Some Ramsey Problems -
Computational Approach

Stanistaw Radziszowski
Rochester Institute of Technology
sprcs.rit.edu

Gdansk, November 2010




Outline - Triangles Everywhere

or avoiding K3 in some/most colors

@ Ramsey Numbers - Two Colors
Some known and computed facts
R(3,10) is hard
Some things to do, computationally

@ Ramsey Numbers - More Colors
Some general bounds
R(3,3,4), R(3,3,3,3) are hard
Things to do

€ Most Wanted Folkman Number
Edge-arrowing (3, 3)
Ky-free edge-arrowing (3, 3)
Things to do

@ So, what to do next?




Ramsey Numbers

e R(G,H)=n Iff
n = least positive integer such that in any 2-coloring of the
edges of K, there is a monochromatic G in the first color or
a monochromatic H in the second color

e R(k,l) = R(Ky, K))
e generalizes to r colors, R(Gy, - - - , Gy)
e 2-edge-colorings = graphs

e Theorem (Ramsey 1930): Ramsey numbers exist
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Unavoidable classics

R(3,3) =6 R(3,5) = 14 (ars90]

Depertnent of Computer Scince
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Basic upper bounds

e R(k,I)= R(lk), R(k,2)=k

e Erdos, Szekeres 1935
Greenwood, Gleason 1955

R(k,I) < R(k —1,1) + R(k,l — 1)

with < if both RHS terms are even, and

R(k+1,l+1)<<k:/>

e R(3,3)=6, R(3,4)=9, R(3,5)=14, R(4,4)=18
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Unavoidable classics

R(4,4) > 17, dist=1{1,2,4,8}

[ . 7.1
I-T

Depertnent of Computer Scince
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A messy case

R(Ks — e,Ks — e) > 21, double ring + outlier
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Diagonal Cases

asymptotics

e Bounds (Erdos 1947, Spencer 1975, Thomason 1988)

an/Zn < R(n, n) < <2n o 2) n—1/2+c/\/logn

e n—1

e Newest upper bound (Conlon, 2010)

2 . logn
R(in+1,n+1) < (nn)n logog 7

e Conjecture (Erdos 1947, $100)
limp_c R(n, n)'/" exists.
If it exists, it is between v/2 and 4 ($250 for value).
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Diagonal Cases

concretely

e Best construction (Frankl, Wilson 1981)

nclog n/loglogn < '1_-,2(,,)7 n)

e First open case (Exoo 1989, MR 1997)

43 < R(5,5) < 49

e Second open case (Kalbfleisch 1965, Mackey 1994)

102 < R(6,6) < 165
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Off-Diagonal Cases

asymptotics
e R(3,x*) - discussed later in the talk

e Bounds (Spencer 1977, Li and Rousseau 2000)

(k+1)/2
Ck (Iogn) < R(k,n) < (1+ o(1))|ogk_2 -

o A generalization (Krivelevich 1995)
p(H) = largest density (e — 1) /(v — 2) of subgraphs of H

p(Kk) = (k+1)/2
n O\ ~H)
CH (lOgﬂ) < R(H, n)
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Off-Diagonal Cases

fixing small k

e R(3,x) - later in these slides
o McKay-R 1995, R(4,5) = 25
e Bohman triangle-free process - 2009

R(4,n) = Q(n®/?/log? n)

e Kostochka, Pudlak, Rodl - 2010
constructive lower bounds

R(4,n) = Q(n®’®), R(5,n) =Q(n*?), R(6,n)=Q(n?

(vs. probabilistic 5/2,6/2,7/2 with /logs)
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Values and Bounds on R(k, /)

two colors, avoiding cliques

{ ) 4 5 6 7 8 9 10 11 12 13 14 15
k

3 6 9 14 18 23 28 36 40 48 22 2 ot S
43 51 59 69 T8 a5
35 49 56 73 g o7 128 133 141 153
i Lo 2 41 61 o 115 149 191 238 291 9 417
43 58 a0 101 125 143 159 185 209 235 265

. 49 57 143 216 316 442 548 1441
102 113 127 169 179 253 262 317 401

. 165 208 495 T80 1171 2566 5033

205 216 233 289 405 416 511
! 540 1031 1713 2826 4553 0954 10581 15263 22116
: 282 317 817 8al
1870 3583 G090 10630 16944 27490 41525 6220
565 580

