Agrawal–Kayal–Saxena Algorithm for

Testing Primality in Polynomial Time

slides by

Mitsunori Ogihara
Department of Computer Science
University of Rochester
ogihara@cs.rochester.edu

and

Stanisław Radziszowski
Department of Computer Science
Rochester Institute of Technology
spr@cs.rit.edu
Brief History

- Eratosthenes, 276 BC – 194 BC: the Eratosthenes Sieve
- Pratt '75: in NP
- Miller '76: $O(\log^4 n)$-time solvable if the Extended Riemann Hypothesis is true
- Solovay & Strassen '77; Rabin '80: in coRP, still the choice in applications
- Adleman, Pomerance, & Rumely '83: deterministic $O((\log n) \log \log \log n)$-time
- Goldwasser & Kilian, '86: “Almost all” primes can be proven to be prime in $O(\log^{12} n)$ time
- Adleman & Huang '87: in RP
- Fellows & Koblitz '92: in UP
- This paper: in P, $O((\log^{12} n) \text{poly}(\log \log n))$-time
Preliminaries

$n \geq 3$: odd integer
\mathbb{Z}_n : the integer ring modulo n
\mathbb{Z}_n is a field if n is prime
\mathbb{Z}_n^* : the multiplicative group modulo n
\mathbb{Z}_n^* is a cyclic group if n is prime.

$\lg n = \log_2 n$: binary logarithm
$\ln n = \log_e n$: natural logarithm

a : integer, $\text{GCD}(n, a) = 1$
$\sigma_n(a)$: the order of a modulo n,
i.e., the smallest positive integer m such that $a^m \equiv 1 \pmod{n}$
Preliminaries

Fermat’s (Little) Theorem Let p be prime. Then, for all a relatively prime to p, $o_p(a)|p - 1$, that is, $a^{p-1} \equiv 1 \pmod{p}$.

Basic Congruence (AKS) Let a and n be relatively prime. Then, n is prime iff

$$(x - a)^n \equiv (x^n - a) \pmod{n}$$
Proof of the AKS congruence

If n is prime, then by Fermat’s Theorem, for all a relatively prime to n, $a^n \equiv a \pmod{n}$

For all i, $1 \leq i \leq n - 1$, the coeff. of x^i in $(x - a)^n$ is $(-a)^{n-i}{n \choose i}$, a multiple of n. Thus

$$(x - a)^n \equiv x^n + (-a)^n \equiv x^n - a \pmod{n}$$

If n is composite, let q be a prime such that $n = q^k s$ and $q \nmid s$. Since $\binom{n}{q} = \frac{q^k s \cdots (q^k s - q + 1)}{1 \cdots q}$, then

$q^k \nmid \binom{n}{q}$, \hspace{1cm} \text{GCD}(q, a^{n-q}) = 1$

so the coeff. of x^q is nonzero modulo n.

Congruence follows.
Some Results on Polynomials

Proposition 1 \(p, r : \text{distinct primes} \)

1. For all polynomials \(f(x) \in F_p[x], \)
 \(f(x)^p \equiv f(x^p) \pmod{p}. \)

2. Let \(h(x) \) be a factor of \(x^r - 1. \)
 For all integers \(m \) and \(m' \) such that
 \(m \equiv m' \pmod{r}, \)
 \(x^m \equiv x^{m'} \pmod{h(x)}. \)

3. Over \(F_p, \) the polynomial \(\frac{x^r - 1}{x - 1} \) is the
 product of degree-\(r(p) \) irreducible
 polynomials.
Proof of Proposition 1

