Diagonal Conjecture for Classical Ramsey Numbers

Stanisław Radziszowski

Department of Computer Science Rochester Institute of Technology, NY, USA

joint work with Meilian Liang and Xiaodong Xu

DisCoMathS
9 October 2019, Henrietta

Plan of Talk

Ramsey numbers: computational perspective (16 min)

 Diagonal Conjecture: origins, consequences and evidence (32 min)

LRX, On a Diagonal Conjecture for Classical Ramsey Numbers, Discrete Applied Mathematics, 267 (2019) 195-200.

Ramsey Numbers

- ▶ R(G, H) = n iff minimal n such that in any 2-coloring of the edges of K_n there is a monochromatic G in the first color or a monochromatic H in the second color.
- ▶ 2 colorings \cong graphs, $R(m, n) = R(K_m, K_n)$
- ▶ Generalizes to k colors, $R(G_1, \dots, G_k)$
- ► Theorem (Ramsey 1930): Ramsey numbers exist

Unavoidable classics

Asymptotics

diagonal cases

▶ Bounds (Erdős 1947, Spencer 1975; Conlon 2010)

$$\frac{\sqrt{2}}{e} 2^{n/2} n < R(n,n) < R(n+1,n+1) \le \binom{2n}{n} n^{-c \frac{\log n}{\log \log n}}$$

- Conjecture (Erdős 1947, \$100) $\lim_{n\to\infty} R(n,n)^{1/n} \text{ exists.}$
 - If it exists, it is between $\sqrt{2}$ and 4 (\$250 for value).
- ► **Theorem** (Chung-Grinstead 1983) $L = \lim_{k\to\infty} R_k(3)^{1/k}$ exists.

Asymptotics

Ramsey numbers avoiding K_3

Kim 1995, lower bound Ajtai-Komlós-Szemerédi 1980, upper bound

$$R(3,n) = \Theta\left(\frac{n^2}{\log n}\right)$$

- ► Bohman/Keevash 2009/2013, triangle-free process
- ► Fiz Pontiveros-Griffiths-Morris, lower bound, 2013 Shearer, upper bound, 1983

$$\left(\frac{1}{4} + o(1)\right)n^2/\log n \le R(3, n) \le (1 + o(1))n^2/\log n$$

Test - Hunt - Exhaust

Ramsey numbers

- ► **Testing:** do it right. Graph G is a witness of R(m, n) > k iff |V(G)| = k, cl(G) < m and $\alpha(G) < n$. Lab in a 200-level course.
- ► Hunting: constructions and heuristics. Given m and n, find a witness G for k larger than others. Challenge projects in advanced courses.

Master: Geoffrey Exoo 1986-

► Exhausting: generation, pruning, isomorphism.

Prove that for given *m*, *n* and *k*, there does not exist any witness as above. Hard without nauty/traces.

Master: Brendan McKay 1991-

Values and bounds on R(k, I)

two colors, avoiding K_k , K_l

	l	3	4	5	6	7	8	9	10	11	12	13	14	15
k														
,				14	10	22	28	36	40	47	53	60	67	74
3		6	9	14	18	23			42	50	59	68	77	87
4			18	25	36	49	59	73	92	102	128	138	147	155
-			10	23	41	61	84	115	149	191	238	291	349	417
5				43	58	80	101	133	149	183	203	233	267	269
				48	87	143	216	316	442	633	848	1138	1461	1878
6					102	115	134	183	204	256	294	347		401
					165	298	495	780	1171	1804	2566	3703	5033	6911
7						205	217	252	292	405	417	511		
′						540	1031	1713	2826	4553	6954	10578	15263	22112
8							282	329	343			817		865
8							1870	3583	6090	10630	16944	27485	41525	63609
9								565	581					
9								6588	12677	22325	38832	64864		
10									798					1265
									23556	45881	81123			

[SPR, EIJC survey Small Ramsey Numbers, revision #15, 2017, with updates]

Small R(k, l), references

 $R(5,5) \leq 48$, Angeltveit-McKay 2018.

	1	4	5	6	7	8	9	10	11	12	13	14	15
k													
			GG		Ka2	GR	Ka2	Ex5	Ex20	Koll	Koll	Kol2	Ko12
3		GG		Kéry	GrY	McZ	GR	GoR I	GoRI	Les	GoRl	GoRI	GoRi
			Kal	Ex 19	Ex3	ExT	Ex 16	HaKri	ExT	SuLL	ExT	ExT	ExT
4		GG	MR4	MR5	Mac	Mac	Mac	Mac	Spc-1	Spe-1	Spc-1	Spe4	Spe-1
_			Ex4	Ex9	CaET	HaKrl	Kuz	ExT	Kuz	Kuz	Kuz	Kuz	ExT
5			AnM	1121	117.1	Spc-1	Mac	Mac	HW+	HW.	LDV I	LDW+	IIW+
				Ka2	ExT	ExT	Kuz	Kuz	Kuz	Kuz	Kuz		2.3.h
6				Mac	HZI	Mac	Mac	Mac	IW.	HW+	EDV+	EDV +	HW+
			·		She2	XSR2	Kuz	Kuz	XXER	XSR2	XuXR		
7					Mac	HZI	HZ2	Mac	HW+	HW+	EPW+	EPW+	HW.
				***************************************		BurR	Kuz	Kuz			XXER		2.3.h
8		and the second				Mac	Eal	1172	HW+	HW+	EPV+	EPV+	HW+
	_						She2	XSR2					
9							ShZi	Eal	HW+	HW+	HW+		
								She2					2.3.h
10		and the second						Shi2	HW+	HW+			

New avalanche of improved upper bounds after LP attack for higher *k* and *l* by Angeltveit-McKay.