? b5 88 12677 22325 39025 4871 89203

i TOR 1265
23556 81200

[EIJC survey Small Ramsey Numbers, revision #12, 2009]
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General lower bound constructions

aren’t that good

Theorem Burr, Erdds, Faudree, Schelp, 1989
R(k, n) 2 R(k, n— 1) —|— 2k — 3 fork > 2,n> 3 (notn > 2)

Theorem (Xu-Xie-Shao-R 2004, 2010)
If2<p<qgand3 <k,thenRk,p+q—1)>

( k-3, if 2=p

k—2, If 3<por5<k
RMm%H%Km+<FF27ﬁ'2:pm3:k

p—1, if 3<pand4<k

Forp=2,n=q+ 1, we have R(k,p) = k,
which implies BEFR'89
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Proof by construction
2004 cases

Given
(k, p)-graph G, (k,q)-graph H, k > 3, p,q > 2
G and H contain induced Kj_1-free graph M

construct
(k,p+ g — 1)-graph F, n(F) = n(G) + n(H) + n(M)

VG = {vi, Vo, ..., Vn, }, VH ={uy, o, ..., Un, }
VM = {wq, ... wn}, m<ny,m, Kke1 ¢ M
G{v1,.... Vm}], H{U1,....um}] =M

o(w;) = v;, ¥(w;) = u; isomorphisms

VF = VGU VHU VM

E(G,H)={{v;,ui} |1 <i<m}

E(GM) = {{v,w} |1 <i<ni,1<j<m{vv}cEG)
E(HM)={{u,w} |1<i<nm1<j<m{u,u} € E(H)}
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#vertices / #graphs

no exhaustive searches beyond 13

11
34

156

1044

12346

274668

12005168

1018997864
165091172592 ~ 1.6« 10"

{00 many 1o process
50502031367952 ~ 5% 103
29054155657235488
31426485969804308768
64001015704527557894928
245935864153532932683719776
~ 2 % 1039
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#vertices / #triangle-free graphs

no exhaustive searches beyond 17

4 7
5 14

6 38

7 107

8 410

9 1897

10 12172

11 105071

12 1262180

13 20797002

14 467871369

15 14232552452

16 581460254001 ~ 6« 10"

too many to Process

17 ~ 3 %1012
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Asymptotics

Ramsey numbers avoiding K3

e Recursive construction yielding
R(3,4k+1) > 6R(3,k+1) -5

Q(klog 6/ Iog4) _ Q(k1'29)
Chung-Cleve-Dagum 1993

o Explicit Q(k3/?) construction
Alon 1994, Codenotti-Pudlak-Giovanni 2000

e Kim 1995, lower bound
Ajtai-Komlos-Szemeredi 1980, upper bound
Bohman 2009, triangle-free process

R(3.k) = © (lo";()
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Ssmall R(3, k) cases

k | R(3,k) year reference [lower/upper]

3 6 1953 Putnam Competition

4 9 1955 Greenwood-Gleason

5 14 1955 Greenwood-Gleason

6 18 1964 Kéry

7 23 | 1966/ 1968 | Kalbfleisch / Graver-Yackel

8 28 | 1982 /1992 | Grinstead-Roberts / McKay-Zhang

9 36 | 1966 /1982 | Kalbfleisch / Grinstead-Roberts
10 40-43 | 1989 /1988 | Exoo / Kreher-R

Known values of R(3, k)

Erdos and Sdés, 1980, asked about
3<Ax=R(3,k)—RB,k—1)<k:

k

Ak—>OO?

Ax/k %07
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Clebsch (3, 6; 16)-graph on GF(2*)

(x,y) € Eiffx —y =a°

[Wikipedia]

Alfred Clebsch (1833-1872)
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Larger Cases

Ks versus Kx — e or Kx

R(3,K;—e)=21 R(3,Ks—e)=25 R(3,Ky—e)=31
R(3,7) = 23 R(3,8) = 28 R(3,9) = 36

All R(3, Kix — e) critical graphs are known for k < 8
All R(3, K) critical graphs are known for k <7

First open cases:

37 < R(K3, K1o — e) < 38, 42 < R(K3,K11 — e) <47
40 < R(Ks, Kig) <43, 46 < R(Ks, Ky1) <51
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Upper bounds by counting edges

computing R(3, 10) is difficult

Definition: e(k, n) = min # edges in n-vertex
triangle-free graphs without independent sets of order k

e Very good lower bounds on e(k — 1, n— d)
give good lower bounds on e(k, n)

e For any graph G € R(k, n, e)

k-1
ne—Y ni(etk—1,n—i—1)+*) >0
i=0

e ¢(9, n) not known for 27 < n <35
seem needed before improving on e(10, n) for n > 37

o known e(8, n)-graphs not sufficient to improve on e(9, n)
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R(K37 G)

general non-asymptotic results

e R(Ks, W,) = R(C3,Cp) =2n—1
Faudree-Schelp 1974, Burr-Erdds 1983
all critical colorings, R-Jin 1994

e R(Ks3, G) =2n(G) — 1, for connected G
e(G) <17(n(G)+1)/15,n(G) > 4
Burr-Erdos-Faudree-Rousseau-Schelp 1980

e R(K3, G) <2e(Q) + 1, isolate-free G
R(Ks, G) < n(G) + e(G), a conjecture for all G
Sidorenko 1992-3, Goddard-Kleitman 1994
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R(I'<37 G)

general non-asymptotic results

e R(nK3z,mK3) =2n+3m forn>m>1,n>2
Burr-Erdos-Spencer 1975

° R(Kg,K;g —|—7n) = R(Kg,K3 + Cn) =2n+5 forn> 212
Zhou 1993

e R(Kz,Ko+ Tp)=2n+3 forn>4
Song-Gu-Qian 2004

e R(Kjs, G) for all connected G, n(G) <9
Brandt-Brinkmann-Harmuth 1998-2000
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Things to do for two colors

avoiding triangles

o Enumerate all critical (3, 8;27)-graphs
430K+ known already

o Enumerate all critical (3, 9; 35)-graphs
only one is known!

e Finish off 37 < R(3, Kig — e) < 38

e R(3,10) < 43, get it down first to 42

R(3,10) > 40, don’t even try to do better :-( lower bound 40 is probably correct
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Stay awake - applications exist

E(.IC .I)Ymm,(‘c Survey l\Dec. =09

Ramsey Theory Applications

2 67 re ]potemes
Vera Rosta*

Dept. of Mathematics and Statistics McGill University, Montréal
Rényi Institute of Mathematics, Hungarian Academy of Sciences
rostalrenyi.hu

Submitted: Sep 17, 2001; Accepted: Apr 20, 2004; Published: Dec 7, 2004
Mathematics Subject Classifications: Primary: 05D10, 05-02, 05C90; Secondary: 68R05

Abstract

There are many interesting applications of Ramsey theory, these include results
in number theory, algebra, geometry, topology, set theory, logic, ergodic theory,
information theory and theoretical computer science. Relations: of Ramsey-type
theorems to various fields in mathematics are well documented in published books
and monographs. The main objective of this survey is to list applications mostly in
theoretical computer science of the last two decades not contained in these.

Depertnent of Computer Scince
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More colors
upper bound

R(k1,...,kr)§2—f—|—2;21 R(k1,...,k,'_1,k,'—1,k,'_|_1,...,kr)

with strict < if the RHS is even and sum has en even term
Greenwood-Gleason 1955

Only two known multicolor cases, (3,3,4) and (3,3,3,3), where the
RHS is improved. Likely this bound is never tight, except for (3,3,3).
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More colors

some constructive results

o Xu-Xie-Exoo0-R 2004
e forky >5and k; > 2
R(k172k2_ 17k37"' akf) 24R(k1 — 17k27k37”' 7kr)

e using k1 = I, ko = 2, k3 = k in the above
R(3,k,I) > 4R(k,[—1) — 3

e USe k=3
R(3,3,/) >4R(3,/—1) — 3

o R(3,3, k) = ©(k3poly-log k)
Alon-Rodl 2005
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R.(3) = R(3,3,--- ,3)

just no triangles

e The limit L = lim,_.. B,(3)7 exists
Chung-Grinstead 1983

(25(r) + 1)7 = G ~(r—p) 3.199 < L

e Much work on Schur numbers s(r)
via sum-free partitions and cyclic colorings
S(r) > 89r/4_0|ogr > 3.07" [except small r]
Abbott+ 1965+

s(r) = 1,4,13. 44, > 160, > 536

e Rr(3) > 3R, _1(3) + Rr_3(3) - 3
Chung 1973
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R(3,3,3) = 17

two Kalbfleisch (8, 3, 3; 16)-colorings, each color is a Clebsch graph

U1l

vz

U3
Uy

Uys

U11
U1z
U13
V14

U1s

k=

[Wikipedia] T

Depertnent of Computer Scince
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Three colors - R(3, 3, 4)

the only (as of now) not hopeless case

e 30 < R(3,3,4), cyclic coloring, Kalbfleisch 1966
e R(3,3,4) < 31, computations, Piwakowski-R 1998