[1] Let \(f(x) = a_0 + a_1 x + \cdots + a_d x^d \)
\[0 \leq j \leq dp \]
The coeff. of \(x^j \) in \(f(x)^p \) is
\[
\sum a_0^{i_0} \cdots a_d^{i_d} \frac{p!}{i_0! \cdots i_d!},
\]
where the summation is over
\[\{(i_0, \ldots, i_d) \mid i_0 \geq 0, \ldots, i_d \geq 0 \land i_0 + \cdots + i_d = p \land 1 \cdot i_1 + 2 \cdot i_2 + \cdots + d \cdot i_d = j \} \]. Note that
\[
\frac{p!}{i_0! \cdots i_d!} \equiv \begin{cases} 1 \pmod{p} & (\exists u)[i_u = p] \\ 0 \pmod{p} & \text{otherwise}. \end{cases}
\]
In the former case \(p|j \). Thus,
\[
f(x)^p \equiv \sum_{0 \leq i \leq d} a_i^p x^i \pmod{p}.
\]
Since \(p \) is prime, for all \(i, \ 0 \leq i \leq d, \ a_i^p \equiv a_i \pmod{p} \). So,
\[
f(x^p) = \sum_{0 \leq i \leq d} a_i x^{ip} \equiv f(x)^p \pmod{p}.
\]
[2] Suppose \(m \equiv m' \pmod{r} \).
Let \(s \) be such that \(m = sr + m' \).
Since \(h(x)|x^r - 1 \), \(x^r \equiv 1 \pmod{h(x)} \).
So, \(x^{sr} \equiv 1 \pmod{h(x)} \).
Thus, \(x^m = x^{sr} x^{m'} \equiv x^{m'} \pmod{h(x)} \).
[3] p and r: distinct primes
$h(x)$: irreducible factor of $\frac{x^r-1}{x-1}$ in $F_p[x]$.
Let $k = \deg(h)$ and $d = o_r(p)$.
We'll show $d|k$ and $k|d$, which imply $d = k$.

Since h is irreducible and p is prime, $F_p[x]/h(x)$ is a field.
The size of the field is p^k.
Furthermore, $(F_p[x]/h(x))^*$ is cyclic
Let $g(x)$ be a generator of $(F_p[x]/h(x))^*$.

d divides k

$h(x)|x^r - 1$, thus $x^r \equiv 1 \pmod{h(x)}$, it
implies that order of x in $F_p[x]/h(x)$ divides r.
Since r is prime, the order is actually r.

Since g is a generator, the order of x should divide the order of g, so we have $r|p^k - 1$.
Thus, $p^k \equiv 1 \pmod{r}$.
Since $d = o_r(p)$, we have $d|k$.

9
k divides d

By (1), we have

$$g(x)p^\equiv g(x^p) \pmod{p},$$

$$g(x)p^2 \equiv g(x^p)p \equiv g(x^{p^2}) \pmod{p},$$

$$\cdots$$

$$g(x)p^d \equiv g(x^{p^{d-1}})p \equiv g(x^p^d) \pmod{p}.$$

Since $d = o_r(p)$, $p^d \equiv 1 \pmod{r}$.

Then, by (2), $x^{p^d} \equiv x \pmod{h(x)}$,

so $g(x)p^d \equiv g(x) \pmod{h(x)}$.

This implies that $g(x)^{p^d-1} \equiv 1 \pmod{h(x)}$.

The order of $g(x)$ is $p^k - 1$, so $p^k - 1 | p^d - 1$.

Let $d = ks + z$, $0 \leq z < k$. We have

$$(p^d-1) = (p^k-1)(p^{d-k} + p^{d-2k} + \cdots + p^z) + p^z - 1$$

so $z = 0$ and $k | d$.

10
“Useful” Primes
(This terminology is not used in AKS)

$n \geq 3$: odd
r : odd prime, $\text{GCD}(n, r) = 1$

r is **useful** (in testing n’s primality),
if $r - 1$ has a prime factor q such that

1. $q \geq 4\sqrt{r} \ln n$ and
2. $n^{(r-1)/q} \not\equiv 1 \pmod{r}$.

If r is useful, there is only one prime q
witnessing that r is useful;
also, $q | o_r(n)$ and $o_r(n) | r - 1$.

A prime r is **semi-useful** in testing n’s
primality if $r - 1$ has a prime factor q such
that $q \geq 4\sqrt{r} \ln n$.
The Algorithm

\(n_1 \) is a constant given later.

