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Abstract

For graph G and integers a1 > · · · > ar > 2, we write G → (a1, · · · , ar)v if and
only if for every r-coloring of the vertex set V (G) there exists a monochromatic Kai

in G for some color i ∈ {1, · · · , r}. The vertex Folkman number Fv(a1, · · · , ar; s) is
defined as the smallest integer n for which there exists a Ks-free graph G of order
n such that G → (a1, · · · , ar)v. It is well known that if G → (a1, · · · , ar)v then
χ(G) > m, where m = 1+

∑r
i=1(ai−1). In this paper we study such Folkman graphs

G with chromatic number χ(G) = m, which leads to a new concept of chromatic
Folkman numbers. We prove constructively some existential results, among others
that for all r, s > 2 there exist Ks+1-free graphs G such that G→ (s, · · ·r , s)v and G
has the smallest possible chromatic number r(s− 1) + 1 for this r-color arrowing to
hold. We also conjecture that, in some cases, our construction is the best possible,
in particular that for every s > 2 there exists a Ks+1-free graph G on Fv(s, s; s+ 1)
vertices with χ(G) = 2s− 1 such that G→ (s, s)v.
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1 Preliminaries, notation and definitions

Throughout this paper, we consider only finite undirected loopless simple graphs. For
graph G = (V,E), denote by V (G) the set of its vertices, and by E(G) the set of its
edges. A complete graph of order n is denoted by Kn, and a cycle of length n by Cn.
The clique number of G is denoted by cl(G), and the chromatic number by χ(G). An
(s, t)-graph is a graph that contains neither an s-clique nor a t-independent set.

The set {1, · · · , n} is denoted by [n]. Let r, s, a1, · · · , ar be integers such that r > 2,
s > max{a1, · · · , ar} and min{a1, · · · , ar} > 2. We write G→ (a1, · · · , ar)v if and only if
for every r-coloring of V (G) there exists a monochromatic Kai in G for some color i ∈ [r].
The sets of vertex Folkman graphs are defined as

Fv(a1, · · · , ar; s) = {G | G→ (a1, · · · , ar)v and cl(G) < s},

and the vertex Folkman numbers are defined as the smallest orders of graphs in these
sets, namely

Fv(a1, · · · , ar; s) = min{|V (G)| | G ∈ Fv(a1, · · · , ar; s)}.

In 1970, Folkman [8] proved that for every s > max{a1, · · · , ar} the sets
Fv(a1, · · · , ar; s) are nonempty. If a1 = · · · = ar = a, then we will use a simpler no-
tation for the corresponding set of vertex Folkman graphs F(r, a, s) = Fv(a1, · · · , ar; s),
and for numbers F (r, a, s) = Fv(a1, · · · , ar; s). The case of F (r, s, s + 1) was studied in
particular by Dudek and Rödl [6] and Hàn, Rödl and Szabó [10]. The latter work contains
the result stated in the following theorem.

Theorem 1. (Hàn-Rödl-Szabó, 2018) For any positive integer r there exists a constant
C = C(r) such that for every s > 2 it holds that F (r, s, s+ 1) 6 Cs2 log2 s.

Set m = 1 +
∑r

i=1(ai − 1). It is well known that if G→ (a1, · · · , ar)v then χ(G) > m
[19]. In this paper we study vertex Folkman graphs G with the corresponding Folk-
man numbers, when the graphs G satisfy an additional constraint on their chromatic
number, namely χ(G) = m. This motivates the concept of the minimum chromatic Folk-
man graphs, Fχv (a1, · · · , ar; s), and corresponding minimum chromatic Folkman numbers,
F χ
v (a1, · · · , ar; s). Formally:

Fχv (a1, · · · , ar; s) = {G | G ∈ Fv(a1, · · · , ar; s) and χ(G) = m},

and
F χ
v (a1, · · · , ar; s) = min{|V (G)| | G ∈ Fχv (a1, · · · , ar; s)}.

The remainder of this paper focuses on minimum chromatic vertex Folkman graphs
and numbers, and we will call them simply chromatic Folkman graphs and numbers,
respectively. Similarly as in the classical case, we will use further notational abbreviation
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for the diagonal chromatic cases, namely, if a1 = · · · = ar = a, then we set Fχ(r, a, s) =
Fχv (a1, · · · , ar; s) and F χ(r, a, s) = F χ

v (a1, · · · , ar; s).

