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Abstract

We investigate the relative complexity of the graph isomorphism problem (GI) and
problems related to the reconstruction of a graph from its vertex-deleted or edge-deleted
subgraphs (in particular, deck checking (DC) and legitimate deck (LD) problems). We
show that these problems are closely related for all amounts c ≥ 1 of deletion:

1. GI ≡l
iso VDCc, GI ≡l

iso EDCc, GI ≤l
m LVDc, and GI ≡p

iso LEDc.

2. For all k ≥ 2, GI ≡p
iso k-VDCc and GI ≡p

iso k-EDCc.

3. For all k ≥ 2, GI ≤l
m k-LVDc.

4. GI ≡p
iso 2-LVDc.

5. For all k ≥ 2, GI ≡p
iso k-LEDc.

For many of these results, even the c = 1 case was not previously known.
Similar to the definition of reconstruction numbers vrn∃(G) [HP85] and ern∃(G)

(see p. 120 of [LS03]), we introduce two new graph parameters, vrn∀(G) and ern∀(G),
and give an example of a family {Gn}n≥4 of graphs on n vertices for which vrn∃(Gn) <
vrn∀(Gn). For every k ≥ 2 and n ≥ 1, we show that there exists a collection of k graphs
on (2k−1 + 1)n + k vertices with 2n 1-vertex-preimages, i.e., one has families of graph
collections whose number of 1-vertex-preimages is huge relative to the size of the graphs
involved.

Key Words: graph reconstruction, legitimate deck, graph isomorphism, reconstruc-
tion numbers.
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1 Introduction

1.1 Background

The general form of a combinatorial reconstruction problem is the following: Given a math-

ematical structure S and a collection D(S) of substructures associated with it, is it possible

to reconstruct S (perhaps give or take some natural notion of isomorphism) from D(S) with

some minor imperfections or no imperfections? Such reconstruction problems are interest-

ing not only from a mathematical point of view but also due to their applicability in diverse

fields. In bioinformatics, the multiple sequence alignment problem [CL88] is to reconstruct

a sequence with minimum gap insertion and maximum number of matching symbols, given

a list of protein or DNA sequences. In computer networking, a reconstruction problem can

appear in the following scenario: Given a collection of sketches depicting partial network

connections in a city from different locations, reconstruct the network of the entire city.

In this paper, we are concerned with reconstruction problems arising in graph theory.

The foremost open problems in the theory of reconstruction of graphs are the Reconstruc-

tion Conjecture and the Edge-Reconstruction Conjecture. The Reconstruction Conjecture,

formulated by Kelly and Ulam in 1942 [Kel42,Ula60], asserts that every finite, simple,

undirected graph on at least three vertices is determined uniquely (up to isomorphism—

we treat our graphs broadly as unlabeled) by its collection of 1-vertex-deleted subgraphs.

Harary [Har64] formulated the Edge-Reconstruction Conjecture, which states that a finite

simple graph with at least four edges can be reconstructed from its collection of 1-edge-

deleted subgraphs. For more on these conjectures, the reader can refer to a number of

excellent survey papers (e.g., [BH77b,Nas78,Man88,Bon91]) and the book by Lauri and

Scapellato [LS03].

Nash-Williams [Nas78] posed an interesting, potentially computational problem related

to the Reconstruction Conjecture: Given a collection of graphs, how can we decide whether

this has been generated from some graph by deleting one vertex every possible way, i.e.,

whether the collection is legitimate? A similar problem has been posed (see, e.g., [Nas78,

Man82]) where one asks whether the collection is generated from some graph by deleting one

edge every possible way. These problems are known as the Legitimate Vertex-Deck Problem

(LVD) and the Legitimate Edge-Deck Problem (LED). Other, seemingly easier, problems

are the Vertex-Deck Checking Problem (VDC) and the Edge-Deck Checking Problem (EDC).

In these, given a graph G and a collection D of graphs, we ask whether D can be generated

from G by deleting one vertex, respectively one edge, every possible way.
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Mansfield [Man82] and Kratsch and Hemaspaandra [KH94] studied complexity aspects

of legitimate deck problems and deck checking problems. Mansfield [Man82] showed that

LVD is polynomial-time many-one hard for the Graph Isomorphism problem (which we

will often refer to as GI) and that LED is polynomial-time Turing equivalent to the Graph

Isomorphism problem. Kratsch and Hemaspaandra [KH94] showed that LVD is logspace

many-one hard for the Graph Isomorphism problem, proved that GI is logspace isomorphic

to VDC, and obtained polynomial-time algorithms for LVD when restricted to certain classes

of graphs—including graphs of bounded degree, partial k-trees for any fixed k, and graphs

of bounded genus. Köbler, Schöning, and Torán [KST93] showed that if the Reconstruction

Conjecture holds then LVD is in the complexity class LWPP. And so, conditional on the

truth of the Reconstruction Conjecture, Köbler, Schöning, and Torán showed that LVD is

low for PP, i.e., PPLVD = PP. This result can be viewed as suggesting that LVD cannot be

NP-complete, since if it were NP-complete, then the abovementioned LWPP result would

immediately imply that either the Reconstruction Conjecture fails or PPNP = PP. However,

both these claims are widely suspected to be false.

1.2 Our Contributions

A more general reconstruction problem deals with collections consisting of all subgraphs

obtained through the deletion of (exactly) some fixed number c ≥ 1 of vertices (or edges).

Kelly [Kel57] was the first to look in this direction, Manvel [Man74] made some observations

on this problem, and Bondy [Bon91, Section 11.2] surveyed related results. See also Nýdl’s

review [Nýd01] of the progress made on this problem in the past three decades. In this

paper, one of our investigations is of the complexity of legitimate deck problems and deck

checking problems for the general case of deletion of some fixed number c ≥ 1 of vertices (or

edges) of a graph. We observe that the logspace isomorphism known to hold between GI

and VDC [KH94] also holds, for every c ≥ 1, between GI and VDCc and between GI and

EDCc. Here and henceforward, the subscript “c” in the name of a problem refers to the more

general problem based on the deletion of c vertices or edges of a graph. We strengthen the

result of Mansfield [Man82] to show that, for every c ≥ 1, GI is polynomial-time isomorphic

to LEDc. For LVDc, we observe that for every c ≥ 1, GI ≤p
m LVDc (the c = 1 case of this

already follows from a result of Kratsch and Hemaspaandra [KH94]). These results appear

in Section 3.1.

We next look at the question of reconstructing a graph from a subdeck (a subset of all

possible vertex-deleted or edge-deleted subgraphs). See [HP66,Bon69,Lau83] for discussion
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of this line of investigation in the reconstruction of trees. Our results on the complexity as-

pects of the reconstruction of a graph from a subdeck are described in Section 3.2. We again

show a strong relationship between these problems and the graph isomorphism problem.

Harary and Plantholt [HP85] introduced a parameter, called the ally-reconstruction

number of a graph G (which we will denote vrn∃(G)), and defined it as the minimum

number of 1-vertex-deleted subgraphs needed to identify G (as always, up to isomorphism).

A similar definition is used for the reconstruction number ern∃(G), which is defined in terms

of 1-edge-deleted subgraphs (see p. 120 of [LS03]). We introduce two new parameters,

vrn∀(G) and ern∀(G), for a graph G, and we give an example of a family {Gn}n≥4 of

graphs on n vertices for which vrn∃(Gn) < vrn∀(Gn). We also give a family of collections

of k graphs on (2k−1 + 1)n + k vertices with 2n 1-vertex-preimages, thus constructing an

exponential richness of preimages. These results appear in Section 4.