1: Input an odd integer \(n \geq n_1 \)
2: \(\triangleright \) Search for a Useful Prime
3: \(r \leftarrow 3 \)
4: while \((r < n) \) do \{
5: \hspace{1em} if \ GCD(n, r) \neq 1 \ then \ output(“composite”)
6: \hspace{1em} if \ r \) is prime \ then \{
7: \hspace{2em} \hspace{1em} q \leftarrow \) the largest prime factor of \(r - 1 \)
8: \hspace{2em} \hspace{1em} if \ (q \geq \lfloor 4\sqrt{r}\ln n \rfloor) \ and \n9: \hspace{2em} \hspace{1em} \hspace{1em} (n^{(r-1)/q} \neq 1 \ (mod \ r)) \ then \ break \}
10: \hspace{1em} r \leftarrow r + 2 \}
11: \(\triangleright \) Binomial Power Test
12: \(\text{for} \ a \leftarrow 1 \ \text{to} \ \lfloor 2\sqrt{r}\lg n \rfloor \ \text{do} \)
13: \(\hspace{1em} \text{if} \ (x - a)^n \neq x^n - a \ (mod \ x^r - 1, n) \)
14: \(\hspace{1em} \text{then} \ output(“composite”) \)
15: \(\triangleright \) Prime Power Test
16: \(\text{for} \ k \leftarrow 2 \ \text{to} \ \lfloor \ln n / \ln 3 \rfloor \ \text{do} \)
17: \(\hspace{1em} \text{if} \ (\lfloor n^{1/k} \rfloor)^k = n \ \text{then} \ output(“composite”) \)
18: output(“prime”)

12
Theorem 1 The above algorithm works correctly and runs in time polynomial in $\log n$.

The Proof Strategy

GOAL I The smallest useful prime number is $O(\log^6 n)$.

GOAL II For all $n \geq n_1$, given a useful prime r, the two tests correctly decide whether n is a prime.

GOAL III The algorithm has a polynomial running time.
Achieving Goal I

Theorem 2 \((\exists c_1, c_2, n_1)(\forall n \geq n_1)\)

The interval \([c_1 \ln^6 n, c_2 \ln^6 n]\) contains a prime that is useful in testing \(n\)’s primality.

Two useful lemmas.

Lemma 1 [Fouvry ’85] \((\exists c_0, n_0)(\forall x \geq n_0)\)

\(|\{p \mid p \leq x \wedge p\text{ is a prime } \wedge p - 1\text{ has a prime factor } \geq x^{\frac{2}{3}}\}| \geq c_0 x / \ln x\)

Lemma 2 [Apostol ’97] For all \(n \geq 1\),

\[
\frac{n}{6 \ln n} \leq \pi(n) \leq \frac{8n}{\ln n},
\]

where \(\pi(n)\) is the number of primes \(\leq n\).

(Apostol ’76 gave a better upper bound \(\frac{6n}{\ln n}\))
Proof of Theorem 2

Let c_1 be any constant $\geq 4^6 = 4096$. Let c_2 be any constant such that c_3 defined by $c_3 = \frac{c_0c_2}{7} - \frac{4c_1}{3}$ is positive. Let $c_4 = \frac{c_2}{4\sqrt{c_1}}$.

Let n_1 be the smallest integer m such that

(i) $c_2 \ln^6 m \geq n_0$,
(ii) $\ln m \geq c_2$, and
(iii) $(c_4)^2 < \frac{c_3 \ln m}{\ln \ln m}$.

Then, for all $n \geq n_1$, (i)–(iii) hold with $m = n$. Let $I = [c_1 \ln^6 n, c_2 \ln^6 n]$.