The main result of this paper, Theorem 3 in Section 2.1, shows the existence of
F χ(r, s, s + 1) for r, s > 2 by an explicit construction. We must admit that the im-
plied upper bound is much larger than the bound in Theorem 1, but our construction
gives an additional constraint on the chromatic number. We also conjecture that, in some
cases, our construction is the best possible one, in particular that for every s > 2 there
exists a Ks+1-free graph G on Fv(s, s; s+1) vertices with chromatic number χ(G) equal to
m = 2s−1 such that G→ (s, s)v, or equivalently, that F χ

v (s, s; s+1) = Fv(s, s; s+1). We
wish to remark that a technique as in this paper should lead to more general existence
results for F χ

v (a1, · · · , ar; s), and with some further enhancements also for generalized
Folkman numbers, where one avoids monochromatic graphs Gi instead of Kai . However,
we do not study such extensions in this work.

In another direction, one can consider coloring the edges instead of vertices, which leads
to concepts analogous to those above for vertices. LetM = R(a1, · · · , ar) = min{n |Kn →
(a1, · · · , ar)e}, i.e. set M to be the classical multicolor Ramsey number for fixed a1, . . . , ar
(In this paragraph the subscript/superscript e means that we color edges instead of ver-
tices). A classical argument easily proves that if G→ (a1, · · · , ar)e then χ(G) > M [15].
Further, we can define Fχe (a1, · · · , ar; s) = {G | G ∈ Fe(a1, · · · , ar; s) and χ(G) = M},
and F χ

e (a1, · · · , ar; s) = min{|V (G)| | G ∈ Fχe (a1, · · · , ar; s)}. From the construction by
Nešetřil and Rödl in [21] we can see that there exists a Ks+1-free graph G with chromatic
number equal to R(s, s) such that G → (s, s)e. For 3 6 k 6 l, essentially the same
reasoning as in [21] implies the existence of Ks+1-free graphs G with χ(G) = R(k, l) and
G→ (k, l)e. In a similar way, one could also show that F χ

e (a1, · · · , ar; s) exists.

In the sequel we will be coloring only vertices. The rest of this paper is organized
as follows. In Section 2, the existence of the chromatic Folkman numbers F χ(r, s, s + 1)
is proved, the corresponding upper bound is discussed, and a conjecture is posed. In
Section 3, we study some minimal Folkman graphs with the smallest minimum degree.
Though not yet directly connected to chromatic Folkman numbers, we point to a possible
connection between them.

2 Chromatic Folkman numbers

Our main motivation to study chromatic Folkman graphs and numbers is to understand
how they may differ from the regular Folkman cases. If for a special family of cases we
find that the chromatic cases yield the same numbers as the regular ones, then we could
see it as a stronger version of the Folkman theorem. In any case, we may be able to see
better the structure of extremal Folkman graphs.

Before we prove the existence of F χ(r, s, s+1), we want to observe that F χ
v (a1, · · · , ar; s)

and Fv(a1, · · · , ar; s) can be different. It is known that there exists exactly one K5-free
graph Q of order 13 such that Q → (3, 4)v [18]. This graph Q is the complement of the
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unique (3, 5)-Ramsey critical graph, which is cyclic on the set Z13 with arcs of length 1
and 5. One can easily check that χ(Q) = 7. Thus, since in this case m = 6, we have
F χ
v (3, 4; 5) > 13 = Fv(3, 4; 5). Bikov and Nenov [4] provided us with other examples of

this type, in particular they observed that F χ
v (4, 4; 6) > Fv(4, 4; 6), since the only ex-

tremal graph for Fv(4, 4; 6) is Q+K1. More such examples follow from their recent work
[1, 2]. On the other hand we feel that these examples are special in that they exploit
larger difference between arrowed and avoided graphs. This is captured in the following
problem for the borderline diagonal cases, for two and more colors.

Problem 1. Is it true that F χ(r, s, s+ 1) = F (r, s, s+ 1) for all r, s > 2?

Lemma 2 in the next section gives a positive answer to Problem 1 for all r > 2
with s = 2. A graph presented in Figure 1 in [22] and the computations described
therein implicitly give a positive answer in one more special 2-color case, namely it holds
that F χ

v (3, 3; 4) = Fv(3, 3; 4) = 14. One can ask similar questions related to minimum
chromatic edge Folkman numbers (when coloring edges instead of vertices), but these
seem much more difficult to answer.

