kim 1995, lower bound
Ajtai-Komlós-Szemerédi 1980, upper bound
Bohman 2009, triangle-free process

R(3, k) = Θ

(
k2

log k

)
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Small R(3, k) cases

k R(3, k) year reference [lower/upper]
3 6 1953 Putnam Competition
4 9 1955 Greenwood-Gleason
5 14 1955 Greenwood-Gleason
6 18 1964 Kéry
7 23 1966 / 1968 Kalbfleisch / Graver-Yackel
8 28 1982 / 1992 Grinstead-Roberts / McKay-Zhang
9 36 1966 / 1982 Kalbfleisch / Grinstead-Roberts

10 40-43 1989 / 1988 Exoo / Kreher-R

Known values of R(3, k)

Erdős and Sós, 1980, asked about
3 ≤ ∆k = R(3, k)− R(3, k − 1) ≤ k :

∆k
k→∞ ? ∆k/k

k→ 0 ?
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Clebsch (3, 6; 16)-graph on GF (24)
(x , y) ∈ E iff x − y = α3

[Wikipedia]

Alfred Clebsch (1833-1872)
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Larger Cases
K3 versus Kk − e or Kk

R(3,K7 − e) = 21 R(3,K8 − e) = 25 R(3,K9 − e) = 31
R(3,7) = 23 R(3,8) = 28 R(3,9) = 36

All R(3,Kk − e) critical graphs are known for k ≤ 8
All R(3,Kk ) critical graphs are known for k ≤ 7

First open cases:
37 ≤ R(K3,K10 − e) ≤ 38, 42 ≤ R(K3,K11 − e) ≤ 47
40 ≤ R(K3,K10) ≤ 43, 46 ≤ R(K3,K11) ≤ 51
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Upper bounds by counting edges
computing R(3, 10) is difficult

Definition: e(k ,n) = min # edges in n-vertex
triangle-free graphs without independent sets of order k

• Very good lower bounds on e(k − 1,n − d)
give good lower bounds on e(k ,n)

• For any graph G ∈ R(k ,n,e)

ne −
k−1∑
i=0

ni(e(k − 1,n − i − 1) + i2) ≥ 0

• e(9,n) not known for 27 ≤ n ≤ 35
seem needed before improving on e(10,n) for n > 37

• known e(8,n)-graphs not sufficient to improve on e(9,n)
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R(K3, G)
general non-asymptotic results

• R(K3,Wn) = R(C3,Cn) = 2n − 1
Faudree-Schelp 1974, Burr-Erdős 1983
all critical colorings, R-Jin 1994

• R(K3,G) = 2n(G)− 1, for connected G
e(G) ≤ 17(n(G) + 1)/15, n(G) ≥ 4
Burr-Erdős-Faudree-Rousseau-Schelp 1980

• R(K3,G) ≤ 2e(G) + 1, isolate-free G
R(K3,G) ≤ n(G) + e(G), a conjecture for all G
Sidorenko 1992-3, Goddard-Kleitman 1994
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R(K3, G)
general non-asymptotic results

• R(nK3,mK3) = 2n + 3m for n ≥ m ≥ 1,n ≥ 2
Burr-Erdős-Spencer 1975

• R(K3,K3 + Kn) = R(K3,K3 + Cn) = 2n + 5 for n ≥ 212
Zhou 1993

• R(K3,K2 + Tn) = 2n + 3 for n ≥ 4
Song-Gu-Qian 2004

• R(K3,G) for all connected G, n(G) ≤ 9
Brandt-Brinkmann-Harmuth 1998-2000
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Things to do for two colors
avoiding triangles

• Enumerate all critical (3,8; 27)-graphs
430K+ known already

• Enumerate all critical (3,9; 35)-graphs
only one is known!

• Finish off 37 ≤ R(3,K10 − e) ≤ 38

• R(3,10) ≤ 43, get it down first to 42
R(3, 10) ≥ 40, don’t even try to do better :-( lower bound 40 is probably correct

24/65 Ramsey Numbers - Two Colors



Stay awake - applications exist
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More colors
upper bound

R(k1, . . . , kr ) ≤ 2− r +
∑r

i=1 R(k1, . . . , ki−1, ki − 1, ki+1, . . . , kr )

with strict < if the RHS is even and sum has en even term
Greenwood-Gleason 1955

Only two known multicolor cases, (3,3,4) and (3,3,3,3), where the
RHS is improved. Likely this bound is never tight, except for (3,3,3).
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More colors
some constructive results