The Proof Strategy:

- Bound from below the # of semi-useful primes in I.
- By counting argument show that one of the semi-useful primes is actually useful.
\# of Semi-Useful Primes in \(I \geq ? \)

Since (i) holds, Lemma 1 can be applied. \# of primes \(r \leq c_2 \ln^6 n (= x) \) such that \(r - 1 \)
has a prime factor \(\geq r^{\frac{2}{3}} \) is at least

\[
\geq c_0 \frac{c_2 \ln^6 n}{\ln(c_2 \ln^6 n)}
\]

\[
= \frac{c_0 c_2 \ln^6 n}{\ln c_2 + 6 \ln \ln n}
\]

By (ii), \(\ln \ln n \geq \ln c_2 \). So, this is at least

\[
\geq \frac{c_0 c_2 \ln^6 n}{7 \ln \ln n}.
\]

16
OTOH
the # of primes r such that $r \leq c_1 \ln^6 n$
is equal to $\pi(c_1 \ln^6 n)$.
By Lemma 2, this is

$$\leq \frac{8c_1 \ln^6 n}{\ln(c_1 \ln^6 n)}$$

$$= \frac{8c_1 \ln^6 n}{\ln c_1 + 6 \ln \ln n}$$

$$\leq \frac{8c_1 \ln^6 n}{6 \ln \ln n} = \frac{4c_1 \ln^6 n}{3 \ln \ln n}.$$
By combining the two bounds, the \# of primes $r \in I$ such that $r - 1$ has a prime factor $\geq r^{\frac{2}{3}}$ is

$$\geq \frac{c_0 c_2 \ln^6 n}{7 \ln \ln n} - \frac{4 c_1 \ln^6 n}{3 \ln \ln n}$$

$$= \left(\frac{c_0 c_2}{7} - \frac{4 c_1}{3} \right) \frac{\ln^6 n}{\ln \ln n}$$

$$= \frac{c_3 \ln^6 n}{\ln \ln n}.$$
All $t \in I$ satisfy $t \geq c_1 \ln^6 n$.
Since $c_1 \geq 4^6$, we have $t^\frac{1}{6} \geq 4 \ln n$.
For all $x \geq 0$, $x^\frac{2}{3} = x^\frac{1}{6} \sqrt{x}$.

We counted primes $r \in I$, for which the largest prime factor q of $r - 1$ satisfies

$$q \geq r^\frac{2}{3} = r^\frac{1}{6} \sqrt{r} \geq 4 \sqrt{r} \ln n.$$

This implies that

the # of semi-useful primes in I is

$$\geq \frac{c_3 \ln^6 n}{\ln \ln n}.$$
of “Useless” Primes $\leq ?$

Let $M = \lfloor c_4 \ln^2 n \rfloor$. Define

$$
\psi = \prod_{1 \leq i \leq M} (n^i - 1).
$$

Then # of odd prime factors of ψ is less than

$$
\ln \psi = \sum_{1 \leq i \leq M} \ln(n^i - 1).
$$

$(\forall i \geq 1)[\ln(n^i - 1) < i \ln n]$

$(\forall d \geq 1)[\sum_{1 \leq i \leq d} i = d(d + 1)/2 \leq d^2]$

So, the # of odd prime factors of ψ is

$$
< M^2 \ln n \leq (c_4)^2 \ln^5 n
$$

and by (iii)

$$
< \frac{c_3 \ln^6 n}{\ln \ln n}.
$$

Thus, there is a semi-useful prime $r \in I$ such that $r \nmid \psi$.

20
We now claim that such semi-useful primes are actually useful.

\[r : \text{semi-useful prime in } I, \ r \not| \ \Psi \]
\[q : \text{the largest prime factor of } r - 1 \]
\[q \geq 4\sqrt{r} \ln n. \]

Assume \(r \) is not useful, i.e. \(q \not| \ o_r(n) \).
Since \(r \) is prime, \(o_r(n)|r - 1 \).
Since \(q \) is prime and \(q \not| \ o_r(n) \), \(o_r(n)|\frac{r-1}{q} \).