Theorem (Piwakowski-R 2001): R(3,3,4) = 31 iff there exists
a (3, 3,4,;30)-coloring C in which every edge in 3-rd color has
an endpoint x with degree 13. Furthermore, C has at least 25
vertices with color degree sequence (8, 8, 13).

Proof: Gluing possible arrangements of color induced
neighborhoods of v in a (3, 3, 4; 30)-coloring:
(3,4;5),(3,4,1),(38,3,3;u>14) withs+t+ u =29

too many (3, 3, 3; 13)’s to proceed further ¢
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Four colors - R4(3)

51 < R(3,3,3,3) < 62

year reference lower | upper
1955 Greenwood, Gleason 42 66
1967 false rumors [66]

1971 Golomb, Baumert 46

1973 Whitehead 50 65
1973 Chung, Porter 51

1974 Folkman 65
1995 Sanchez-Flores 64
1995 Kramer (no computer) 62
2004 | Fettes-Kramer-R (computer) 62

History of bounds on R4(3) irom xR 2004
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Lower bound for Ry(3)

start with Clebsch (3,3,3;16)-coloring

o

1%

X | XaXg

X XXX

) X3XyE3%g

X)) XyX XXXy

XAy XX, X X

Ty(xg.X| X3, X3) ® XX X3X X | X XX *
L0555

XX 5 XXy 5 X X Xy Xy
I:Illixlllllll]’]llr]l“

X)X X X X)Xy XXXy Xp X Xg
XN I )X Xy X1 X,
XN I L X XX, XX,
XXX | X g Xa Xy X | Xy X XaX Xy
*'J":lxlIJI111‘1111!"]1!111!1:4"[-‘7#

T ——
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Lower bound for Ry(3)

Chung construction 1973, basic step yields (3,3,3,3;50)-coloring

2 28 31
i (1
7{- A T »
T4(0,1,2,3,4]1§i o)) B o
i 4 ol ‘
E F C
| 11222133 ... 310
1T e § B - 2133.......3]4]0

A=T3(0,2,3,4) D=T3(3,2,1,4)
B=T3(0,3,1,4) E=T3(2,1,3,4)
C=T5(0,1,2,4) F=T3(1,3,24)

3

aii)

Depertnent of Computer Scince
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Lower bound for Ry(3)

attempts to beat Chung’s construction for 4 colors

lterate transformations of colorings:
e Merging pairs of colors (easy)

(3,3,3,3;n) — (3,3,6;n), (3,3,6;n)— (6,6;n)
e Deleting a vertex with all adjacent edges (easy)
(3,3,3,3;n) —(3,3,3,3;n—1)
e Single color splitting (moderate)
(6,6;n) — (3,3,6;n), (3,3,6;n) — (3,3,3,3;n)
e Limited one point extension (hard)

(6,6;n) — (6,6;n+1)
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Lower bound for Ry(3)

attempts to beat Chung’s construction

Results

e Many nonisomorphic constructions on 50 vertices, yet,
all of them are just minor modifications of the Chung

construction.
o Very hard to get close to 50 vertices with heuristics.

Used great software by Brendan McKay

e nauty, canonical labelings of graphs (and more),
isomorph deletion

e geng, graph generator
e autoson, network job scheduling
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Lower bound for Ry(3)

Chung construction 1973, recursion

R/ (3) = 3R,—1(3) + Rr—3(3) — 3

A
T4010,1,2,..k41)= | D B
E F C
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Upper bound for Ry4(3)

color degree sequences for (3, 3, 3, 3; > 59)-colorings

n

orders of N, (v)

65
64
63

62

[16, 16, 16, 16 ]
[16, 16, 16, 15 ]
[16, 16, 16, 14 ]
[16, 16, 15, 15
[16, 16, 16, 13 ]
[16, 16, 15, 14 ]
[16, 15, 15, 15 ]