• Xu-Xie-Exoo-R 2004

• for k1 ≥ 5 and ki ≥ 2
R(k1,2k2 − 1, k3, · · · , kr ) ≥ 4R(k1 − 1, k2, k3, · · · , kr )

• using k1 = l , k2 = 2, k3 = k in the above
R(3, k , l) ≥ 4R(k , l − 1)− 3

• use k = 3
R(3,3, l) ≥ 4R(3, l − 1)− 3

• R(3,3, k) = Θ(k3poly-log k)
Alon-Rődl 2005
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Rr(3) = R(3, 3, · · · , 3)
just no triangles

• The limit L = limr→∞Rr (3)
1
r exists

Chung-Grinstead 1983

(2s(r) + 1)
1
r = cr ≈(r=6) 3.199 < L

• Much work on Schur numbers s(r)
via sum-free partitions and cyclic colorings
s(r) > 89r/4−c log r > 3.07r

[except small r ]

Abbott+ 1965+

• s(r) + 2 ≤ Rr (3)
s(r) = 1,4,13,44,≥ 160,≥ 536

• Rr (3) ≥ 3Rr−1(3) + Rr−3(3)− 3
Chung 1973
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R(3, 3, 3) = 17
two Kalbfleisch (3, 3, 3; 16)-colorings, each color is a Clebsch graph

[Wikipedia]
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Three colors - R(3, 3, 4)
the only (as of now) not hopeless case

• 30 ≤ R(3,3,4), cyclic coloring, Kalbfleisch 1966
• R(3,3,4) ≤ 31, computations, Piwakowski-R 1998

Theorem (Piwakowski-R 2001): R(3,3,4) = 31 iff there exists
a (3,3,4; 30)-coloring C in which every edge in 3-rd color has
an endpoint x with degree 13. Furthermore, C has at least 25
vertices with color degree sequence (8,8,13).

Proof: Gluing possible arrangements of color induced
neighborhoods of v in a (3,3,4; 30)-coloring:

(3,4; s), (3,4; t), (3,3,3; u ≥ 14) with s + t + u = 29

too many (3,3,3; 13)’s to proceed further �
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Four colors - R4(3)

51 ≤ R(3,3,3,3) ≤ 62

year reference lower upper
1955 Greenwood, Gleason 42 66
1967 false rumors [66]
1971 Golomb, Baumert 46
1973 Whitehead 50 65
1973 Chung, Porter 51
1974 Folkman 65
1995 Sánchez-Flores 64
1995 Kramer (no computer) 62
2004 Fettes-Kramer-R (computer) 62

History of bounds on R4(3) [from FKR 2004]
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Lower bound for R4(3)
start with Clebsch (3,3,3;16)-coloring
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Lower bound for R4(3)
Chung construction 1973, basic step yields (3,3,3,3;50)-coloring

A = T3(0,2,3,4) D = T3(3,2,1,4)

B = T3(0,3,1,4) E = T3(2,1,3,4)

C = T3(0,1,2,4) F = T3(1,3,2,4)
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Lower bound for R4(3)
attempts to beat Chung’s construction for 4 colors

Iterate transformations of colorings:
• Merging pairs of colors (easy)

(3,3,3,3; n) → (3,3,6; n), (3,3,6; n) → (6,6; n)

• Deleting a vertex with all adjacent edges (easy)

(3,3,3,3; n) → (3,3,3,3; n − 1)

• Single color splitting (moderate)

(6,6; n) → (3,3,6; n), (3,3,6; n) → (3,3,3,3; n)

• Limited one point extension (hard)

(6,6; n) → (6,6; n + 1)
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Lower bound for R4(3)
attempts to beat Chung’s construction

Results
• Many nonisomorphic constructions on 50 vertices, yet,

all of them are just minor modifications of the Chung
construction.

• Very hard to get close to 50 vertices with heuristics.

Used great software by Brendan McKay
• nauty, canonical labelings of graphs (and more),

isomorph deletion
• geng, graph generator
• autoson, network job scheduling
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Lower bound for Rk(3)
Chung construction 1973, recursion

Rr (3) ≥ 3Rr−1(3) + Rr−3(3)− 3
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Upper bound for R4(3)
color degree sequences for (3, 3, 3, 3;≥ 59)-colorings

n orders of Nη(v)

65 [ 16, 16, 16, 16 ] Whitehead, Folkman 1973-4
64 [ 16, 16, 16, 15 ] Sánchez-Flores 1995
63 [ 16, 16, 16, 14 ]