While several general cases of vertex Folkman numbers have been studied, the problem
of finding their exact values for small cases remains elusive. This holds even just for
two colors when s is smaller than m − 1. For instance, the case of Fv(4, 4; 5) seems to
be difficult, for which only the bounds 19 6 Fv(4, 4; 5) 6 23 are known [3, 23]. The
computational approach is often too expensive. Just testing a single instance of arrowing
for an upper bound witness graph is not easy in most cases, and improving lower bounds
is much harder since it may involve a very large number of arrowing instances. Both upper
and lower bounds for edge Folkman numbers tend to be computationally still harder.

2.1 Main theorem

The upper bound on F χ(r, s, s+ 1), which can be obtained by the construction of Theo-
rem 3 below, is rather large. This and other bounds we could derive for F χ(r, a, s) also
seem less tight than those known for F (r, a, s), except the special case for a = 2 and s = 3
captured by Lemma 2. We follow this lemma by a theorem describing the quite special
but more general and more difficult case of F χ(r, s, s+ 1).

Lemma 2. For all r > 2, F χ(r, 2, 3) exists and it is equal to F (r, 2, 3).

Proof. The sets Fχ(r, 2, 3) consist of triangle-free graphs with chromatic number equal to
r + 1, which in the case of arrowing K2 clearly coincides with the smallest order graphs
in Fv(r, 2, 3). The latter sets are known to be nonempty for all r > 2. Thus we also have
F χ(r, 2, 3) = F (r, 2, 3).

In the basic case of two colors, one can easily see that F χ(2, 2, 3) = 5, because
C5 ∈ Fv(2, 2; 3) and χ(C5) = m = 3. Clearly, we also have Fv(2, 2; 3) = 5. We know
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that Fv(2, 2, 2; 3) = 11, or the smallest 4-chromatic triangle-free graph has 11 vertices, wit-
nessed by the Grötzsch graph. Also, it is known that F χ(4, 2, 3) = Fv(2, 2, 2, 2; 3) = 22, or
the smallest 5-chromatic triangle-free graph has 22 vertices [11]. The best known bounds
in the first open case, 32 6 F χ(5, 2, 3) 6 40, are due to Goedgebeur [9].

Theorem 3. For given integers r > 2 and s > 3, let bi = i(s− 1) + 1 for i ∈ [r− 1], and
B =

∏r−1
i=1 bi. Then F χ(r, s, s+ 1) exists and

F χ(r, s, s+ 1) 6 1 + s+
r−1∑
i=2

F χ(i, s, s+ 1) +B · F χ(r, s− 1, s). (1)

In particular, for all s > 3, the chromatic Folkman number F χ(2, s, s + 1) exists and we
have F χ(2, s, s+ 1) 6 1 + s+ sF χ(2, s− 1, s).

Proof. For r > 3, we will construct a graph G(r, s) ∈ Fχ(r, s, s + 1) given any graphs in
each of Fχ(i, s, s + 1) for 2 6 i 6 r − 1 and any graph in Fχ(r, s− 1, s). The vertices of
the graph G(r, s) will be formed by vertices of given graphs corresponding to the terms
of the right-hand-side of (1). The proof is using simultaneous induction on r and s, and
it has two main parts: construction of G(r, s), and the proof that G(r, s) has required
properties.

Note that the second part of the theorem is just an instantiation of the first part for
two colors, r = 2, in which case the main summation of (1) is empty. Thus, the basis
of our induction is formed by the sets Fχ(i, 2, 3), which are nonempty by Lemma 2, and
where the corresponding Folkman numbers satisfy F χ(i, 2, 3) = F (i, 2, 3) for all i > 2.

Construction of the graph G(r, s) by induction for r, s > 3.

Let G0 be the graph of order 1, G1 = Ks, and set V0 = V (G0), V1 = V (G1). We may
assume that the graphs Gi = (Vi, Ei) such that |Vi| = F χ(i, s, s+1) and Gi ∈ Fχ(i, s, s+1)
have been already constructed, for 2 6 i < r. Therefore, we know that χ(Gi) = bi =
i(s− 1) + 1 for i ∈ {0, · · · , r− 1}, and hence we can partition each of the sets of vertices
Vi into χ(Gi) nonempty independent sets Vi(j) in Gi, so that

Vi =

χ(Gi)⋃
j=1

Vi(j).

