An Overview of Cryptanalysis Research for the Advanced Encryption Standard

Alan Kaminsky, Rochester Institute of Technology
Michael Kurdziel, Harris Corporation
Stanisław Radziszowski, Rochester Institute of Technology

November 2, 2010
• **Background**
 – History
 – Theoretical vs. practical attacks
 – Block cipher usage

• **AES attacks**
 – Brute force attacks
 – Linear and differential attacks
 – Algebraic attacks
 – SAT solver attacks
 – Related-key attacks
 – Side channel attacks

• **Prognosis and recommendations**
Background
• 1976 — DES block cipher published
• 1991 — Differential cryptanalysis of DES published
• 1993 — Linear cryptanalysis of DES published
• 1997 — AES Competition commences
• 1998 — AES Competition Round 1 ends; 15 candidates chosen
• 1998 — EFF’s Deep Crack breaks DES (56 hours, $250,000)
• 1998 — Triple-DES block cipher published
• 1999 — AES Competition Round 2 ends; 5 candidates chosen
• 2000 — AES Competition Round 3 ends; Rijndael wins
• 2001 — AES block cipher published
• 2003 — NSA approves AES for Type 1 Suite B encryption

• ???? — AES broken
• Block cipher “break” = find the secret encryption key
• A block cipher can always be broken
 – Brute force search
 – 2^n operations, $n =$ number of key bits
• Secure against attack X
 – Attack X needs more than 2^n operations
• Theoretical break
 – Attack X needs fewer than 2^n operations
 – But the time required is too long to be useful
• Practical break
 – Attack X needs fewer than 2^n operations
 – And the time required is short enough to be useful
• How short is short enough?
 – Military secrets: 50 years
Block Cipher Usage: Encryption

Encryption methods:

- **Electronic codebook (ECB) mode**
 - Processing each plaintext block independently.
 - Sensitive to even minor changes in plaintext.

- **Cipher block chaining (CBC) mode**
 - Each plaintext block is XORed with the previous ciphertext block.
 - Sensitive to changes in both plaintext and ciphertext.

Diagram showing the processes for ECB and CBC modes.
Block Cipher Usage: Hashing

Merkle-Damgård construction

Matyas-Meyer-Oseas

Davies-Meyer

Miyaguchi-Preneel
AES Attacks
• June 2010 TOP500 List (www.top500.org)
• World’s fastest supercomputer: ORNL’s Jaguar
 – 224,162 cores (2.6 GHz six-core Opteron chips)
 – 1.759 petaflops Linpack performance (1,759,000 gigaflops)
• 1,000-fold performance improvement per decade
• Assume
 – 1 AES encryption = 200 floating point operations
• Top supercomputer brute force attack today
 – 2^n encryptions \times 200 flop/encryption \div 1.76x1015 flop/sec
 – AES-128: 3.87×10^{25} sec = 1.23x1018 years
 – AES-192: 7.13×10^{44} sec = 2.26x1037 years
 – AES-256: 1.32×10^{64} sec = 4.17x1056 years
• Top supercomputer brute force attack in 2060
 – 2^n encryptions \times 200 flop/encryption \div 1.76x1030 flop/sec
 – AES-128: 3.87×10^{10} sec = 1.23x103 years
 – AES-192: 7.13×10^{29} sec = 2.26x1022 years
 – AES-256: 1.32×10^{49} sec = 4.17x1041 years
• AES prognosis: Safe
Cryptanalytic attacks known before AES was invented
- Linear attack
- Differential attack
- Boomerang attack
- Truncated differential attack
- Square attack
- Interpolation attack

AES was designed to be secure against all these attacks
- Differential attack breaks AES reduced to 8 rounds
- AES-128 was therefore designed with 10 rounds
 - Security margin: 20%