[ 16, 16, 15, 15 ]
62 [ 16, 16, 16, 13 ] Kramer 1995+

[ 16, 16, 15, 14 ] –
[ 16, 15, 15, 15 ] Fettes-Kramer-R 2004

61 [ 16, 16, 16, 12 ]
[ 16, 16, 15, 13 ]
[ 16, 16, 14, 14 ]
[ 16, 15, 15, 14 ]
[ 15, 15, 15, 15 ]

60 [ 16, 16, 16, 11 ] guess: doable in 2015
[ 16, 16, 15, 12 ]
[ 16, 16, 14, 13 ]
[ 16, 15, 15, 13 ]
[ 16, 15, 14, 14 ]
[ 15, 15, 15, 14 ]

59 [ 16, 16, 16, 10 ]
[ 16, 16, 15, 11 ]
[ 16, 16, 14, 12 ]
[ 16, 16, 13, 13 ]
[ 16, 15, 15, 12 ]
[ 16, 15, 14, 13 ]
[ 15, 15, 15, 13 ]
[ 15, 15, 14, 14 ]
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More colors - summary
just no triangles

k value or bounds reference(s)
2 6 [cf. Bush 1953]
3 17 Greenwood-Gleason 1955
4 51 – 62 Chung 1973 – Fettes-Kramer-R 2004
5 162 – 307 Exoo 1994 – easy
6 538 – 1838 Fredricksen-Sweet 2000 – easy
7 1682 – 12861 Fredricksen-Sweet 2000 – easy

Bounds and values of Rk (K3)
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Things to do
computational multicolor Ramsey numbers problems

• improve 45 ≤ R(3,3,5) ≤ 57

• finish off 30 ≤ R(3,3,4) ≤ 31

• understand why heuristics don’t find 51 ≤ R4(3)

• improve on R4(3) ≤ 62
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More Arrowing

F ,G,H - graphs, s, t , si - positive integers

Definitions
F → (s1, ..., sr )

e iff for every r -coloring of the edges
F contains a monochromatic copy of Ksi in some color i .

F → (G,H)e iff for every blue/red edge-coloring of F ,
F contains a blue copy of G or a red copy of H.

Facts

R(s, t) = min{n | Kn → (s, t)e}
R(G,H) = min{n | Kn → (G,H)e}
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Folkman problems

edge Folkman graphs
Fe(s, t ; k) = {G → (s, t)e : Kk 6⊆ G}

edge Folkman numbers (very hard to compute)

Fe(s, t ; k) = the smallest n such that there exists
an n-vertex graph G in Fe(s, t ; k)

vertex Folkman graphs/numbers (hard to compute)

2-coloring vertices instead of edges

Theorem (Folkman 1970): For all k > max(s, t), edge-
and vertex Folkman numbers Fe(s, t ; k), Fv (s, t ; k) exist.
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Two small cases
warming up

• G = K6 has the smallest number of vertices among
graphs which are not a union of two K3-free graphs, or
• K6 → (K3,K3)

e and K5 6→ (K3,K3)
e

• What if we want G to be K6-free?
Graham (1968) proved that
• K8 − C5 = K3 + C5 → (K3,K3)

|V (H)| < 8 ∧ K6 6⊂ H ⇒ H 6→ (K3,K3)
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Known values/bounds for Fe(3, 3; k)
the challenge is to compute Fe(3, 3; 4)

k > R(s, t) ⇒ Fe(s, t ; k) = R(s, t)
k ≤ R(s, t), very little known in general

k Fe(3,3; k) graphs reference
≥ 7 6 K6 folklore

6 8 C5 + K3 Graham 1968
5 15 659 graphs Piwakowski-Urbański-R 1999
4 ≤ 941 α5 mod 941 Dudek-Rődl 2008
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Fe(3, 3; 5) = 15, and Fv(3, 3; 4) = 14
G + x → (3, 3)e, and G → (3, 3)v

unique 14-vertex bicritical Fv (3,3; 4)-graph G [PRU 1999]
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History of upper bounds on Fe(3, 3; 4)

• 1967 - Erdős, Hajnal state the problem

• 1970 - Folkman proves his theorem for 2 colors
VERY large bound for Fe(3,3; 4).

• 1975 - Erdős offers $100 (or 300 Swiss francs)
for deciding if Fe(3,3; 4) < 1010

• 1988 - Spencer, probabilistic proof for the bound 3× 108

(1989 - Hovey finds a mistake, bound up to 3× 109)

• 2007 - Lu, ≤ 9697, spectral analysis of modular circulants

• 2008 - Dudek-Rődl, Fe(3,3; 4) ≤ 941
circulant arc lengths α5 mod 941
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Fe(3, 3; 4) ≤ 941
some details of the proof by Dudek-Rődl

• Theorem. If for every vertex v ∈ V (G)

Maxcut(G[N(v)]) <
2
3
|E(G[N(v)])|

then G → (3,3)e.