Let H be any graph in the set Fχ(r, s−1, s) with |V (H)| = F χ(r, s−1, s) vertices. For
the part of G(r, s) corresponding to the last term of (1), we take B =

∏r−1
i=1 bi isomorphic

copies H(j0, · · · , jr−1) of H indexed by r-tuples (j0, · · · , jr−1), where 1 6 jk 6 χ(Gk) for
k ∈ {0, · · · , r − 1}. Note that the order of G(r, s) is equal to the right-hand-side of (1)
because the sizes of parts described above match exactly its terms,

V = V (G(r, s)) = V0 ∪ V1 ∪
r−1⋃
i=2

Vi ∪
⋃

(j0,··· ,jr−1)

V (H(j0, · · · , jr−1)).

the electronic journal of combinatorics 25 (2018), #P00 5



Finally, we complete the construction of G(r, s) by adding the edges with one end
in any of the sets of vertices V (H(j0, · · · , jr−1)) and the other end in the sets Vi(j), as
follows: For each fixed r-tuple (j0, · · · , jr−1), where 1 6 ji 6 bi for i ∈ {0, · · · , r − 1}, we
add all possible edges with one end in V (H(j0, · · · , jr−1)) and the other end in Vi(ji).

Proof that G(r, s) ∈ Fχ(r, s, s + 1).

We need to show that for all r, s > 3 we have: (i) cl(G(r, s)) < s + 1, (ii) in every
r-coloring of the vertices V we have a monochromatic Ks, and (iii) χ(G(r, s)) = m =
r(s− 1) + 1.

(i) Assume contrary, and suppose that some set S ⊂ V of order s + 1 induces Ks+1. Let
ki = |S ∩ Vi| for 0 6 i < r. From the construction we see that ki 6 s and there exists
exactly one t for which kt > 0. Similarly, there exists exactly one r-tuple (j0, · · · , jr−1)
such that h = |S ∩V (H(j0, · · · , jr−1))| > 0. Note that since h 6 s− 1 and kt +h = s+ 1,
then kt > 2. However, each vertex of H(j0, · · · , jr−1) can be adjacent only to independent
sets Vi(j) ⊂ Vi, hence we have a contradiction for i = t, and thus cl(G(r, s)) 6 s. We
observe that actually cl(G(r, s)) = s since the graph G(r, s) contains G1 = Ks.

(ii) Assume contrary, and suppose that some r-coloring C of V does not contain any
monochromatic Ks. Let c0 be the color of V0, and c1 be a different color of one of the
vertices in V1. Using the assumptions that Gi ∈ Fχ(i, s, s + 1) and that there is no
monochromatic Ks in C restricted to Vi, we can see that the (i + 1)-st color ci must be
used for some vertex in Vi. Thus, we can find a vertex vi ∈ Vi in a new color ci = C(vi), for
each 2 6 i < r. Let j′i be such that vi ∈ Vi(j′i). The graph H(j′0, · · · , j′r−1) is isomorphic
to H ∈ Fχ(r, s−1, s), and therefore it contains a monochromatic (s−1)-clique S in color
ci for some 0 6 i < r. Now in G(r, s), this S can be extended to a monochromatic Ks in
color ci by adding vertex vi, which is a contradiction.

(iii) Part (ii) implies that χ(G(r, s)) > r(s − 1) + 1, hence we only need to prove that
χ(G(r, s)) 6 r(s − 1) + 1. We will show how to color appropriately V with r(s − 1) + 1
colors. First, for each i ∈ {0, · · · , r − 1}, we color the vertices in independent sets Vi(j)
with color j, for j ∈ [χ(Gi)]. This step, by the inductive assumption, can use exactly
(r − 1)(s − 1) + 1 colors. Next, also by the inductive assumption, we color properly
the graphs H(j0, · · · , jr−1) just themselves using r(s − 2) + 1 colors. Note that this is r
less than the total number of allowed colors. Let ki, for 0 6 i < r, denote these extra
colors. We use colors ki to recolor some vertices of the H-graphs, and thus obtain a
proper coloring of the entire G(r, s) with r(s− 1) + 1 colors, as follows: For each r-tuple
(j0, · · · , jr−1), for every vertex v ∈ V (H(j0, · · · , jr−1)) which has color ji, recolor v with
a new color ki, for each i ∈ {0, · · · , r − 1}.