Since \(c_1 \ln^6 n \leq r \leq c_2 \ln^6 n \) and \(q \geq 4\sqrt{r} \ln n \), we have

\[
\frac{r - 1}{q} \leq \frac{c_2 \ln^6 n}{4\sqrt{(c_1 \ln^6 n) \ln n}} = \frac{\ln^2 n}{4\sqrt{c_1} \ln^2 n} = \lceil c_4 \ln^2 n \rceil = M.
\]
Now
\[o_r(n) | \frac{r-1}{q} \quad \text{and} \quad \frac{r-1}{q} \leq M \]

imply that \(r \) divides at least one of
\[n - 1, n^2 - 1, \ldots, n^M - 1, \]
and thus \(r | \psi \), which is a contradiction.

Hence, \(q | o_r(n) \) and so \(r \) is useful.
This proves Theorem 2.
Achieving Goal II

We need to show the following:

Theorem 3 \(\text{Let } n \geq n_1 \text{ be a prime. Then } n \text{ passes the Binomial Power Test and the Prime Power Test.} \)

Theorem 4 \(\text{Let } n \geq n_1 \text{ be an odd composite number. If } n \text{ passes through the Binomial Power Test (passes lines 1-14, enters line 15), then } n \text{ is a prime power.} \)
Proof of Theorem 3

n : a prime number $\geq n_1$
r : the useful prime selected by the algorithm
q : the witness of r’s usefulness

$4\sqrt{r} \ln n \leq q < r < n$

So, by line (5) of the algorithm, for all a,
$1 \leq a \leq \lceil 2\sqrt{r} \lg n \rceil$, $\text{GCD}(n, a) = 1$.

Thus, by the Basic Congruence

$$(x - a)^n \equiv x^n - a \pmod{n}$$

The equivalence still holds if the polynomials are reduced by taking modulo $x^r - 1$.

So, n passes the Binomial Power Test.

Prime n must pass the Prime Power Test.
Proof of Theorem 4

n: odd composite number $\geq n_1$
r: the useful prime selected by the algorithm
q: the prime witnessing that r is useful
p_1, \ldots, p_t: all distinct prime divisors of n

For each i, $1 \leq i \leq t$, since $\text{GCD}(r, p_i) = 1$, we can let $\lambda_i = o_r(p_i)$.

Define $\lambda_0 = \text{LCM}(\lambda_1, \ldots, \lambda_t)$.
For all i, $1 \leq i \leq t$, $p_i^{\lambda_0} \equiv 1 \pmod{r}$.
So, $n^{\lambda_0} \equiv 1 \pmod{r}$, and thus, $o_r(n) | \lambda_0$.

Since q is prime and $q | o_r(n)$,
$(\exists i : 1 \leq i \leq t)[q \mid \lambda_i]$.
Choose any such i and let $p = p_i$.

25
Let $h(x)$ be an irreducible polynomial in $F_p[x]$, such that $h(x)|\frac{x^r-1}{x-1}$.
Set $d = \deg(h)$ and $\ell = \lceil 2\sqrt{r} \lg n \rceil$.
By (3) of Proposition 1, $d = o_r(p)$.
Suppose n passes the Binomial Power Test. Then

- $(\forall a : 1 \leq a \leq \ell)$
 $$(x - a)^n \equiv x^n - a \pmod{x^r - 1, n}.$$

Since $h(x)|x^r - 1$ and $p|n$, we have

- $(\forall a : 1 \leq a \leq \ell)$
 $$(x - a)^n \equiv x^n - a \pmod{h(x), p}.$$

$\gcd(n, \prod_{1 \leq i \leq r} i) = 1$ and $r > \ell$ imply that $p > \ell$, and thus $1, \ldots, \ell$ are pairwise distinct modulo p.

26
A Cyclic Group of Polynomials

Define G to be the set of all polynomials in $(F_p[x]/h(x))^*$ of the form

$$(x - 1)^{\alpha_1} \cdots (x - \ell)^{\alpha_{\ell}}$$

such that $\alpha_1, \ldots, \alpha_{\ell}$ are nonnegative integers.