• Define graph H on vertices E(G) with edges
{(e, f ) : e, f ∈ E(G),efg is a triangle in G for some g}.

Maxcut approximation in H can imply G → (3,3)e.

• This works for the graph

G = (Z941, {(i , j) : i − j = α5 mod 941})
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History of lower bounds on Fe(3, 3; 4)

• 10 ≤ Fe(3,3; 4) Lin 1972

• 16 ≤ Fe(3,3; 4) Piwakowski-Urbański-R 1999
since Fe(3,3; 5) = 15, all graphs in Fe(3,3; 5) on
15 vertices are known, and all of them contain K4’s

• 19 ≤ Fe(3,3; 4) R-Xu 2007
18 ≤ Fe(3,3; 4) proof "by hand"

• ANY proof technique improving on 19
very likely will be of interest
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Lower bound
proof "by hand" that 18 ≤ Fe(3, 3; 4)

• G17 critical for R(4,4) = 18,
check that G17 6→ (3,3; 4)e.

• G17 6≈ G → (3,3; 4)e, |V (G)| = 17,
G must have indset I on 4 vertices.

• H = I + G[V (G) \ I] → (3,3; 5)e.
• Dropping any three vertives from I,

gives K5-free graph on 14 vertices.
• Contradiction with Fe(3,3; 5) = 15.

Computing 19 ≤ Fe(3,3; 4)
quite similar, but much more work,
use all 153 graph H ∈ Fv (3,3; 4).
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General facts on Fe(s, t ; k)

• G ∈ Fe(s, t ; k) ⇒ χ(G) ≥ R(s, t)
no k in the bound!, easy

• Fe(s, t ; k) = R(s, t) for k > R(s, t) easy
• Fe(s, t ; R(s, t)) = R(s, t) + c so, so

in most cases c is small (2, 4, 5)

• Fe(s, t ; k) ≥ R(s, t) + 4 for k < R(s, t) hard

• G ∈ Fv (R(s − 1, t),R(s, t − 1); k − 1) ⇒
G + x ∈ Fe(s, t ; k), or equivalently

• G + x 6→ (s, t)e ⇒ G 6→ (R(s − 1, t),R(s, t − 1))v ,
and clearly cl(G + x) = cl(G) + 1
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Vertex Folkman numbers pearls

Fv (2,2,2; 3) = 11
the smallest 4-chromatic triangle-free graph

Grőtzsch graph [mathworld.wolfram.com]

Fv (2,2,2,2; 3) = 22, Jensen-Royle 1995
the smallest 5-chromatic triangle-free graph has 22 vertices
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Vertex Folkman numbers pearls

Fv (2,2,2,2; 4) = 11, Nenov 1984, also 1993
the smallest 5-chromatic K4-free graph has 11 vertices

17 ≤ Fv (4,4; 5) ≤ 23, Xu-Luo-Shao 2010
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Vertex Folkman numbers pearls

Theorem (ancient folklore)
Fv (2, · · · ,2︸ ︷︷ ︸

r

; r) = r + 5, for r ≥ 5.

Proof. For the upper bound consider
as the critical graph Kr−5 + C5 + C5
for the lower bound take any
Kr−free graph G on r + 4 vertices, then
assemble matchings in G to show χ(G) ≤ r

Theorem (Nenov 2003)
Fv (3, · · · ,3︸ ︷︷ ︸

r

; 2r) = 2r + 7, for r ≥ 3.

For r = 2, a small but hard case, Fv (3,3; 4) = 14 (PRU 1999)
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Testing arrowing is hard
theory/practice

• Testing whether F → (3,3)e is coNP-complete
Burr 1976

• Determining if R(G,H) < m is NP-hard
Burr 1984

• Testing whether F → (G,H)e is Πp
2-complete

Schaefer 2001

• Implementing fast F → (3,3)e is challenging

Testing whether F → (K2,Kn)
e is the same

as checking Kn ⊂ F , so it is NP-hard.
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Complexity of (edge) arrowing

Problem Fixed Complexity

F → (G,H) Πp
2-complete

F → (G,H) G,H in coNP
F → (K2,H) NP-complete
F → (K2,H) H NP-complete
F → (T ,Kn) T , e(T ) ≥ 2 Πp

2-complete
F → (G,H) G,H ∈ Γ3 coNP-complete
F → (P4,P4) coNP-complete
F → (kK2,H) k , H P
F → (K1,n,K1,m) P
Kn → (G,H) NP-hard

Compendium of arrowing complexity by many.
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Tools in complexity of arrowing

(G,H)-enforcers, -signal senders, -cleavers, -determiners are
the tools (gadgets) used in reductions (Burr, Schaefer). They
give control on F → (G,H).