Diagonal Conjecture (DC) motivation

R(k, l) seem to decrease along \nearrow diagonals

	ı	3	4	5	6	7	8	9	10	11	12	13	14	15
k														1
7			9	(7.4)	10	77	30	36	40	47	53	(60)	67	74
3		6	9	14	18	23	28		42	50	59	68	777	87
4			610	25	36	49	59	(73)	92	102	(128)	138	147	155
4		-	(18)	25	41	61	84	115	149	191	238	291	349	417
5				43	58	80	101	133	149	(183)	203	233	267	269
٠		-		48	87	143	216	316	442	633	848	1138	1461	1878
6					102	(115)	134	183	(204)	256	294	347		401
6		-			165	298	495	780	1171	1804	2566	3703	5033	6911
7						205	217	(252)	292	405	417	511		
7						540	1031	1713	2826	4553	6954	10578	15263	22112
				7			282	329	343			817		865
8							1870	3583	6090	10630	16944	27485	41525	63609
9								565	581					
9		-						6588	12677	22325	38832	64864		
10									798					1265
10									23556	45881	81123			

Best known lower bounds for $k \le I$ satisfy

$$LB(k, l) > LB(k - 1, l + 1),$$

except a mild hick-up at (8,10) vs (7,11).

Diagonal Conjecture (DC)

Two-Color DC:

$$R(k, l) \ge R(k - 1, l + 1)$$
 for $3 \le k \le l$.

As we move away from the diagonal of the table with Ramsey numbers R(k, l), while preserving k + l, the values decrease.

Multicolor DC:

For
$$r \ge 3$$
, $a_i \ge 3$ (1 $\le i \le r$), if $a_{r-1} \le a_r$, then

$$R(a_1, \cdots, a_r) \geq R(a_1, \cdots, a_{r-2}, a_{r-1} - 1, a_r + 1).$$

Diagonal Conjecture

cont.

Hints:

- Observed long ago ..., probably by many.
- ▶ Stronger versions of DC with > instead of \ge are plausible.
- Known values and bounds do not contradict either DC.
- Wang Rui (2008) published a theorem implying two-color DC, and its extensions to multicolor cases (without proof).

Wang Rui, Another definition for Ramsey numbers, IEEE Int. Symp. Information Science and Engineering, 2 (2008) 405-409.

Wang's proof is not correct.

A strange alternate definition of Ramsey numbers, followed by unfounded circular arguments between the definitions.

$\lim_{r\to\infty} R_r(k)^{1/r}$

For
$$k = a_1 = \cdots = a_r$$
, let $R_r(k) = R(a_1, \cdots, a_r)$.

Theorem (Chung-Grinstead 1983) $L_3 = \lim_{r \to \infty} R_r(3)^{1/r}$ exists, finite or infinite.

- The same argument can be used to show that $L_k = \lim_{r \to \infty} R_r(k)^{1/r}$ exists for all k > 3, finite or infinite.
- ► $L_3 > 3.1996 \approx 1073^{\frac{1}{6}}$ (Fredricksen-Sweet 2000, X-Xie-Exoo-R 2004).
- ▶ Erdős was inclined to think that $L_3 = \infty$ (Li,XR).

Consequences of DC

using Abbott's 1965 construction

Lemma

If DC holds, then for every integer $a \ge 3$ we have

$$R_{2r}(a) > (R_r(a-1)-1)(R_r(a+1)-1).$$

Proof.

Apply DC r times to $R_{2r}(a)$.

Use a special case of Abbott's lower bound construction

$$R(a_1,\ldots,a_{2r}) > (R(a_1,\ldots,a_r)-1)(R(a_{r+1},\ldots,a_r)-1).$$

Consequences of DC

main theorem

Theorem

If DC holds and $\lim_{r\to\infty} R_r(3)^{\frac{1}{r}}$ is finite, then $\lim_{r\to\infty} R_r(a)^{\frac{1}{r}}$ is finite for every $a\geq 3$.

Proof.