Proposition 2

G is a cyclic multiplicative group of order Ω, and

$$\Omega > \left(\frac{\ell + d - 1}{\ell} \right)^{\ell}$$
Proof of Proposition 2

It is known fact that every multiplicative subgroup of a field is cyclic.
G is a subset of the field $F_p[x]/h(x)$ and is a group (closed under multiplication).
So, G is a cyclic group.
Let $g(x)$ be a generator of G.
g(x) has order Ω.

We need to show that $\Omega > \left(\frac{\ell + d - 1}{\ell}\right)$.

Define $S \subset G$ to be the set of all polynomials in $(F_p[x]/h(x))^*$ of the form

$$(x - 1)^{\alpha_1} \cdots (x - \ell)^{\alpha_\ell}$$

such that $\alpha_1, \ldots, \alpha_\ell$ are nonnegative and $\alpha_1 + \cdots + \alpha_\ell \leq d - 1$.

28
We will claim that distinct sequences \(\alpha_1, \cdots, \alpha_\ell \) in the definition lead to different elements of \(S \). Once the claim is proved, using

\[
\frac{x+1}{y+1} < \frac{x}{y} \quad \text{for} \quad 0 < y < x,
\]

we can observe that for \(d > 1 \)

\[
|S| = \binom{\ell + d - 1}{\ell} = \frac{\ell + d - 1}{\ell} \cdot \frac{\ell + d - 2}{\ell - 1} \cdot \frac{\ell + d - 3}{\ell - 2} \cdots \frac{d}{1} > \left(\frac{\ell + d - 1}{\ell} \right)^\ell,
\]

which will finish the proof of Proposition 2.
\textbf{Proving the Claim.} Let
\[v(x) = (x - 1)^{\alpha_1} \cdots (x - \ell)^{\alpha_\ell} \]
and
\[w(x) = (x - 1)^{\beta_1} \cdots (x - \ell)^{\beta_\ell} \]
be two polynomials in \(S \) such that

\((*)\) \quad v(x) \equiv w(x) \pmod{h(x), p}.

For each \(a, \ 1 \leq a \leq \ell \), let

- \(\gamma_a = \min\{\alpha_a, \beta_a\} \),
- \(\alpha'_a = \alpha_a - \gamma_a \), and
- \(\beta'_a = \beta_a - \gamma_a \).

Note that

- \(\alpha_a = \beta_a \) implies \(\alpha'_a = \beta'_a = 0 \)
- \(\alpha_a < \beta_a \) implies \(\alpha'_a = 0 \)
- \(\alpha_a > \beta_a \) implies \(\beta'_a = 0 \)

Since \(F_p[x]/h(x) \) is a field, we can divide \((*)\)
by \(\Pi_{1 \leq a \leq \ell} (x - a)^{\gamma_a} \).
Proving the Claim (cont’d)

Then we have
\[
\prod_{1 \leq a \leq \ell} (x - a)^{\alpha'_a} \equiv \prod_{1 \leq a \leq \ell} (x - a)^{\beta'_a} \pmod{h(x), p},
\]
or,
\[
\prod_{1 \leq a \leq \ell} (x - a)^{\alpha'_a} - \prod_{1 \leq a \leq \ell} (x - a)^{\beta'_a} \equiv 0 \pmod{h(x), p}.
\]

The roots of LHS: the \(a\)'s such that \(\alpha'_a > 0\).
The roots of RHS: the \(a\)'s such that \(\beta'_a > 0\).
The intersection of the two sets is empty.

If one of them is nonempty, we have a nonzero polynomial of degree \(\leq d - 1\) that is congruent to 0 modulo \(h(x)\).

That’s a contradiction since \(h\) is irreducible.