2 Preliminaries

2.1 Notation

Our alphabet is Σ = {0, 1}. We use {., . . . , .} to denote sets and [., . . . , .] to denote mul-

tisets. We use ∪ to denote set union as well as multiset union. Let 〈. . .〉 be a multi-arity,

polynomial-time computable, and polynomial-time invertible pairing function (e.g., that

of [HHT97]). We tacitly assume that multisets and graphs are encoded in a standard fash-

ion. For background in complexity theory and for notions such as P, NP, reductions, and

completeness, we refer the reader to any book on complexity theory, for example [HO02]. We

consider only finite, undirected graphs with no self-loops. Given a graph G, let V (G) denote

its vertex set and let E(G) denote its edge set. For notational convenience, we sometimes

represent a graph G by (V, E), where V = V (G) and E = E(G). By the order of a graph

G we mean ||V (G)||, i.e., the cardinality of its vertex set. The degree of a vertex v in G,

denoted by degG(v), is the number of edges incident on v. δ(G) = min{degG(v) | v ∈ V (G)}
and λ(G) is the minimum number of edges whose deletion from G disconnects G. The closed

neighborhood NG(v) of a vertex v in a graph G is the set of vertices that are at distance at

most one from v, that is, NG(v) = {v} ∪ {w | {v, w} ∈ E(G)}. The notions of union and

join of graphs here will always implicitly require disjoint sets of vertices and thus for graphs

G and H with V (G) ∩ V (H) 
= ∅, we assume that isomorphs Ĝ and Ĥ of G and H, with

V (Ĝ)∩V (Ĥ) = ∅, are used in place of G and H. The union of graphs G1, G2, . . . , Gk, k ≥ 2,

is denoted by G = G1 ∪G2 ∪ · · · ∪Gk, where V (G) =
⋃k

i=1 V (Gi) and E(G) =
⋃k

i=1 E(Gi).
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For a graph G and an integer m ≥ 1, mG represents the union of m vertex-disjoint (isomor-

phic) copies of G. The join of graphs G1, . . . , Gk, k ≥ 2, is denoted by G = G1 + . . . + Gk,

where V (G) =
⋃k

i=1 V (Gi) and E(G) =
⋃k

i=1 E(Gi)∪
⋃

i�=j{{u, v} | u ∈ V (Gi)∧v ∈ V (Gj)}.
For n ≥ 1, Kn is the complete graph on n vertices and Pn is the path graph on n vertices,

i.e., (V (Pn), E(Pn)) = ({1, . . . , n}, {{i, i + 1} | 1 ≤ i ≤ n − 1}). The line graph L(G) of a

graph G is defined by: V (L(G)) = E(G) and E(L(G)) = {{e1, e2} | e1, e2 ∈ E(G) ∧ e1 and

e2 have exactly one vertex in common}. The complement G of a graph G is defined by:

V (G) = V (G) and E(G) = {{v, w} | v, w ∈ V (G), v 
= w, and {v, w} 
∈ E(G)}.
Given a graph G and a set S ⊆ V (G), G−S denotes a graph with V (G−S) = V (G)−S

and E(G − S) = E(G) − {{u, v} | {u, v} ∈ E(G) ∧ {u, v} ∩ S 
= ∅}. Similarly, if S ⊆ E(G),

then G − S denotes a graph with V (G − S) = V (G) and E(G − S) = E(G) − S. We will

call any collection of graphs with the same number of vertices a “vertex-deck” and will use

the term “edge-deck” to denote a collection of graphs with the same number of edges. The

graphs in a vertex-deck are called vertex-cards and the graphs in an edge-deck are called

edge-cards. For a graph G and for any c ≥ 1, the c-vertex-deleted-deck of G, denoted by

vertex-deckc(G), is the multiset [G − S | S ⊆ V (G) and ||S|| = c], and the c-edge-deleted-

deck of G, denoted by edge-deckc(G), is the multiset [G− S | S ⊆ E(G) and ||S|| = c]. We

say that a vertex-deck D1 = [G1, . . . , Gn] is equivalent to a vertex-deck D2 = [G′
1, . . . , G

′
n′ ],

denoted by D1 = D2, if n = n′ and there exists a one-to-one mapping that maps each

graph from D1 to an isomorphic graph from D2. We use an analogous definition for the

equivalence of two edge-decks: An edge-deck D1 = [G1, . . . , Gm] is equivalent to an edge-

deck D2 = [G′
1, . . . , G

′
m′ ], denoted by D1 = D2, if m = m′ and there exists a one-to-one

mapping that maps each graph from D1 to an isomorphic graph from D2. The notion of

D1 ⊆ D2 is defined analogously. For any c ≥ 1, we say a graph G is a c-vertex-preimage of

[G1, . . . , Gk] if [G1, . . . , Gk] ⊆ vertex-deckc(G), and we say a graph G is a c-edge-preimage

of [G1, . . . , Gk] if [G1, . . . , Gk] ⊆ edge-deckc(G). The reason these definitions have “⊆”s

rather than “=”s is so that our notions of preimage apply meaningfully both to (full)

decks and to “subdecks.” Typically, when we are speaking of preimages of (full) decks, the

number of vertices (or edges, in the case of edge-preimages) will make it clear that this is

the case. However, we will at times use the terms c-vertex-pure-preimage and c-edge-pure-

preimage when we wish to specifically emphasize the equality case: For any c ≥ 1, we say a

graph G is a c-vertex-pure-preimage of [G1, . . . , Gk] if [G1, . . . , Gk] = vertex-deckc(G), and

similarly for the edge case. For any c ≥ 1, we say that a graph H is a c-vertex-card (c-

edge-card) of a graph G if H is isomorphic to a graph in vertex-deckc(G) (edge-deckc(G)).
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[G1, . . . , Gk] is a legitimate c-vertex-deck (c-vertex-subdeck) if there is a graph G such that

[G1, . . . , Gk] = vertex-deckc(G) ([G1, . . . , Gk] ⊆ vertex-deckc(G)). The notions of legitimate

c-edge-deck and legitimate c-edge-subdeck, for any c ≥ 1, are defined analogously. For any

graph G, the endvertex-deck of G, denoted by endvertex-deck(G), is the multiset consisting

of the subgraphs G − v where v is an endvertex of G, i.e., a vertex for which degG(v) = 1.

2.2 Graph Isomorphism

A graph G is isomorphic to a graph H if there is a bijective mapping ψ : V (G) → V (H)

such that, for all v1, v2 ∈ V (G), {v1, v2} ∈ E(G) if and only if {ψ(v1), ψ(v2)} ∈ E(H).

In this case, ψ is called an isomorphism between graphs G and H, and we write G ∼= H.

The graph isomorphism problem, GI, is {〈G, H〉 | G ∼= H}. Here and in other such cases,

we are viewing encoding and decoding as transparent and implicit. This is not a totally

innocuous assumption, since isomorphisms of a problem may be ruined under particularly

kinky encodings. However, the natural encodings of the problems used here, for those

problems for which we assert isomorphisms, have the type of padding/etc. functions needed

to prove isomorphisms (see Section 2.3), so as is typical in papers on isomorphism we do

not focus on encoding details.

The graph isomorphism problem is of great interest to mathematicians and theoretical

computer scientists. Arvind and Kurur [AK02b] showed recently that GI is in the PP-low

complexity class SPP. GI is also known to be in the complexity class NP ∩ coAM, which

is low for Σp
2 (i.e., (Σp

2)
NP∩coAM = Σp

2, see [GMW91,GS89,Sch87]) and, as established by

Arvind and Köbler, even for the class (which we do not define here) ZPPNP [AK02a]; so

the polynomial hierarchy would collapse if GI were NP-complete (or were anywhere in the

“high hierarchy,” see [Sch83]). These facts support the widely accepted belief that GI is

not NP-complete.

Definition 2.1 ([KST93], see also [Kad88,RR92,LT92]) An or-function for a set A

is a function f mapping sequences of strings to strings such that for every sequence

x1, . . . , xn, n ≥ 1, it holds that f(〈x1, . . . , xn〉) ∈ A ⇐⇒ (∃i ∈ {1, . . . , n})[xi ∈ A]. The

and-function for a set A is defined analogously.