Induction on a via

$$\lim_{r \to \infty} \frac{R_r(a)^{\frac{1}{r}}}{R_r(a-1)^{\frac{1}{r}}} \ge \lim_{r \to \infty} \frac{R_r(a+1)^{\frac{1}{r}}}{R_r(a)^{\frac{1}{r}}}.$$

LB vs UB on $R_r(3)$ and L_3

r	lower bound	upper bound
2	6	6
3	17	17
4	51	62
5	162	307
6	538	1838
7	1682	12861
8	5204	102882
9	16146	925931
10	51202	9259302

Known bounds on $R_r(3)$ for $r \leq 10$,

$$R_r(3) \le (e - \frac{1}{6})r! + 1 \approx 2.55r!$$
, based on $R_4(3) \le 62$.

$$L_3 = \lim_{r \to \infty} R_r(3)^{1/r} > 3.1996$$

Consequences of DC

another main theorem

Theorem

If DC holds, then for every $a \ge 3$, we have

$$\lim_{r \to \infty} \frac{R_r(a)^{\frac{1}{r}}}{R_r(a-1)^{\frac{1}{r}}} > 1.$$

Proof.

First show that

$$\frac{R_r(2a-1)-1}{R_r(a)-1}\geq R_r(3)-1\geq 2^r,$$

next that

$$\lim_{r\to\infty}\frac{R_r(2a)^{\frac{1}{r}}}{R_r(a)^{\frac{1}{r}}}\geq 2,$$

then finish by contradiction.

Consequences of DC

summary

Theorem

If DC holds, then it is true that:

- (a) all L_k 's are finite or all of them are infinite, and
- (b) if L_3 is finite then $L_k < L_{k+1}$ for all $k \ge 3$.

- ► $\lim_{k\to\infty} L_k = \infty$, even without assuming validity of DC (by Abbott 1965, and by the previous theorem).
- If our perspective that the known lower bounds are much closer to $R_r(k)$ than the upper bounds is correct, it would add weight to the case that all limits L_k are finite.

Evidence for DC - two colors

DC(s, t) stands for $R(s, t) \ge R(s - 1, t + 1)$, $3 \le s \le t$.

- (a) DC(3, t) is true for all $t \ge 3$.
- (b) DC(4, t) is true for all $t \geq 4$.
- (c) DC(5,5), DC(5,6) and DC(5,7) are true.
- (d) The above establishes the validity of DC(s, t) for all s < 5, and all cases with $s + t \le 12$, except DC(6, 6).
- (e) The further we go from the diagonal of the DC conjecture, the easier it seems to corroborate it. We anticipate DC to be the hardest on the diagonal itself, i.e. proving that $R(t,t) \ge R(t-1,t+1)$ for any $t \ge 6$.
- (f) Little bump at DC(8, 10).

Evidence for DC - more colors

relying on lower bounds

A_1	LB ₁	LB_2	A_2
3,3,5	45	55	3,4,4
3,3,6	61	89	3,4,5
3,3,7	85	117	3,4,6
3,3,8	103	152	3,4,7
3,3,9	129	193	3,4,8
3,3,10	150	242	3,4,9
3,4,6	117	139	3,5,5
3,4,7	152	181	3,5,6
3,4,8	193	241	3,5,7
4,3,5	89	128	4,4,4
3,3,3,5	162	171	3,3,4,4

Known lower bounds LB_1 and LB_2 on $R(a_1, \dots, a_{r-2}, a_{r-1} - 1, a_r + 1)$ and $R(a_1, \dots, a_r)$ for some DC-adjacent pairs of parameters A_1 and A_2 .

Shannon capacity c(G) and limits L_k

 $\alpha(G^r)$ = independence of the strong r-th power of graph G c(G) = Shannon capacity of a noisy channel modeled by G

$$c(G) = \lim_{r \to \infty} \alpha(G^r)^{\frac{1}{r}}$$

We proved (XR 2013):

For any fixed $k \geq 3$, $L_k = \lim_{r \to \infty} R_r(k)^{1/r}$ is equal to the supremum of the Shannon capacity c(G) over all graphs G with $\alpha(G) = k - 1$, but this supremum cannot be achieved by any finite graph power, G^{r_0} .

Two problems beyond DC

Generalizing DC.

For connected graphs G_i with $s \leq t$, is it true that

$$R(G_1, G_2, \cdots, K_{s-1}, K_{t+1}) \leq R(G_1, G_2, \cdots, K_s, K_t)$$
?

We think 'YES', but make no more conjectures.

▶ Let $r \ge 3$, $a_i \ge 3$, $a_{r-1} \le a_r$, and C be a coloring witnessing

$$n < R(a_1, \cdots, a_{r-2}, a_{r-1} - 1, a_r + 1).$$

Let G = all edges of C in colors r-1 and r, |V(G)|=n.

Is it true that
$$G \rightarrow (a_{r-1}, a_r)^e$$
?

i.e. that there exists a 2-coloring of E(G) without any $K_{a_{r-1}}$ in the first color and without K_{a_r} in the second color?

We think 'weaker YES'.

Papers to look at

- Wang Rui, Another definition for Ramsey numbers, IEEE International Symposium on Information Science and Engineering, 2 (2008) 405–409.
- Meilian Liang, SPR, Xiaodong Xu On a Diagonal Conjecture for Classical Ramsey Numbers Discrete Applied Mathematics, 267 (2019) 195-200.
- SPR, revision #15 of the dynamic survey paper, Small Ramsey Numbers, Electronic Journal of Combinatorics, DS1, March 2017.
 - 777+ papers by many authors ...

Thanks for listening!