So, both are empty, i.e.
\[
\alpha'_1, \ldots, \alpha'_\ell, \beta'_1, \ldots, \beta'_\ell = 0.
\]
Reminder

\[q \mid d = \deg(h) = o_r(p), \text{ and } o_r(p) \mid r - 1 \]

\[x^r - 1 \equiv (x - 1) \prod_{1 \leq s \leq (r - 1)/d} h_s(x) \pmod{p} \]

Note also that
\[d \geq q \geq \lceil 4\sqrt{r \ln n} \rceil > \ell = \lceil 2\sqrt{r \lg n} \rceil \]
Order of \(G \)

Observe that since \(d \geq l + 1 \) we have
\[(\ell + d - 1)/\ell \geq 2, \] and use \(\lg e < 2 \) (when changing the base of logarithms).

Thus, by Proposition 2,
\[\Omega = |G| > \left(\frac{\ell + d - 1}{\ell} \right)^{\ell} \geq 2^{\ell} \geq (2^{\lg n})^{2\sqrt{r}} \geq n^{2\sqrt{r}}. \]

So, the order of \(g(x) \) in \((F_p[x]/h(x))^* \) is greater than \(n^{2\sqrt{r}} \).
Set I_g

Define

$I_g = \{ m \mid g(x)^m \equiv g(x^m) \pmod{x^r - 1, p} \}$.

Fact 1 I_g is closed under multiplication.

Proof of the Fact

Assume $m_1, m_2 \in I_g$. Then

(a) $g(x)^{m_1} \equiv g(x^{m_1}) \pmod{x^r - 1, p}$

(b) $g(x)^{m_2} \equiv g(x^{m_2}) \pmod{x^r - 1, p}$

In (b), put x^{m_1} in place of x. Then

$g(x^{m_1})^{m_2} \equiv g(x^{m_1m_2}) \pmod{x^{m_1r} - 1, p}.$

Now, since $x^r - 1 | x^{m_1r} - 1$

$g(x^{m_1})^{m_2} \equiv g(x^{m_1m_2}) \pmod{x^r - 1, p}.$

OTOH, by (a),

$g(x)^{m_1m_2} \equiv g(x^{m_1})^{m_2} \pmod{x^r - 1, p}.$

So, $g(x)^{m_1m_2} \equiv g(x^{m_1m_2}) \pmod{x^r - 1, p}.$
Hint:
r is very small, $< c_2 \ln^6 n$
Ω is very large, $> n^2 \sqrt{r}$

Lemma 3
For all $m_1, m_2 \in I_g$, *if* $m_1 \equiv m_2$ (mod r), *then* $m_1 \equiv m_2$ (mod Ω).

Proof of Lemma 3

Let $m_1, m_2 \in I_g$.

Suppose that $m_1 \equiv m_2$ (mod r).

Let $m_2 = m_1 + kr$ for some integer $k \geq 0$.

Since $m_2 \in I_g$,

$g(x)^{m_1 + kr} \equiv g(x^{m_2})$ (mod $x^r - 1, p$),

and thus, $g(x)^{m_1 + kr} \equiv g(x^{m_2})$ (mod $h(x), p$).

By (2) of Proposition 1,

$g(x^{m_1 + kr}) \equiv g(x^{m_1})$ (mod $h(x)$), so

$g(x^{m_2}) \equiv g(x^{m_1})$ (mod $h(x), p$).
Proof of Lemma 3 (cont’d)

Thus, by the latter and since \(m_1, m_2 \in I_g \),

\[
g(x^{m_1}) \equiv g(x^{m_2}) \equiv g(x)^{m_2} \equiv g(x)^{m_1+kr} \equiv g(x)^{m_1} g(x)^{kr} \equiv g(x^{m_1})g(x)^{kr} \pmod{h(x),p}.
\]

This implies \(g(x)^{kr} \equiv 1 \pmod{h(x),p} \).

Thus, \(\Omega | kr \).

Hence, \(m_1 \equiv m_2 \pmod{\Omega} \).
\textit{n and } p \textit{ are members of } I_g \\

Our assumption is that \((\forall a : 1 \leq a \leq \ell)\) \[(x - a)^n \equiv x^n - a \pmod{x^r - 1, p}\].

\(g(x)\) can be represented as a product of factors (with multiplicities) chosen from \(x - 1, x - 2, \ldots, x - \ell\).