Proposition 2.2 ([KST93]) GI has a polynomial-time computable or-function and a

polynomial-time computable and-function (both of them in the sense of Definition 2.1).
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The fact that GI has a polynomial-time computable or-function immediately implies

the following corollary, which will be useful as we seek to obtain polynomial-time many-one

reductions from certain sets to GI.

Corollary 2.3 ([KST93]) For every set L, if L disjunctive polynomial-time truth-table

reduces to GI, then L polynomial-time many-one reduces to GI.

2.3 A Tool for Proving Isomorphism between Sets

Definition 2.4 A set A is logspace (polynomial-time) isomorphic to a set B, denoted

by A ≡l
iso B (A ≡p

iso B), if there exists a bijection f : Σ∗ → Σ∗ such that f is a logspace

(polynomial-time) many-one reduction from A to B and f−1 is a logspace (polynomial-time)

reduction from B to A.

The following results of Berman and Hartmanis [Har78,BH77a] give a sufficient condition

for showing logspace or polynomial-time isomorphism between sets. (The wording of them

used here mostly follows the presentation of [KH94].) We will use Theorem 2.8 to help us

show isomorphism between GI and certain problems considered in this paper.

Lemma 2.5 ([Har78,BH77a]) Let A be a set for which logspace (polynomial-time) com-

putable functions SA and DA exist such that

1. (∀x, y)[SA(x, y) ∈ A ⇐⇒ x ∈ A], and

2. (∀x, y)[DA(SA(x, y)) = y].

If f is any logspace (polynomial-time) reduction from C to A, the mapping g(x) =

SA(f(x), x) is a one-to-one logspace (polynomial-time) reduction from C to A and g−1

is logspace (polynomial-time) computable.

Definition 2.6 ([Har78,BH77a]) ZA : Σ∗ → Σ∗ is a padding function for the set A if

(a) ZA is one-to-one, and (b) (∀x)[ZA(x) ∈ A ⇐⇒ x ∈ A].

Lemma 2.7 ([Har78,BH77a]) Let f be a one-to-one logspace (polynomial-time) com-

putable reduction from A to B and let f−1 be logspace (polynomial-time) computable. As-

sume that there is a function Z that is a padding function for at least one of A or B, and

that has the following properties:

1. Z and Z−1 are logspace (polynomial-time) computable.
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2. (∀x)
[|Z(x)| > |x|2 + 1

]
. ((∀x) [|Z(x)| > |x|] .)

Then there exists a one-to-one logspace (polynomial-time) reduction g from A to B such

that

1. g−1 is logspace (polynomial-time) computable, and

2. (∀x)
[|g(x)| > |x|2] ((∀x) [|g(x)| > |x|]).

Theorem 2.8 ([Har78,BH77a]) Let A and B be sets such that A is logspace (polynomial-

time) reducible to B and B is logspace (polynomial-time) reducible to A. Furthermore, let

the set A have a logspace (polynomial-time) padding function ZA satisfying Lemma 2.7 and

let A also have logspace (polynomial-time) functions SA and DA satisfying Lemma 2.5.

Then if B has logspace (polynomial-time) functions SB and DB satisfying Lemma 2.5, then

B is logspace (polynomial-time) isomorphic to A.

The existence of logspace (and therefore, polynomial-time) computable functions SGI

and DGI satisfying Lemma 2.5, and ZGI satisfying Lemma 2.7 is already known. We refer

the reader to [Boo78,KH94] for the proofs.

Lemma 2.9 ([Boo78,KH94]) GI has logspace functions SGI and DGI satisfying

Lemma 2.5.

Lemma 2.10 ([Boo78,KH94]) GI has a logspace padding function ZGI satisfying

Lemma 2.7.

2.4 Computational Problems in Graph Reconstruction

Kelly [Kel57] first proposed the idea of generalizing the Reconstruction Conjecture to c-

vertex-deleted subgraphs for c > 1. Kelly showed that there are graphs that are not

determined uniquely (up to isomorphism) by their 2-vertex-deleted subgraphs. However, it

is suspected that, for any c > 1, all sufficiently large graphs satisfy the general reconstruction

problem for c-vertex-deleted subgraphs. From a computational complexity point of view, it

is natural to seek to understand the complexity of problems related to the reconstruction of

a graph from its c-vertex-deleted or c-edge-deleted subgraphs for different values of c. With

this motivation, we state the computational problems we study in this paper.

1. VERTEX-DECK CHECKINGc (abbreviated VDCc)

VDCc = {〈G, [G1, . . . , Gn]〉 | [G1, . . . , Gn] = vertex-deckc(G)}.
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2. EDGE-DECK CHECKINGc (abbreviated EDCc)

EDCc = {〈G, [G1, . . . , Gm]〉 | [G1, . . . , Gm] = edge-deckc(G)}.

3. LEGITIMATE VERTEX-DECKc (abbreviated LVDc)

LVDc = {[G1, . . . , Gn] | (∃G)[[G1, . . . , Gn] = vertex-deckc(G)]}.

4. LEGITIMATE EDGE-DECKc (abbreviated LEDc)

LEDc = {[G1, . . . , Gm] | (∃G)[[G1, . . . , Gm] = edge-deckc(G)]}.

For any fixed k ≥ 2, one can study the k c-vertex-(edge-)card versions of the abovemen-

tioned problems. In these versions one is given just k cards, allegedly from a deck based

on the deletion of c vertices (edges). These problems will be denoted k-VDCc, k-EDCc,

k-LVDc, and k-LEDc, and are defined as follows.

1. k-VERTEX-SUBDECK CHECKINGc (abbreviated k-VDCc)

k-VDCc = {〈G, [G1, . . . , Gk]〉 | [G1, . . . , Gk] ⊆ vertex-deckc(G)}.

2. k-EDGE-SUBDECK CHECKINGc (abbreviated k-EDCc)

k-EDCc = {〈G, [G1, . . . , Gk]〉 | [G1, . . . , Gk] ⊆ edge-deckc(G)}.

3. k-LEGITIMATE VERTEX-SUBDECKc (abbreviated k-LVDc)

k-LVDc = {[G1, . . . , Gk] | (∃G)[[G1, . . . , Gk] ⊆ vertex-deckc(G)]}.

4. k-LEGITIMATE EDGE-SUBDECKc (abbreviated k-LEDc)

k-LEDc = {[G1, . . . , Gk] | (∃G)[[G1, . . . , Gk] ⊆ edge-deckc(G)]}.

3 Reconstruction from Vertex and Edge Decks

3.1 Reconstruction from a Complete Deck

In this section, we investigate the complexity of VDCc, EDCc, LVDc, and LEDc, for each

c ≥ 1. Kratsch and Hemaspaandra [KH94] showed that GI is logspace isomorphic to VDC1.

We extend this result, and state that, for all c ≥ 1, GI is logspace isomorphic to VDCc as

well as to EDCc.

Theorem 3.1 1. For all c ≥ 1, GI is logspace isomorphic to VDCc.

2. For all c ≥ 1, GI is logspace isomorphic to EDCc.
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Proof The proofs of both parts follow from the techniques used in [KH94, Lemmas 3.1,

3.2, and 5.6] and so are omitted.

Kratsch and Hemaspaandra [KH94] showed that GI ≤l
m LVD1. We extend this result

and as Theorem 3.2 show that, for any c ≥ 1, GI ≤l
m LVDc. Mansfield [Man82] showed

that GI is polynomial-time Turing equivalent to LED1. In Theorem 3.5, building on Lem-

mas 3.3 and 3.4, we extend this result and show that, for each c ≥ 1, GI is polynomial-time

isomorphic to LEDc.

Theorem 3.2 For all c ≥ 1, GI ≤l
m LVDc.

Proof The construction in this proof is inspired by the construction in [KH94,

Theorem 4.1]. Without loss of generality, we restrict ourselves to input instances 〈G, H〉
of GI such that G and H are connected graphs with at least three vertices. The logspace

many-one reduction σ is defined as follows:

σ(〈G, H〉) = (vertex-deckc(G ∪ (c + 1)K1) − [G ∪ K1]) ∪ [H ∪ K1].