Whitehead, Folkman 1973-4
Sanchez-Flores 1995

Kramer 1995+

Fettes-Kramer-R 2004

61

60

59

[16, 16, 16,12 ]
[16,16, 15,13 ]
[16,16, 14,14 ]
[16,15,15,14]
[15,15,15,15]
[16, 16, 16, 11 ]
[16,16,15,12]
[16,16, 14,13 ]
[16,15,15,13]
[16,15,14,14]
[15,15,15,14]
[16,16,16,10]
[16,16,15,11]
[16,16,14,12]
[16,16,13,13]
[16,15,15,12]
[16,15,14,13]
[15,15,15,13]
[15,15,14,14]

guess: doable in 2015
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More colors - summary

just no triangles

k | value or bounds | reference(s)

2 6 [cf. Bush 1953]

3 17 Greenwood-Gleason 1955

4 51 — 62 Chung 1973 — Fettes-Kramer-R 2004
S 162 — 307 Exoo 1994 — easy

6| 538 — 1838 Fredricksen-Sweet 2000 — easy

/7| 1682 — 12861 Fredricksen-Sweet 2000 — easy

Bounds and values of Rx(K3)
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Things to do

computational multicolor Ramsey numbers problems

e improve 45 < R(3,3,5) <57
e finish off 30 < R(3,3,4) < 31
o understand why heuristics don’t find 51 < R4(3)

o improve on R4(3) < 62
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More Arrowing

F, @G, H - graphs, s, t, s; - positive integers

Definitions
F — (s, ..., sr)¢ iff for every r-coloring of the edges
F contains a monochromatic copy of Ks. in some color /.

F — (@G, H)¢ iff for every blue/red edge-coloring of F,
F contains a blue copy of G or a red copy of H.

Facts

R(s,t) = min{n| K, — (s, )¢}
R(G,H) = min{n| K, — (G, H)?}
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Folkman problems

edge Folkman graphs
Fe(s, k) ={G — (s,1)°: Kk £ G}

Edge Folkman numbers (very hard to compute)
Fe(s, t; k) = the smallest n such that there exists
an n-vertex graph Gin Fe(s, t; k)

vertex Folkman graphs/numbers (ardto compute)

2-coloring vertices instead of edges

Theorem (Folkman 1970): For all kK > max(s, t), edge-
and vertex Folkman numbers Fq(s, t; k), F,(s, t; k) exist.
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Two small cases

warming up

e (G = Kg has the smallest number of vertices among
graphs which are not a union of two Ks-free graphs, or

e Ks — (K3, K3)® and Ks / (K3, K3)°®

e What if we want G to be Ks-free?
Graham (1968) proved that

e Kg — Cs =Kz + G5 — (Ks, Ks)
\V(H)| <8AKs & H= H / (Ks, K3)
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Known values/bounds for F¢(3, 3; k)
the challenge is to compute Fq(3, 3;4)

k > R(s,t) = Fe(s,t; k) = R(s, 1)
k < R(s,t), very little known in general

K | Fe(3,3; k) graphs reference
> 7 6 Ks folklore
6 8 Cs + K3 Graham 1968
3 15 | 659 graphs | Piwakowski-Urbanski-R 1999
4 <941 | o® mod 941 Dudek-Rédl 2008

.
TGS
. féi%‘ri’;&%‘&s; T

Compu

Depertmmt of Computer Science.

(7
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Fo(3,3;5) =15, and F,(3,3;4) = 14

G+x— (3,3)% and G — (3,3)"

unique 14-vertex bicritical F,(3, 3; 4)-graph G (pru 1999]
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History of upper bounds on Fy(3, 3; 4)

e 1967 - Erdds, Hajnal state the problem

e 1970 - Folkman proves his theorem for 2 colors
VERY large bound for F¢(3, 3;4).

e 1975 - Erdds offers $100 (or 300 Swiss francs)
for deciding if Fe(3,3;4) < 10'°

e 1988 - Spencer, probabilistic proof for the bound 3 x 108
(1989 - Hovey finds a mistake, bound up to 3 x 109)

e 2007 - Lu, <9697, spectral analysis of modular circulants

e 2008 - Dudek-Réd|, Fo(3,3;4) < 941
circulant arc lengths o> mod 941
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Fe(3,3;4) < 941

some details of the proof by Dudek-Rdadl

o Theorem. If for every vertex v € V(G)
Maxcut(G[N(v)]) < g\E(G[N(v)m
then G — (3, 3)°.

o Define graph H on vertices E(G) with edges
{(e,f): e fe E(G),efgis atriangle in G for some g}.