It is interesting to see that if the vertex of V0 is removed from G(r, s), then in the part
(iii) of the proof of Theorem 3 the chromatic number χ(G(r, s)) drops to m− 1, and thus
the arrowing of part (ii) would not hold.

We could improve a little the upper bound in Theorem 3 using an approach as in [24],
but at the cost of significantly more complex construction, and hence we decided to not
include it.
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Recall that the chromatic Folkman graphs and numbers we study here have just one
additional constraint on top of regular Folkman graphs and numbers, namely the minimal
possible chromatic number. In general, in Theorem 3 and other places of this paper, if
χ is removed from an upper bound, then it also holds for regular Folkman numbers.
In particular, the special case of our Theorem 3 for two colors but without considering
chromatic numbers gives the bound F (2, s, s + 1) 6 1 + s + sF (2, s − 1, s). The same
follows from a construction by Nenov [17] using the corona product of graphs. Bikov and
Nenov [4] pointed out that the constructions of [17, 14] could be used as building blocks
in our proofs. Unfortunately, at the time of writing the first version of this paper we were
not aware of them. Another upper bound construction of similar type for vertex Folkman
graphs was presented by Xu et al. in [24]. Some special multicolor cases of Theorem 3 for
regular Folkman numbers (without considering chromatic numbers), appear in Theorem 6
in [16] by  Luczak, Ruciński and Urbański (2001).

2.2 Bounds on F χ
v for 2 colors

A simple upper bound on F χ(r, s, s + 1) for r = 2 based on Theorem 3 is cs!, for some
positive constant c, which is much larger than the upper bound on F (2, s, s + 1) in
Theorem 1. In this section we look at some other 2-color cases: off-diagonal F χ

v (a, b; s+1)
in Theorem 4 and some special subcases of F χ(s, s; s+ 1) in the sequel.

Theorem 4. For any integers a, b and s such that 2 6 a, b 6 s, F χ
v (a, b; s+ 1) exists and

we have

F χ
v (a, b; s+ 1) 6

a+ b− 1

2s− 1
F χ
v (s, s; s+ 1). (2)

Proof. Suppose that G ∈ Fχv (s, s; s+ 1), and the order of G is F χ
v (s, s; s+ 1). We clearly

have χ(G) = 2s− 1. Write the set of vertices of G as a partition

V (G) =
2s−1⋃
j=1

Ij,

where Ij’s are independent sets for j ∈ [2s − 1], and |Ij1| 6 |Ij2| for j1 < j2 and j1, j2 ∈
[2s−1]. Let Gi be the subgraph of G induced by

⋃i
j=1 Ij. Note that this implies χ(Gi) = i

for each i, since otherwise χ(G) < 2s− 1.
We claim thatGa+b−1 ∈ Fχv (a, b; s+1). By the comments above we see that χ(Ga+b−1) =

a+ b− 1 = m as required, and cl(Gi) 6 s holds by construction. It remains to be shown
that Ga+b−1 → (a, b)v. For a contradiction suppose that we have a red-blue coloring of
V (Ga+b−1) without any red Ka and without any blue Kb. We can extend this coloring to a
full red-blue coloring of V (G) by coloring red all the vertices in Ij’s for a+b 6 j 6 s+b−1,
and coloring blue all the vertices in Ij’s for s+b 6 j 6 2s−1. This coloring does not con-
tain any monochromatic Ks, which contradicts the assumption that G ∈ Fχv (s, s; s + 1).
Considering the non-decreasing orders of the sets Ij, we have that

|V (Gi)| 6
a+ b− 1

2s− 1
F χ
v (s, s; s+ 1),
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and thus the bound (2) and the theorem follow.

Bollobás and Thomason [5] studied the set-coloring of graphs, where an r-set-coloring
of a graph G is defined as an assignment of r distinct colors to each vertex of G so that
the sets of colors assigned to adjacent vertices are disjoint. The set-coloring variants of
the vertex- and edge Folkman numbers were previously introduced and studied by the
first two authors of this paper jointly with Wenfei Zhao and Zehui Shao [25].

Let us denote the minimum number of colors required to r-set-color any given graph
G by χ(r)(G). In 1979, Bollobás and Thomason proved that min{χ(r)(G) | χ(G) = t} =
t+ 2r − 2 [5]. We need a simple lemma using this result as follows.