(Just to be clear, note that the three inner unions are over graphs, but the “−” and the outer

union both are operations on multisets. We use [A] to coerce a graph A into a singleton

multiset.) Clearly, G ∼= H implies that G ∪ (c + 1)K1 is a c-vertex-pure-preimage of the

vertex-deck σ(〈G, H〉).
We now turn to the proof that (vertex-deckc(G∪(c+1)K1)−[G∪K1])∪[H∪K1] ∈ LVDc

implies G ∼= H. Let G be a c-vertex-pure-preimage of the vertex-deck σ(〈G, H〉). Since

c ≥ 1, G ∪ K1 is a vertex-card in the c-vertex-deck of G. Thus, G can be obtained from

G ∪ K1 by adding c vertices and 0 or more edges each incident on at least one of the c

added vertices. Suppose that there is an edge e incident on one of the new vertices. If e

connects the new vertex to G, then there exists a connected vertex-card in the vertex-deck.

This is a contradiction, since the above deck clearly has no connected card. So assume that

e connects the new vertex either to another of the new vertices or to the isolated vertex in

G ∪ K1. Then there is a vertex-card in the c-vertex-deck that consists of, as its connected

components, a connected graph of order ||V (G)|| − 1 and K2. But clearly there is no such

vertex-card in the vertex-deck. It follows that G ∼= G∪(c+1)K1. The only way that H∪K1

can be in vertex-deckc(G) is if G ∼= H.

Note that Theorem 3.2’s proof does not count edges, as is done in the proof of [KH94,

Theorem 4.1]. Lemma 3.3 can be proved using the proof method of Theorem 3.2. However,

the proof of Theorem 3.5 requires, for any c ≥ 1, a logspace-invertible reduction function
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from GI to LEDc. Since the technique used in the proof of Theorem 3.2 does not give

any obvious logspace-invertible reduction function, we give a different proof of Lemma 3.3,

which does yield one.

Lemma 3.3 For all c ≥ 1, GI ≤l
m LEDc.

Proof Fix a c ≥ 1. Without loss of generality, we restrict ourselves to input instances

〈G, H〉 of GI such that G and H are connected graphs on n > max{c, 2} vertices. Let

� = n + 1. Define a logspace-computable function σ as follows:

σ(〈G, H〉) =

[H ∪ 2cK1 ∪ K�] ∪ (edge-deckc(G ∪ cK2 ∪ K�) − [G ∪ 2cK1 ∪ K�]).

Clearly, if G ∼= H, then G ∪ cK2 ∪ K� is a c-edge-pure-preimage of the edge-deck

σ(〈G, H〉). We now prove the converse. Suppose that σ(〈G, H〉) ∈ LEDc. Let e1, . . . , ec be

c edges in K�. A c-edge-preimage G of the edge-deck σ(〈G, H〉) can be obtained by adding

c edges to the edge-card G ∪ cK2 ∪ (K� − {e1, . . . , ec}). Note that K� is a subgraph of G,

since H ∪ 2cK1 ∪ K� is an edge-card. The only way for G to include K� as a subgraph is

to add the c edges e1, . . . , ec to K� − {e1, . . . , ec}, since it will require more than c edges to

form a complete graph K� that includes any vertex from G ∪ cK2. Thus, G ∪ cK2 ∪ K� is

the unique c-edge-preimage (up to isomorphism) of σ(〈G, H〉). H ∪ 2cK1 ∪ K� is a card in

the c-edge-deck of G and the only way to turn H ∪ 2cK1 ∪ K� into the c-edge-preimage is

to add c edges to 2cK1, since the c-edge-preimage has no isolated vertices. Thus, G must

be isomorphic to H.

Lemma 3.4 For all c ≥ 1, LEDc ≤p
m GI.

Proof Fix a c ≥ 1. We first show that LEDc ≤p
dtt EDCc. Let [G1, . . . , Gm] be an instance

of LEDc. By definition,

[G1, . . . , Gm] ∈ LEDc ⇐⇒∨
Ê⊆E(G1), ||Ê||=c

〈(V (G1), E(G1) ∪ Ê), [G1, . . . , Gm]〉 ∈ EDCc.

This shows that LEDc ≤p
dtt EDCc. Since EDCc ≤p

m GI (Theorem 3.1(2)), LEDc ≤p
dtt GI.

By Corollary 2.3, it follows that LEDc ≤p
m GI.

Theorem 3.5 For every c ≥ 1, GI is polynomial-time isomorphic to LEDc.
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Proof Fix a c ≥ 1. GI ≡p
m LEDc follows from Lemmas 3.3 and 3.4. By Theorem 2.8

and Lemmas 2.9 and 2.10, it suffices to show that LEDc has polynomial-time computable

functions SLEDc and DLEDc satisfying Lemma 2.5. The function SLEDc is defined as follows:

On input ([G1, . . . , Gm], y),

1. Compute the polynomial-time many-one reduction from LEDc to GI on input [G1, . . . ,

Gm]. Let 〈H1,H2〉 be the output of the reduction.

2. Compute SGI(〈H1,H2〉, y) and let 〈Ĥ1, Ĥ2〉 be the output of this step.

3. Compute the logspace many-one reduction σ from GI to LEDc (defined in Lemma 3.3)

on input 〈Ĥ1 + Kc+2, Ĥ2 + Kc+2〉 and output the string computed in this step.

From the definition of many-one reducibility and that of SGI, it follows that SLEDc([G1, . . . ,

Gm], y) ∈ LEDc ⇐⇒ [G1, . . . , Gm] ∈ LEDc. We now define the function DLEDc as follows.

On input [H1, . . . , Hm],

1. Scan [H1, . . . , Hm] to find an edge-card of the form (Ĥ1 +Kc+2)∪cK2∪(K�−{ei | 1 ≤
i ≤ c and ei ∈ E(K�)}), where � = ||V (Ĥ1)|| + c + 3. If no such card exists, then

output the string “undefined.” (To see that this step can be done in polynomial time,

it may be helpful to keep in mind that, for each fixed d, the number of d-cliques a

graph can have is polynomial in the size of the graph, and one can quickly enumerate

all such.)

2. Scan [H1, . . . , Hm] to find an edge-card of the form (Ĥ2 + Kc+2) ∪ 2cK1 ∪ K�, where

� = ||V (Ĥ2)|| + c + 3. If no such card exists, then output the string “undefined.”

3. Output DGI(〈Ĥ1, Ĥ2〉).

By the construction of the many-one reduction in Lemma 3.3 and the definition of DGI, it

is easy to see that DLEDc satisfies Lemma 2.5.

3.2 Reconstruction from a Subdeck

In this section, we investigate the complexity of problems related to the reconstruction of

a graph from its partial (incomplete) deck of vertex-deleted or edge-delete subgraphs. We

first show, in Lemma 3.6, that there is a close connection between the c-edge-deleted-deck

of G and the c-vertex-deleted-deck of L(G) (the line graph of G).
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Lemma 3.6 For all c ≥ 1, and for all graphs G, if edge-deckc(G) = [G1, . . . , Gm], then

vertex-deckc(L(G)) = [L(G1), . . . , L(Gm)].

Proof Let G = (V, E). By definition, L(G) = (E, Ê), where Ê = {{e1, e2} |e1, e2 ∈ E,

and e1 and e2 share exactly one vertex}, edge-deckc(G) = [G−E′ | E′ ⊆ E and ||E′|| = c],

and vertex-deckc(L(G)) = [L(G) − E′ | E′ ⊆ E and ||E′|| = c].

To prove the lemma, it suffices to show that for all E′ ⊆ E such that ||E′|| = c,

L(G − E′) ∼= L(G) − E′. This is easy to see, since L((V, E − E′)) = (E − E′, Ê′), where

Ê′ = {{e1, e2} | e1, e2 ∈ E − E′, and e1 and e2 share exactly one vertex}.
Hemminger [Hem69] proved a much stronger result than the one stated in Lemma 3.6

for the case of c = 1.