Maxcut approximation in H can imply G — (3, 3)°.

o This works for the graph

G = (Zoa1, {(i,j) : i —j=a® mod 941})
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History of lower bounds on F(3,3; 4)

e 10 < Fy(3,3;4) Lin 1972

e 16 < F¢(3,3;4) Piwakowski-Urbanski-R 1999
since F¢(3,3;5) = 15, all graphs in F¢(3, 3;5) on
15 vertices are known, and all of them contain K;'s

e 19 < Fu(3,3;4) R-Xu 2007
18 < F¢(3,3;4) proof "by hand"

e ANY proof technique improving on 19
very likely will be of interest

"

Conprt

Deparmentcf er Science
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Lower bound
proof "by hand" that 18 < F¢(3, 3; 4)

° G17 critical for R(4, 4) = 18,
check that G17 7L> (3, 3; 4)6.

e Gi7#£G— (3,3;4)%, |V(G)| =17,
G must have indset / on 4 vertices.

e H=1+G[V(G)\ /] — (3,3;5)°.

e Dropping any three vertives from /,
gives Ks-free graph on 14 vertices.

o Contradiction with F4(3,3;5) = 15.

Computing 19 < F¢(3,3;4)
quite similar, but much more work,
use all 153 graph H € F,(3, 3;4).
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General facts on Fg(s, t; k)

o Ge Fo(s, t;k) = x(G) > R(s, 1)
no k in the bound!, easy

o Fe(s,t;k) = R(s,t) for k > R(s,t) easy

o Fo(s,t;R(s,t)) = R(s,t)+cC SO, SO
in most cases cis small (2, 4, 5)

o Fo(s,t;k) > R(s,t)+4 for k < R(s,t) hard

e Ge Fy(R(s—1,t),R(s,t—1);k—1) =
G+ x € Fe(s, t; k), or equivalently

o Ci\—l—x7L> (Syt)e:> 674 (R(S_ 17t)7R(Svt_ 1))‘/!
and clearly c/(G + x) = cl(G) + 1

49/65 Most Wanted Folkman Number



Vertex Folkman numbers pearls

F,(2,2,2;3) =11
the smallest 4-chromatic triangle-free graph

Groétzsch graph [mathworld.wolfram.com]

F,(2,2,2,2;3) =22, Jensen-Royle 1995
the smallest 5-chromatic triangle-free graph has 22 vertices

50/65 Most Wanted Folkman Number



Vertex Folkman numbers pearls

F,(2,2,2,2;4) =11, Nenov 1984, also 1993
the smallest 5-chromatic K4-free graph has 11 vertices

17 < Fy(4,4;5) <23, Xu-Luo-Shao 2010
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Vertex Folkman numbers pearls

Theorem (ancient folklore)
F,.(2,---,2;r)=r+5,forr>5.

Vs

r

Proof. For the upper bound consider

as the critical graph K,_5 + Cs + Cs

for the lower bound take any

K,—free graph G on r + 4 vertices, then

assemble matchings in G to show x(G) < r ]

Theorem (Nenov 2003)
Fu(3,---,3;2r)=2r+7,forr > 3.

~

r
For r = 2, a small but hard case, F,(3,3;4) = 14 (PRU 1999)
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Testing arrowing is hard

theory/practice

o Testing whether F — (3, 3)¢ is coNP-complete
Burr 1976

o Determining if R(G, H) < mis NP-hard
Burr 1984

o Testing whether F — (G, H)¢ is Nh-complete
Schaefer 2001

e Implementing fast F — (3, 3)° is challenging

Testing whether F — (Ks, Kj)€ is the same
as checking K, C F, so it is NP-hard.
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Complexity of (edge) arrowing

Problem Fixed Complexity

F — (G, H) M5-complete

F — (G, H) G, H in coNP

F — (Ko, H) NP-complete

F — (Ko, H) H NP-complete
F— (T,Kp) T,e(T)>2 n5-complete

F — (G, H) G,HecTl3 coNP-complete
F — (P4, Py) coNP-complete
F — (kK>, H) k, H P

F — (K'I,I’h K1,m) P

K, — (G, H) NP-hard

Compendium of arrowing complexity by many.
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Tools in complexity of arrowing

(@G, H)-enforcers, -signal senders, -cleavers, -determiners are
the tools (gadgets) used in reductions (Burr, Schaefer). They
give control on F — (G, H).