AES prognosis: Safe, but . . .
- Small security margin is troubling
• AES can be expressed as a system of quadratic equations
 – Variables are the plaintext, ciphertext, key, and internal state bits
• Such a system can be solved by linearization
 – Define new variables that are products of existing variables
 – Express original system as linear equations in the new variables
 – Add more equations so the new system has enough linearly independent equations to be solvable
 – Solve the now-linear system using, e.g., Gaussian elimination
• XL: eXtended Linearization attack (Courtois et al., 2000)
• XSL: eXtended Sparse Linearization attack (Courtois & Pieprzyk, 2002)

• Problem
 – The AES linear system is too large to solve in a practical time
• AES prognosis: Safe, but . . .
 – No one has proven there isn’t an efficient way to solve the AES linear system
Any cipher can be expressed as a set of polynomial functions
- Ciphertext bit \(i = F_i(\text{Plaintext}, \text{Key}) \)

Cube attack (Dinur & Shamir, 2009)
- Requires \(2^{d-1}n + n^2 \) operations
- \(n = \text{number of key bits}, \ d = \text{degree of polynomials} \ F_i \)
- Succeeds in a practical time if degree is small enough
- Requires only black-box access to the cipher

Breaks reduced-round version of stream cipher Trivium
- Trivium has a low-degree polynomial representation

Problem
- AES almost certainly has a too-high-degree polynomial representation

AES prognosis: **Safe**
• Any cipher can be represented as a Boolean expression
 – Variables are the plaintext, ciphertext, key, and internal state bits
 – Boolean expression is true if ciphertext = encrypt (plaintext, key)

• SAT solver
 – Given a Boolean expression, finds variable values that satisfy the expression (make the expression true)
 – Modern SAT solvers use sophisticated heuristics to avoid a brute force search

• Problem
 – AES Boolean expression is too large to solve in a practical time

• AES prognosis: Safe, but . . .
 – SAT solvers are getting better all the time
 – Hybrid SAT solver + algebraic attacks might reduce the problem size enough to become practical
 – Little research in this area heretofore
Related-Key Attacks

• Methodology
 – Given plaintext/ciphertext pairs encrypted with two secret keys
 – The keys have a known relationship, e.g., they differ in one bit
 – Find the two keys

• Theoretical breaks of full AES
 – AES-192 in 2^{176} operations; AES-256, 2^{119} (Biryukov et al., 2009)
 – AES-256 in 2^{131} operations (Biryukov et al., 2009)

• Practical breaks of reduced-round AES
 – AES-128, 8 (of 10) rounds, in 2^{48} operations (Gilbert & Peyrin, 2009)
 – AES-256, 9 (of 14) rounds, in 2^{39} operations; 10 rounds, 2^{45}
 (Biryukov et al., 2010)

• AES prognosis: Theoretically broken, but . . .
 – This is mostly of concern for AES-based hashing, not encryption
 – A practical related-key attack on the full AES is not far off —
 we’re 80% there for AES-128
• Attack the AES implementation, not the AES algorithm
 – Timing analysis attacks
 – Power analysis attacks
 – Fault injection attacks

• Many AES implementations are highly susceptible
 – Especially those using table lookups
 – Secret keys can be recovered with negligible effort

• Countermeasures
 – Don’t use table lookups
 – Use constant time operations (e.g., Intel’s AES opcodes)
 – Algorithm masking

• AES prognosis: Broken (if poorly implemented)
Prognosis and Recommendations
• DES lasted 22 years before falling to a brute force attack

• AES (Rijndael) has lasted 11 years so far without falling
 – AES will not fall to a brute force attack
 – AES will not fall to traditional attacks (linear, differential)
 – Cracks in the AES edifice are starting to appear from new, nontraditional attacks

• In 10 more years, by 2020:
 – AES will not have fallen, but . . .
 – Enough cryptanalysis will have been published to seriously weaken AES
 – NIST will start a new competition to design the AES-2 block cipher
• When implementing AES, incorporate side channel attack countermeasures

• Do not use any hash function based on AES

• Do not rely on AES to keep military grade secrets secure for more than the next 50 years

• Plan to replace AES with AES-2 in about 10 years