Theorem 3.7 ([Hem69]) For any graph G, G can be determined uniquely up to isomor-

phism from edge-deck1(G) if and only if L(G) can be determined uniquely up to isomorphism

from vertex-deck1(L(G)).

However, for our proofs, we only need the result stated in Lemma 3.6.

In Lemma 3.9, we show that, for any k ≥ 2, under certain restrictions on graph G,

a relationship similar to Lemma 3.6 holds between a collection of k edge-cards and the

corresponding collection of k vertex-cards. We use Lemma 3.9 in proving Lemma 3.10,

which states that for any c ≥ 1 and k ≥ 2, k-EDCc ≤l
m k-VDCc. In proving Lemma 3.9,

we use the following theorem by Whitney [Whi32].

Theorem 3.8 ([Whi32], see also [Har71]) If G and H are connected graphs other than

K3, then G ∼= H if and only if L(G) ∼= L(H).

Lemma 3.9 For all c ≥ 1 and k ≥ 2, for all graphs G with n ≥ 4 vertices and edge-

connectivity λ(G) > c, and for all connected graphs G1, . . . , Gk with n vertices,

[G1, . . . , Gk] ⊆ edge-deckc(G) ⇐⇒ [L(G1), . . . , L(Gk)] ⊆ vertex-deckc(L(G)).

Proof Note that the left-to-right direction follows immediately from Lemma 3.6. For

the converse, suppose that G1, . . . , Gk are connected graphs with n vertices such that

[L(G1), . . . , L(Gk)] ⊆ vertex-deckc(L(G)). By Lemma 3.6, there exist H1, . . . , Hk such

that [H1, . . . , Hk] ⊆ edge-deckc(G) and [L(H1), . . . , L(Hk)] = [L(G1), . . . , L(Gk)]. Since

λ(G) > c and n ≥ 4, each of the graphs H1, . . . , Hk is a connected graph other than K3. It

is also true that each Gi is a connected graph other than K3 (since n ≥ 4). It follows by

Theorem 3.8 that [H1, . . . , Hk] = [G1, . . . , Gk]. Thus, [G1, . . . , Gk] ⊆ edge-deckc(G).
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3.2.1 Subdeck Checking Problems

Lemma 3.10 For all c ≥ 1 and k ≥ 2, k-EDCc ≤l
m k-VDCc.

Proof Fix a c ≥ 1 and a k ≥ 2. For H a graph on n vertices, define Ĥ as H+(Kn+1∪{v0}).
Let 〈G, [G1, . . . , Gk]〉 be an instance of k-EDCc. W.l.o.g, we assume that G, G1, . . . , Gk

are graphs on n > c vertices. The logspace many-one reduction σ from k-EDCc to k-VDCc

is defined by

σ(〈G, [G1, . . . , Gk]〉) = 〈L(Ĝ), [L(Ĝ1), . . . , L(Ĝk)]〉.
Clearly, σ is computable in logspace. To prove that σ is a many-one reduction from

k-EDCc to k-VDCc, we first show that 〈G, [G1, . . . , Gk]〉 ∈ k-EDCc if and only if 〈Ĝ, [Ĝ1, . . . ,

Ĝk]〉 ∈ k-EDCc. The left-to-right direction is immediate. For the converse, suppose that

there exist k distinct sets of c edges E1, . . . , Ek in Ĝ such that Ĝ − Ei
∼= Ĝi for 1 ≤ i ≤ k.

Note that any isomorphism from Ĝ − Ei to Ĝi must map v0 to v0, since the degree of

v0 in Ĝ − Ei is at most n, and the degree of all vertices v 
= v0 in Ĝi is greater than n.

Since the degree of v0 in Ĝi is n, the degree of v0 in Ĝ − Ei is also n, and thus no edge

in Ei is incident on v0. The isomorphism from Ĝ − Ei to Ĝi must map V (G) to V (Gi),

since these are exactly the sets of vertices adjacent to v0. From this, it is easy to see that

no edge in Ei can be incident on a vertex not in V (G), i.e., all edges in Ei occur in G.

It follows that G − Ei
∼= Gi. This implies that [G1, . . . , Gk] ⊆ edge-deckc(G), and thus,

〈G, [G1, . . . , Gk]〉 ∈ k-EDCc.

Note that λ(Ĝ) > c and ||V (Ĝ)|| ≥ 4. Thus, by Lemma 3.9, 〈Ĝ, [Ĝ1, . . . , Ĝk]〉 ∈
k-EDCc ⇐⇒ 〈L(Ĝ), [L(Ĝ1), . . . , L(Ĝk)]〉 ∈ k-VDCc. It follows that σ is a logspace many-

one reduction from k-EDCc to k-VDCc.

Lemma 3.11 For all c ≥ 1 and k ≥ 2, GI ≤l
m k-VDCc and GI ≤l

m k-EDCc.

Proof Fix a c ≥ 1 and a k ≥ 2. By Lemma 3.10, it suffices to show that GI ≤l
m k-EDCc.

Without loss of generality, we restrict to input instances 〈G, H〉 of GI such that G and H

are connected graphs with at least three vertices. The reduction σ from GI to k-EDCc is

defined by σ(〈G, H〉) =

〈G ∪ cK2,

[H ∪ 2cK1] ∪ [any (k − 1) cards from (edge-deckc(G ∪ cK2) − [G ∪ 2cK1])]〉.
Using the techniques of the proof of [KH94, Lemma 3.2], it can be shown that σ is a

logspace many-one reduction from GI to k-EDCc. Note also the similarity to the proof of

Lemma 3.3.
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Lemma 3.12 For all c ≥ 1 and k ≥ 2, k-VDCc ≤p
m GI and k-EDCc ≤p

m GI.

Proof By Corollary 2.3 and Lemma 3.10, it suffices to show that k-VDCc ≤p
dtt GI. By

definition, [G1, . . . , Gk] ⊆ vertex-deckc(G) ⇐⇒∨
[H1,...,Hk]⊆vertex-deckc(G)

[H1, . . . , Hk] = [G1, . . . , Gk].

By the construction in Lemma 3.1 of [KH94], for each choice of [H1 . . . , Hk] ⊆
vertex-deckc(G), there are graphs H1 and H2 such that [G1, . . . , Gk] = [H1, . . . , Hk] if

and only if 〈H1,H2〉 ∈ GI. This completes the proof that k-VDCc ≤p
dtt GI, since the “∨”

above is over
((n

c)
k

)
instances of GI, where n = ||V (G)||, which is polynomial in n for every

fixed choice of c and k.

In Theorem 3.13, we establish the polynomial-time isomorphism between GI and

k-VDCc, and between GI and k-EDCc.

Theorem 3.13 For every c ≥ 1 and k ≥ 2, GI is polynomial-time isomorphic to k-VDCc

and k-EDCc.

Proof Immediate from Lemma 3.11, Lemma 3.12 and the techniques used in [KH94,

Lemma 5.6].

3.2.2 Legitimate Subdeck Problems

We now consider the relative complexity of GI and k-LVDc, and that of GI and k-LEDc, for

k ≥ 2. Lemma 3.14 gives an alternate characterization of an instance of 2-LVDc in terms of

polynomially many instances of GI. We will use Lemma 3.14 to obtain a polynomial-time

many-one reduction from 2-LVDc to GI.

Lemma 3.14 For each c ≥ 1, [G1, G2] is a legitimate c-vertex-subdeck if and only if there

exist U1 ⊆ V (G1) and U2 ⊆ V (G2), where 1 ≤ ||U1|| = ||U2|| ≤ c, such that G1 − U1 is

isomorphic to G2 − U2.