Lemma 5. χ(2s−1)(C4s−1) = 4s− 1.

Proof. Using the above result by Bollobás and Thomason on χ(r)(G), since χ(C4s−1) = 3,
we clearly have χ(2s−1)(C4s−1) > 4s − 1. On the other hand, it is easy to give a proper
(2s− 1)-set-coloring witnessing χ(2s−1)(C4s−1) 6 4s− 1. We take both the vertices of the
cycle and colors to be in the set Z4s−1, and assume that the edges of the cycle are {i, i+1}
for i ∈ Z4s−1, all modulo 4s − 1. We assign the colors {i(2s − 1) + j | 0 6 j 6 2s − 2}
to the vertex i of C4s−1, for each i ∈ Z4s−1. One can easily see that the sets of colors
assigned to adjacent vertices are disjoint.

The composition of simple graphs G and H is denoted by G[H], and it is defined as
the graph with vertex set V (G) × V (H), in which vertex (u, v) is adjacent to (u′, v′) if
and only if either uu′ ∈ E(G) or u = u′ and vv′ ∈ E(H). We will need another simple
lemma involving G[H] and χ(r)(G), namely:

Lemma 6. If G and H are graphs and χ(H) = r, then χ(r)(G) = χ(G[H]).

Proof. Klavžar proved that if χ(H) = r, then χ(G[H]) = χ(G[Kr]) [12]. We can also
easily see that χ(r)(G) = χ(G[Kr]). The lemma follows.

The bound Fv(2s, 2s; 2s + 1) 6 5Fv(s, s; s + 1) was obtained constructively by Kolev
who used the composition of graphs G[H] [13]. We will use a similar approach to obtain
an upper bound on the chromatic Folkman numbers of the form F χ

v (2s, 2s; 2s+ 1).

Theorem 7. For any integer s > 2, we have

F χ
v (2s, 2s; 2s+ 1) 6 (4s− 1)F χ

v (s, s; s+ 1).

Proof. Let H be any graph in Fχv (s, s; s + 1) of order F χ
v (s, s; s + 1), and thus χ(H) =

2s− 1. Observe that C4s−1[H]→ (2s, 2s)v. By Lemmas 5 and 6, we have χ(C4s−1[H]) =
χ(2s−1)(C4s−1) = 4s− 1. This in turn implies that C4s−1[H] ∈ Fχv (2s, 2s; 2s+ 1). Finally,
since the order of C4s−1[H] is equal to (4s−1)F χ

v (s, s; s+1) and clearly F χ
v (2s, 2s; 2s+1) 6

|V (C4s−1[H])|, this completes the proof.
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2.3 A conjecture

The classical Turán graph Tn,r is a complete multipartite graph on n vertices whose r
partite sets have sizes as equal as possible. We say that a graph G is equitably r-colorable
if its vertices can be properly colored with r-colors so that the sizes of any two color classes
differ by at most 1. Clearly, any n-vertex graph G is equitably r-colorable if and only if
G is a subgraph of Tn,r. This motivates the formulation of the following conjecture.

Conjecture. For any integer s > 2, let n = Fv(s, s; s+ 1). Then there exists an n-vertex
Ks+1-free subgraph G of the Turán graph Tn,2s−1, such that G→ (s, s)v.

Any subgraph of Tn,2s−1 has the chromatic number upper bounded by 2s−1. Therefore,
we can easily see that the Conjecture implies the equality F χ

v (s, s; s+ 1) = Fv(s, s; s+ 1),
in particular it would give a positive answer to Problem 1 for two colors (r = 2). The
Conjecture holds easily for s = 2 and n = 5 by considering C5. For s = 3, we note that the
graph in Figure 1 of [22] witnessing F χ

v (3, 3; 4) = Fv(3, 3; 4) = 14 is equitably 5-colorable,
and so it gives the second positive case. The Conjecture, if proven true, would make the
search for the upper bound witnesses for Fv(s, s; s+1) much easier, including an approach
using computer constructions.

Nenov studied several problems related to Fv(r, 2, s+ 1), for instance in [20]. Observe
that using essentially only the definitions, we can easily see that Fv(2s − 2, 2, s + 1) 6
F χ
v (s, s; s + 1), though we suspect that much better upper bound on Fv(2s − 2, 2, s + 1)

is true. Independently, Fv(2s − 2, 2, s + 1) may be much smaller than Fv(s, s; s + 1). In
another direction, one could use C5, similarly as we used C4k−1 in Theorem 7, to study
the cases of F χ

v (2s, 2s, 2s; 2s+ 1) and more general diagonal and non-diagonal cases. All
of these problems seem interesting but difficult.