Definition. (Grossman 1983) F is a (G, G)-cleaver iff there
exists unique coloring of F witnessing F /4 (G, G).

A

P, cleaved F 4 (P4, P4), with only one witness coloring.

Known Ks-cleaved graphs contain Kjy.
Ks is not Cs-cleaved, P5 cleaves Cop,.

AT TGS
. SRS
Compu

Depertmmt of Computer Science.

(7
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G1 27

Hill-Irving 1982

G127 = (2127, E)
E={(x,y)|x —y=a® (mod 127)}

Ramsey (4, 12)-graph, a color in (4,4,4;127)
Exoo started to study if Gio7 — (3,3)°

e 127 vertices, 2667 edges, 9779 triangles

e no K;’s, independence number 11, regular of degree 42
e vertex- and edge-transitive

o 5334 (= 127 % 42) automorphisms

o (127,42,11,{14,16}) - reqularity

e Kjo7 can be partitioned into three Gio7's
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When to expect G — (3,3)° ?

e (G has a large number of triangles
e (G has many small dense subgraphs
e Spencer’s proof is far from useful for Gyo7

Conjecture. Gio7 — (3,3)°

Plan. Find a subgraph H, embedded in G in many places, so
there is a small number of colorings witnessing H /4 (3, 3)°.

Try to extend all (not many) colorings for H 4~ (3, 3)¢ to G.
or, if this is too expensive ...

go via SAT ...

57/65 Most Wanted Folkman Number



Reducing {G | G 4 (3, 3)°} to 3-SAT

edges in G — variables of g5
each (edge)-triangle xyz in G —— add to ¢g

xX+y+z2)AN(X+y+2)

Clearly,
G /4 (3,3)° < ¢ is satisfiable

For G = Gjo7, ¢ has 2667 variables and 19558 3-clauses,
2 for each of the 9779 triangles.

Note: By taking only the positive clauses, we obtain
a reduction to ¢ in NAE-3-SAT with half of the clauses.
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Use SAT-solvers

SAT-solver competitions, 3 medals in 9 categories
(random, crafted, industrial)
x (SAT, UNSAT, ALL)
SATzilla (UBC) - winner of 2007 and 2009 competitions
clasp (D), precosat (SF/A/NL) - winners of 2009 competition
The category we need: CRAFTED-UNSAT

Rsat, Picosat, Minisat, March_KS
other recent leading SAT-solvers
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G127 — (3, 3)9 ?

zChaff experiments on ¢g,,,

e Pick H = Gy27[S] on m = |S] vertices.
Use zChaff to split H:

e m < 80, H easily splittable
e m =~ 83, phase transition ?
e m > 86, splitting H is very difficult

o #(clauses)/#(variables) = 7.483 for Gy»7, far above
conjectured phase transition ratio r ~ 4.2 for 3-SAT.
It is known that
3.52 < r <4596
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Folkman problems to work on
Is it true that 50 < F,(3,3;4) < 1007?

e Decide whether G127 — (3, 3)°

e Improve on 19 < F¢(3,3;4) < 941

e Study F¢(3,3;G) for Ge {Ks — e, W5 = C4 + X}
o Study Fo(Ky — €, K4 — €, Ky)

e Don't study Fe(Ks, K3; Ky — €)
it doesn’t exist )
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A small Folkman graph

2 verlex R(Kz:—e Kz : Ky-€
& -ttt C(.B NSy TN )

Gaa»(\”)A-;IZJ)e

can drop any vertex, arrowing still holds!
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So, what to do next?

computationally

Hard but potentially feasible tasks:

e Improve any of the Ramsey bounds
e 40 < R(3,10) < 43
e 30 < R(3,3,4) < 31
e 51 < R(3,3,3,3) < 62

e Folkman arrowing of K3

e Improve on 19 < F,(3,3;4) < 941
o Study Fe(3,3;G) for Ge {Ks — e, W5 = C4 + x}
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Thanks
for listening
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