Proof Fix a c ≥ 1. Suppose that [G1, G2] is a legitimate c-vertex-subdeck. By definition,

there exist a graph G, distinct sets T1, T2 ⊆ V (G), where ||T1|| = ||T2|| = c, and isomor-

phisms ψ1 from G − T1 to G1 and ψ2 from G − T2 to G2. Clearly, G1 − ψ1(T2 − T1) is

isomorphic to G − (T1 ∪ T2) and G2 − ψ2(T1 − T2) is isomorphic to G − (T1 ∪ T2). Thus,

G1 − ψ1(T2 − T1) is isomorphic to G2 − ψ2(T1 − T2).
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Now suppose that there exist U1 = {u1,1, u1,2, . . . , u1,�} ⊆ V (G1) and U2 =

{u2,1, u2,2, . . . , u2,�} ⊆ V (G2), where 1 ≤ � ≤ c, such that G1 −U1 is isomorphic to G2 −U2

via ψ. We now construct a graph G2 by adding new vertices v2,1, . . . , v2,c to G2 and by includ-

ing new edges incident on them. The graph G2 is defined as follows. Initially, G2 := G2. For

each 1 ≤ i ≤ �, add a vertex v2,i to G2 and connect v2,i to every vertex in ψ(NG1(u1,i)−U1).

For each 1 ≤ i < j ≤ �, add an edge {v2,i, v2,j} to G2 if and only if {u1,i, u1,j} ∈ E(G1).

Finally, for each 1 ≤ i ≤ c − �, add a (isolated) vertex v2,�+i to G2. We construct another

graph G1 in a similar way. Initially, G1 := G1. For each 1 ≤ i ≤ �, add a vertex v1,i to G1

and connect v1,i to every vertex in ψ−1(NG2(u2,i) − U2). For each 1 ≤ i < j ≤ �, add an

edge {v1,i, v1,j} to G1 if and only if {u2,i, u2,j} ∈ E(G2). Finally, for each 1 ≤ i ≤ c− �, add

a (isolated) vertex v1,�+i to G1.

Let ψ′ : V (G1) → V (G2) be defined as follows: ψ′(v) = ψ(v) for all v ∈ V (G1 − U1),

for every 1 ≤ i ≤ �, ψ′(u1,i) = v2,i and ψ′(v1,i) = u2,i, and for every � + 1 ≤ i ≤ c,

ψ′(v1,j) = v2,j . It can be verified that ψ′ is an isomorphism from G1 to G2. Since G1

(= G1 − {v1,1, . . . , v1,c}) is a c-vertex-card of G1 and G2 (= G2 − {v2,1, . . . , v2,c}) is a c-

vertex-card of G2, and since {v2,1, . . . , v2,c} 
= ψ′({v1,1, . . . , v1,c}), it follows that [G1, G2] is

a legitimate c-vertex-subdeck.

Corollary 3.15 For every c ≥ 1, 2-LVDc ≤p
m GI.

Proof From Lemma 3.14, 2-LVDc ≤p
dtt GI. By Corollary 2.3, it follows that 2-LVDc ≤p

m

GI.

Lemma 3.16 For every c ≥ 1 and k ≥ 2, GI ≤l
m k-LVDc.

Proof Fix a c ≥ 1 and a k ≥ 2. Without loss of generality, we restrict to input instances

〈G, H〉 of GI where both G and H are connected graphs on n > c vertices. Let � = n+k. We

define a logspace many-one reduction σ from this input-restricted version of GI to k-LVDc

as follows:

σ(〈G, H〉) = [K� ∪ K�+2c ∪ G, . . . , K� ∪ K�+2c ∪ G︸ ︷︷ ︸
(k−1) copies

, K�+c ∪ K�+c ∪ H].

Clearly, if G and H are isomorphic then K�+c ∪ K�+2c ∪ G is a c-vertex-preimage of

σ(〈G, H〉). Now suppose that σ(〈G, H〉) ∈ k-LVDc. Call K�∪K�+2c∪G the G-card and call

K�+c ∪K�+c ∪H the H-card. A c-vertex-preimage of σ(〈G, H〉) can be obtained by adding
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c vertices v1, . . . , vc and edges incident on them to the G-card. This c-vertex-preimage can

also be obtained from the H-card by adding c vertices w1, . . . , wc and edges incident on

them to the H-card. It is immediate that every vi is connected to every element of K� and

that all the vi’s are connected to each other in the c-vertex-preimage obtained from the

G-card. Similarly, all the wi’s are connected to each other and all the wi’s are connected to

all the vertices in the same K�+c in the c-vertex-preimage obtained from the H-card.

It follows that in the c-vertex-preimage obtained from the G-card, the vertices in V (G)

are exactly the vertices of degree ≤ n+ c. Likewise, in the c-vertex-preimage obtained from

the H-card, the vertices in V (H) are exactly the vertices of degree ≤ n + c. It follows that

the preimages obtained from the G-card and the H-card are isomorphic only if G ∼= H.

From Corollary 3.15 and Lemma 3.16, we get that, for each c ≥ 1, GI ≡p
m 2-LVDc. We

further note that GI is polynomial-time isomorphic to 2-LVDc.

Theorem 3.17 For every c ≥ 1, GI is polynomial-time isomorphic to 2-LVDc.

Proof Proof omitted. Refer to the proof of Theorem 3.20 for the technique.

Lemma 3.18 For every c ≥ 1 and k ≥ 2, k-LEDc ≤p
m GI.

Proof The exact same construction as in Lemma 3.4 shows that k-LEDc ≤p
dtt k-EDCc.

Thus, by Lemma 3.12 and Corollary 2.3, k-LEDc ≤p
m GI.

Lemma 3.19 For every c ≥ 1 and k ≥ 2, GI ≤l
m k-LEDc.

Proof Fix a c ≥ 1 and a k ≥ 2. Without loss of generality, let G and H be connected

graphs on n vertices and let n > c. Let � = n + k. For i = �, � + 1, let Si,j , where

1 ≤ j ≤ ((i
2)
c

)
, be an enumeration of sets of c distinct edges of Ki. The logspace many-one

reduction function σ is defined by σ(〈G, H〉) =

[G ∪ (K� − S�,1) ∪ K�+1, . . . , G ∪ (K� − S�,k−1) ∪ K�+1, H ∪ K� ∪ (K�+1 − S�+1,1)].

First note that if G ∼= H, then G ∪ K� ∪ K�+1 is a valid c-edge-preimage of σ(〈G, H〉). For

the converse, suppose that σ(〈G, H〉) ∈ k-LEDc. Call G ∪ (K� − S�,1) ∪ K�+1 the G-card

and H ∪ K� ∪ (K�+1 − S�+1,1) the H-card.

Note that the only way for a c-edge-preimage obtained from the H-card to include K�+1

as a subgraph is to add c edges to (K�+1 − S�+1,1) because it takes � edges to completely

connect a vertex to K� and � > c. It follows that the only possible preimage (up to
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isomorphism) is the graph H ∪K� ∪K�+1. If this graph is a c-edge-preimage of the G-card,

the only way to turn the G-card into the c-edge-preimage is to add the c missing edges to

K� − S�,1. It follows that G ∼= H.

Lemma 3.18 and Lemma 3.19 imply that GI ≡p
m k-LEDc. In Theorem 3.20,

we strengthen the polynomial-time many-one equivalence of GI and k-LEDc to their

polynomial-time isomorphism.

Theorem 3.20 For every c ≥ 1 and k ≥ 2, GI is polynomial-time isomorphic to k-LEDc.

Proof Fix a c ≥ 1 and a k ≥ 2. Since GI ≡p
m k-LEDc (from Lemma 3.18 and 3.19), it

suffices to show (by Theorem 2.8 and Lemmas 2.9 and 2.10) that k-LEDc has polynomial-

time computable functions Sk-LEDc and Dk-LEDc satisfying Lemma 2.5. Let [G1, . . . , Gk] be

an instance of k-LEDc and let y ∈ Σ∗. The function Sk-LEDc is defined as follows. On input

([G1, . . . , Gk], y),

1. Compute the polynomial-time many-one reduction from k-LEDc to GI of Lemma 3.18

on input [G1, . . . , Gk] and let 〈H1,H2〉 be the output of the reduction.