3 Minimum degree of graphs in Fv(s, s; s + 1)

In this section we prove a theorem and then pose a problem concerning lower bound on
the minimum degree in some minimal Folkman graphs. We consider only the case of
Fv(s, s; s+ 1).

Theorem 8. For all integers s > 3, we have:
(a) For every graph G, if G → (s, s)v and G − u 6→ (s, s)v for every vertex u ∈ V (G),
then the minimum degree δ(G) satisfies δ(G) > 2s− 2, and
(b) There exists a Ks+1-free graph G with minimum degree δ(G) = 2s − 2, such that
G→ (s, s)v and G− u 6→ (s, s)v for every vertex u ∈ V (G).

Proof. (a) For contradiction, let u ∈ V (G) be any vertex of degree at most 2s − 3.
Assuming that G− u 6→ (s, s)v, consider any Ks-free bipartition V1 ∪ V2 of the remaining
vertices, so that V (G) = V1 ∪ V2 ∪ {u}. Without loss of generality we can also assume
that |V1 ∩ NG(u)| 6 s − 2. Color the vertices in V1 ∪ {u} red and those in V2 blue, and
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note that this coloring has no monochromatic Ks. This contradicts G→ (s, s)v, and thus
the part (a) follows.

(b) Let H be any Ks+1-free graph such that H → (s, s)v. Assume further that H is both
vertex- and edge-minimal with respect to arrowing, that is to say, H − u 6→ (s, s)v for
all vertices u ∈ V (H) and H − e 6→ (s, s)v for all edges e ∈ E(H). Fix some vertex
u0 ∈ V (H), and let A be the set of all (2s − 2)-element subsets of NH(u0) that contain
two vertex-disjoint Ks−1’s. Suppose that A consists of m sets, i.e. A = {Vi | 1 6 i 6 m}.
Note that vertex-minimality of H implies that A is nonempty, so m > 1. First, we extend
graph H to H ′ by adding new vertices {ui | 1 6 i 6 m} and edges {uiv | v ∈ Vi} for all
i ∈ [m]. Next, we delete vertex u0 from H ′. Observe that for all i ∈ [m] the degree of
vertex ui in H ′ is equal to 2s− 2.

We claim that H ′ → (s, s)v. Suppose to the contrary, namely that there exists a
red-blue coloring C ′ of V (H ′) without any monochromatic Ks. Thus, the restriction of
C ′ to a coloring of the vertices of H − u0, say C, is a witness of H − u0 6→ (s, s)v. Since
H → (s, s)v, C must contain two vertex-disjoint monochromatic Ks−1’s, furthermore they
must be in different colors, and both are contained in NH(u0). This however contradicts
the properties of C ′ following from the construction of H ′. Hence H ′ → (s, s)v.

We will define the final graph G satisfying (b) to be an induced subgraph of H ′ on
the vertex set of the form V (H ′) \ B, where B ⊂ {ui | 1 6 i 6 m}. We choose B so that
its vertex indices form a maximal subset of [m] still giving G → (s, s)v. The properties
of H ′ stated above guarantee that such B must be a proper subset of [m]. This can be
seen, since if we delete {ui | 1 6 i 6 m}, we obtain a graph isomorphic to H − u0, which
does not arrow (s, s)v. This way, we can obtain a minimal graph G which arrows (s, s)v

with at least one vertex ui of degree 2s − 2. Together with part (a), this completes the
proof of (b).

Bikov and Nenov suggested [4] that in our proof of Theorem 8(b) we could use graphs
Mk, for odd k, defined and studied by Nenov ([17], page 351).

Finally, we pose the following question.

Problem 2. For which integers n, s > 3 does there exist a (2s − 2)-regular Ks+1-free
graph G on n vertices such that G→ (s, s)v?

It seems that even the case of s = 3 is not obvious. If the answer to this problem for
each s is YES for at least some n, then the chromatic number of such a graph must be
equal to 2s − 1. Thus, it could give another proof of the existence of F χ

v (s, s; s + 1). Of
course, the order n of such a graph G may be much larger than F χ

v (s, s; s+ 1).
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