Definition. (Grossman 1983) F is a (G,G)-cleaver iff there
exists unique coloring of F witnessing F 6→ (G,G).

T
T

�
�

�� HH

qq q
q

q q
P4 cleaved F 6→ (P4,P4), with only one witness coloring.

Known K3-cleaved graphs contain K4.
K5 is not C5-cleaved, P3 cleaves C2n.
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G127
Hill-Irving 1982

G127 = (Z127,E)
E = {(x , y)|x − y = α3 (mod 127)}

Ramsey (4,12)-graph, a color in (4,4,4; 127)
Exoo started to study if G127 → (3,3)e

• 127 vertices, 2667 edges, 9779 triangles
• no K4’s, independence number 11, regular of degree 42
• vertex- and edge-transitive
• 5334 (= 127 ∗ 42) automorphisms
• (127,42,11, {14,16}) - regularity
• K127 can be partitioned into three G127’s
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When to expect G → (3, 3)e ?

• G has a large number of triangles
• G has many small dense subgraphs
• Spencer’s proof is far from useful for G127

Conjecture. G127 → (3,3)e

Plan. Find a subgraph H, embedded in G in many places, so
there is a small number of colorings witnessing H 6→ (3,3)e.
Try to extend all (not many) colorings for H 6→ (3,3)e to G.

or, if this is too expensive ...

go via SAT ...
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Reducing {G | G 6→ (3, 3)e} to 3-SAT

edges in G 7−→ variables of φG
each (edge)-triangle xyz in G 7−→ add to φG

(x + y + z) ∧ (x + y + z)

Clearly,
G 6→ (3,3)e ⇐⇒ φG is satisfiable

For G = G127, φG has 2667 variables and 19558 3-clauses,
2 for each of the 9779 triangles.

Note: By taking only the positive clauses, we obtain
a reduction to φ′G in NAE-3-SAT with half of the clauses.
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Use SAT-solvers

SAT-solver competitions, 3 medals in 9 categories

(random, crafted, industrial)
× (SAT, UNSAT, ALL)

SATzilla (UBC) - winner of 2007 and 2009 competitions
clasp (D), precosat (SF/A/NL) - winners of 2009 competition

The category we need: CRAFTED-UNSAT

Rsat, Picosat, Minisat, March_KS
other recent leading SAT-solvers

59/65 Most Wanted Folkman Number

G127 → (3, 3)e ?
zChaff experiments on φG127

• Pick H = G127[S] on m = |S| vertices.
Use zChaff to split H:

• m ≤ 80, H easily splittable
• m ≈ 83, phase transition ?
• m ≥ 86, splitting H is very difficult

• #(clauses)/#(variables) = 7.483 for G127, far above
conjectured phase transition ratio r ≈ 4.2 for 3-SAT.
It is known that

3.52 ≤ r ≤ 4.596
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Folkman problems to work on
Is it true that 50 ≤ Fe(3, 3; 4) ≤ 100?

• Decide whether G127 → (3,3)e

• Improve on 19 ≤ Fe(3,3; 4) ≤ 941

• Study Fe(3,3; G) for G ∈ {K5 − e,W5 = C4 + x}

• Study Fe(K4 − e,K4 − e; K4)

• Don’t study Fe(K3,K3; K4 − e)
it doesn’t exist :−)
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A small Folkman graph

can drop any vertex, arrowing still holds!
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So, what to do next?
computationally

Hard but potentially feasible tasks:

• Improve any of the Ramsey bounds
• 40 ≤ R(3,10) ≤ 43
• 30 ≤ R(3,3,4) ≤ 31
• 51 ≤ R(3,3,3,3) ≤ 62

• Folkman arrowing of K3
• Improve on 19 ≤ Fe(3,3; 4) ≤ 941
• Study Fe(3,3; G) for G ∈ {K5 − e,W5 = C4 + x}

63/65 So, what to do next?

References

• Alexander Soifer
The Mathematical Coloring Book, Springer 2009

• SPR’s survey Small Ramsey Numbers at the ElJC
Dynamic Survey DS1, revision #12, August 2009
http://www.combinatorics.org/Surveys

All other references therein.

64/65 So, what to do next?



Thanks
for listening
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