2. Compute SGI(〈H1,H2〉, y) of Lemma 2.9 and let 〈Ĥ1, Ĥ2〉 be the output of this step.

3. Compute the logspace many-one reduction from GI to k-LEDc of Lemma 3.19 on

input 〈Ĥ1 + Kc+1, Ĥ2 + Kc+1〉. Output the string computed in this step.

From the definition of many-one reducibility and that of SGI, it follows that Sk-LEDc is

a polynomial-time computable function satisfying Lemma 2.5. We now define Dk-LEDc

in terms of the output of a polynomial-time transducer that works as follows. On input

[H1, . . . , Hk],

1. Scan [H1, . . . , Hk] to find an edge-card of the form (Ĥ1 + Kc+1) ∪ (K� − S) ∪ K�+1,

where � = ||V (Ĥ1)||+ c+1+k, S ⊆ E(K�), and ||S|| = c. If no such card exists, then

output the string “undefined.”

2. Scan [H1, . . . , Hk] to find an edge-card of the form (Ĥ2 + Kc+1) ∪ K� ∪ (K�+1 − S′),
where � = ||V (Ĥ2)|| + c + 1 + k, S′ ⊆ E(K�+1), and ||S′|| = c. If no such card exists,

then output the string “undefined.”

3. Output DGI(〈Ĥ1, Ĥ2〉), where DGI is the polynomial-time computable function of

Lemma 2.9.

By the construction in Lemma 3.19 and the definition of DGI, it follows easily that Dk-LEDc

satisfies Lemma 2.5.
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4 Reconstruction Numbers of Graphs

The ally-reconstruction number [HP85,Myr89] of a graph G is the minimum number of

one-vertex-deleted subgraphs (i.e., 1-vertex-cards) that identify G (up to isomorphism).

Since the ally-reconstruction number of a graph G is characterized by the existence of some

set of that number of 1-vertex-cards of G that identify G, we will denote this number by

vrn∃(G). Likewise, we use ern∃(G) to denote the minimum number of 1-edge-cards that

identify G. We also define an analogous concept of reconstruction number for a graph G,

denoted by vrn∀(G) (ern∀(G)), in which a certain number of 1-vertex-cards (1-edge-cards)

of G, irrespective of their choice, will always suffice to recognize G. Thus, no matter which

1-vertex-cards (1-edge-cards) an adversary selects from the deck of G, vrn∀(G) (ern∀(G))

many 1-vertex-cards (1-edge-cards) are enough to identify G up to isomorphism. If such a

number doesn’t exist, we define it to be ∞. Formal definitions of the various reconstruction

numbers are as follows.

Definition 4.1 For any graph G,

1. vrn∃(G) (known as the ally-reconstruction number [HP85,Myr89]) is the minimum

number such that there is a collection of vrn∃(G) 1-vertex-cards of G that identify G

(up to isomorphism). If this number does not exist, then vrn∃(G) = ∞.

2. ern∃(G) is the minimum number such that there is a collection of ern∃(G) 1-edge-

cards of G that identify G (up to isomorphism). If this number does not exist, then

ern∃(G) = ∞.

3. vrn∀(G) is the minimum number such that every collection of vrn∀(G) 1-vertex-cards

of G identify G (up to isomorphism). If this number does not exist, then vrn∀(G) =

∞.

4. ern∀(G) is the minimum number such that every collection of ern∀(G) 1-edge-cards of

G identify G (up to isomorphism). If this number does not exist, then ern∀(G) = ∞.

It is clear that for any graph G for which vrn∃(G) < ∞ (ern∃(G) < ∞), vrn∃(G) ≤
vrn∀(G) ≤ ||V (G)|| (ern∃(G) ≤ ern∀(G) ≤ ||E(G)||). Note that vrn∃(G) is finite for every

graph G having at least three vertices if and only if the Reconstruction Conjecture is true,

and ern∃(G) is finite for every graph G having at least four edges if and only if the Edge-

Reconstruction Conjecture is true. Theorem 4.2 says that for any disconnected graph G
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having at least three vertices, vrn∃(G) is finite (from which one can conclude that vrn∀(G) is

finite, since certainly choosing to include all cards will include whichever particular vrn∃(G)

cards were already enough to determine G, and so certainly vrn∀(G) ≤ ||V (G)||).

Theorem 4.2 ([Myr89]; proof corrections in [Mol95]) If G is a disconnected graph

with not all components isomorphic then vrn∃(G) = 3. Moreover, if G has at least three

vertices and is a disconnected graph with all components isomorphic then vrn∃(G) ≤ c + 2

where c is the number of vertices in a component.

In the next lemma, we give an example of a family of disconnected graphs G (pa-

rameterized by n, the number of vertices of the n’th graph in the family) for which

vrn∃(G) < vrn∀(G).

Lemma 4.3 For all n ≥ 4, there exists a disconnected graph Gn such that ||V (Gn)|| = n

and vrn∃(Gn) < vrn∀(Gn).

Proof Let n ≥ 4. Let n = 2t if n is even, and let n = 2t+1 if n is odd. Define the ordered

pair

(Gn, Hn) =

{
(Kt+1 ∪ Kt−1, 2Kt) if n is even,

(Kt+1 ∪ Kt−1 ∪ K1, 2Kt ∪ K1) if n is odd.

By Theorem 4.2, vrn∃(Gn) = 3. It is clear that Gn and Hn are nonisomorphic graphs. For

even n, both Gn and Hn have t+1 1-vertex-cards that are isomorphic to Kt∪Kt−1, and for

odd n, both Gn and Hn have t + 1 1-vertex-cards that are isomorphic to Kt ∪ Kt−1 ∪ K1.

Thus, vrn∀(Gn) ≥ t + 2 > 3 = vrn∃(Gn).

Actually, one can show that we have the equality vrn∀(Gn) = vrn∀(Hn) = t + 2, for all

n ≥ 4. It remains to show that t + 2 is an upper bound in all four cases, i.e., n odd or even

and Gn or Hn.

vrn∀(H2t) ≤ t + 2 follows from Theorem 4.3, since all cards in vertex-deck1(H2t) are

isomorphic.

In the analysis of the three remaining cases we will use the following fact.

Fact 4.4 If vertex-deck1(G) has 4 cards all of whose components are complete graphs, then

all components of G are also complete graphs.

Proof of Fact 4.4 Let x1, x2, x3, and x4 be four distinct vertices in G such that for all i,

1 ≤ i ≤ 4, all components of G−xi are complete graphs. We employ proof by contradiction.
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In particular, let us suppose that u and v are two vertices in G such that there exists a path

from u to v in G and {u, v} 
∈ E(G). Note that x1, x2, x3, and x4 must lie on each path

from u to v (possibly as endpoints), since u and v are not in the same connected component

of G − xi for 1 ≤ i ≤ 4. Without loss of generality, there exists a simple path from u to

v that goes from u to x1 (it is possible that u = x1), from x1 to x2, from x2 to x3, from

x3 to x4, and from x4 to v (it is possible that v = x4). Now consider the card G − x4.

Clearly, x1, x2, and x3 occur in the same connected component of G − x4. It follows that

{x1, x3} ∈ E(G). But then u and v occur in the same connected component of G − x2,

which implies that {u, v} ∈ E(G). This is a contradiction. (Fact 4.4)

All components of all cards in the vertex-decks of Gn and Hn are complete graphs, and

n ≥ 4, so in the following we will assume that all preimage graphs considered are disjoint

unions of complete graphs. By Fact 4.4 we only need to show how to reconstruct the orders

of components from any subdeck of t + 2 cards, t ≥ 2.

G = G2t. The deck of G contains cards of two types, with possible orders of components

T1 = (t + 1, t − 2) (if t = 2, we identify (t + 1, t − 2) with (t + 1), etc.) and T2 = (t, t − 1)

and has t− 1 and t + 1 of such cards, respectively. The possible preimages of cards of type

T1 have component orders (t + 1, t − 2, 1), (t + 2, t − 2) or (t + 1, t − 1), and those of type

T2 have orders (t, t), (t, t − 1, 1) or (t + 1, t − 1). Note that the only possible preimage of

two cards of different types has orders (t + 1, t − 1), which is that of G. vrn∀(G2t) ≤ t + 2

follows, since any t + 2 cards must contain a card of type T1 and a card of type T2.

G = G2t+1. If t > 2, there are three types of component orders of cards in the deck:

T1 = (t, t− 1, 1), T2 = (t + 1, t− 2, 1) or T3 = (t + 1, t− 1), and there are t + 1, t− 1 and 1

of such cards, respectively. If t = 2, there are only two types of component orders, since T2

and T3 are the same type. Given t + 2 cards, one of the cards will be of type T1 and one

will be of type T2 or T3. The only preimage of a card of type T3 which is also possible for

T1 has the order type (t + 1, t − 1, 1) of G itself, and thus a card of type T1 together with

a card of type T3 reconstruct orders of components of G. If t > 2 and we have one card of

type T1 and one card of type T2, then a case analysis similar to that of G = G2t completes

the proof that vrn∀(G2t+1) ≤ t + 2.

G = H2t+1. The proof in this case follows again the same template. There are two types

of orders of components of cards in the deck: T1 = (t, t − 1, 1), T2 = (t, t), and there are 2t

and 1 of such cards, respectively. The only preimage of a card of type T2 which is possible

for T1 has the order type (t, t, 1) of G itself, and thus a card of type T2 together with a

card of type T1 reconstruct orders of components of G. If t > 2, the possible preimages
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of orders of type T1 are (t, t − 1, 1, 1), (t + 1, t − 1, 1), (t, t − 1, 2) and (t, t, 1) and in turn

such graphs have in their decks 2, t + 1, 1, and 2t cards of type T1, respectively. Thus if

all t + 2 cards have order type T1, then all must come from the preimage of type (t, t, 1). If

t = 2, the possible preimages of orders of type T1 are (2, 1, 1, 1), (3, 1, 1), and (2, 2, 1) and

in turn such graphs have in their decks 3, 3, and 4 cards of type T1, respectively. Hence

vrn∀(G2t+1) ≤ t + 2.

The Reconstruction Conjecture can be restated as follows: For each n ≥ 3, given any

collection D of n graphs with n − 1 vertices in each, there can be at most one 1-vertex-

preimage of D. What can we say about the number of nonisomorphic 1-vertex-preimages

of a collection D of graphs with n − 1 vertices in each where the size of D is smaller than

n? Myrvold [Myr90] showed that for any tree T , the number of nonisomorphic preimages

of endvertex-deck(T ) is exactly one; the unique preimage up to isomorphism is T itself.

However, the following theorem by Bryant [Bry71] says that there are graphs G for which

the endvertex-deck(G) has more than one nonisomorphic preimage.

Theorem 4.5 ([Bry71]) For any positive integer k, there exist nonisomorphic graphs G

and H, with k endvertices in each, such that endvertex-deck(G) = endvertex-deck(H).

Note that Theorem 4.5 claims only the existence of at least two nonisomorphic 1-vertex-

preimages of a certain collection consisting of k 1-vertex-cards, for every k ≥ 2. In the next

theorem, we show that there is a family of multisets of k graphs on (2k−1 + 1)n + k vertices

with 2n 1-vertex-preimages.

Theorem 4.6 For all k ≥ 2 and n ≥ 1, there is a deck D of k 1-vertex-cards on (2k−1 +

1)n + k vertices with at least 2n 1-vertex-preimages.

Proof Each of the k 1-vertex-cards in D is identical, and defined as follows.

1. x0, . . . , xn are the vertices of the path graph Pn+1 ({xi, xi+1} is an edge for 0 ≤ i ≤ n).

2. y1, . . . , yk−1 are special selector vertices.

3. For i := 1 . . . n,

3.1 Let Gi be the complete graph K2k−1 and let V (Gi) = {zi,Y | Y ⊆ {y1, . . . , yk−1}}.

3.2 Connect xi to all the vertices of Gi.

3.3 For each zi,Y ∈ V (Gi), connect zi,Y to each vertex y such that y ∈ Y .
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Figure 1: A 1-vertex-card in D

Consider 1-vertex-preimages H of D of the following form.

1. x0, . . . , xn are the vertices of the path graph Pn+1 ({xi, xi+1} is an edge for 0 ≤ i ≤ n).

2. y1, . . . , yk−1, yk are special selector vertices.

3. For i := 1 . . . n,

3.1 Let Gi be the complete graph K2k−1 and let V (Gi) = {zi,j | j ∈ {1, . . . , 2k−1}}.

3.2 Connect xi to all the vertices of Gi.

3.3 The edges between the y-vertices and Gi are defined according to one of the following

two cases.

Case 1. Let Yi,1, . . . , Yi,2k−1 be an enumeration of the subsets of {y1, . . . , yk} of odd

size. For each j ∈ {1, . . . , 2k−1}, connect zi,j to each vertex y such that y ∈ Yi,j .

Case 2. Let Yi,1, . . . , Yi,2k−1 be an enumeration of the subsets of {y1, . . . , yk} of even

size. For each j ∈ {1, . . . , 2k−1}, connect zi,j to each vertex y such that y ∈ Yi,j .

Figure 1 shows the construction of a 1-vertex-card in D. Note that H is a 1-vertex-preimage

of D, since H−y� is isomorphic to the 1-vertex-card in D for 1 ≤ � ≤ k (via an isomorphism

π that maps xi to xi for 1 ≤ i ≤ n, {y1, . . . , yk} − {y�} to {y1, . . . , yk−1} (arbitrarily), and

zi,j to zi,π[Yi,j−{y�}] for 1 ≤ i ≤ n, 1 ≤ j ≤ 2k−1).

As i varies from 1 to n, in step 3.3 each time we can apply either Case 1 or Case 2. Every

two distinct sequences of such choices in the construction of H give rise to nonisomorphic

graphs. Thus, the number of nonisomorphic 1-vertex-preimages is at least 2n.
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5 Open Problems

In this section, we mention some open problems. Theorem 3.17 states that, for every c ≥ 1,

GI ≡p
iso 2-LVDc. However, for k > 2 and c ≥ 1, we do not know whether k-LVDc is

polynomial-time equivalent to GI or is NP-complete (or is neither). Since for k > 2 and

c ≥ 1 it is not clear, even under the assumption that the Reconstruction Conjecture is true,

whether k-LVDc is low for PP, it is at least possible that k-LVDc is NP-complete.

It also would be interesting to investigate the complexity of problems related to the

reconstruction numbers. So we define the following problems:

1. Exist-vrn= {〈G, k〉 | vrn∃(G) ≤ k}.

2. Univ-vrn= {〈G, k〉 | vrn∀(G) ≤ k}.

3. Exist-ern= {〈G, k〉 | ern∃(G) ≤ k}.

4. Univ-ern= {〈G, k〉 | ern∀(G) ≤ k}.

It is easy to see that Exist-vrn ∈ Σp
2 (since GI is low for Σp

2), Univ-vrn ∈ coNPGI,

Exist-ern ∈ NPGI (we get a better upper bound than for Exist-vrn since, as in the

proof of Lemma 3.4, we have to consider only polynomially many possible preimages of the

edge-deck), and Univ-ern ∈ coNPGI. It would be interesting to obtain tight (or tighter)

bounds on the complexity of these problems. For instance, is Exist-vrn complete for Σp
2?

Is Univ-ern coNP-hard?

Acknowledgments We thank the anonymous referees for helpful comments.
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