Each term \((x - a)\) of \(g\) satisfies \[(x - a)^n \equiv x^n - a \pmod{x^r - 1, p}\].

Hence, any product of terms \((x - a)\) also does, and thus, \[g(x)^n \equiv g(x^n) \pmod{x^r - 1, p}\].

This implies that \(n \in I_g\).

\(\text{OTOH, by (1) of Proposition 1,}\)
\[g(x)^p \equiv g(x^p) \pmod{x^r - 1, p},\]
and thus, \(p \in I_g\).
n must be a prime power

Define $E = \{n^i p^j \mid 0 \leq i, j \leq \lfloor \sqrt{r} \rfloor \}$.

By Fact 1, I_g is closed under multiplication. So, $E \subseteq I_g$.

Consider exponents i_1, j_1, i_2, j_2 with the range as in E. Since

$$|E| = (1 + \lfloor \sqrt{r} \rfloor)^2 > r,$$

by the pigeon-hole principle we have

$$(\exists (i_1, j_1), (i_2, j_2))$$

$$\left[((i_1 \neq i_2) \lor (j_1 \neq j_2)) \land (i_1 \geq i_2) \land n^{i_1} p^{j_1} \equiv n^{i_2} p^{j_2} \pmod{r} \right].$$

Note that $\gcd(n, r) = 1$, so

$n^{-1} \pmod{r}$ exists, and thus

$$n^{i_1-i_2} p^{j_1} \equiv p^{j_2} \pmod{r}.$$

By Lemma 3,

$$n^{i_1-i_2} p^{j_1} \equiv p^{j_2} \pmod{\Omega}.$$
\(n \) must be a prime power

Since \(\Omega > n^{2\sqrt{r}} \) and
\(0 \leq (i_1 - i_2), |j_1 - j_2| \leq \lfloor \sqrt{r} \rfloor \), then
\[
\frac{n^{i_1 - i_2}}{p^{j_2 - j_1}} < n^{\sqrt{r}} < \sqrt{\Omega}.
\]

\(\Omega \mid p^d - 1 \), so \(\text{GCD}(\Omega, p) = 1 \), and there exists
\(p^{-1} \pmod{\Omega} \). So, if \(j_2 \geq j_1 \),
\[
\frac{n^{i_1 - i_2}}{p^{j_2 - j_1}} \equiv \frac{p^{j_2 - j_1}}{p^{j_2 - j_1}} \pmod{\Omega},
\]
and the congruence is actually an equality
\[
\frac{n^{i_1 - i_2}}{p^{j_2 - j_1}} = p^{j_2 - j_1}.
\]

Note that \(i_1 - i_2 = 0 \) iff \(j_2 - j_1 = 0 \),
so \(i_1 \neq i_2 \), and we have a prime power
\[
\frac{j_2 - j_1}{j_2 - j_1} \quad n = p^{i_1 - i_2}.
\]

If \(j_2 < j_1 \), we obtain a contradiction
\[
\Omega > n^{i_1 - i_2}p^{j_1 - j_2} \equiv 1 \pmod{\Omega}.
\]

This implies that \(n \) is a prime power,
and completes the proof of Theorem 4.
Achieving Goal III

Cost of the Search Phase
(lines 2-10)

\[r = O(\log^6 n) \] bounds the number of rounds

If naive primality test for \(r \) and factorization of \(r - 1 \) methods are used, each makes up to \(\sqrt{r} = O(\log^3 n) \) rounds.

GCD (line 5) and exponentiation (line 9) are done only once at each round, and are faster than naive factoring of \(r - 1 \).

All arithmetic is done on numbers up to \(r \).

Altogether, one round of the search loop requires up to \(O((\log^4 n)\text{poly}(\log r)) \) steps, so the search phase requires \(O((\log^{10} n)\text{poly}(\log \log n)) \) steps.
Achieving Goal III, cont’d.

Cost of the Binomial Power Test
(lines 12-14)

In the Binomial Power Test the loop-body is executed $O(\sqrt{r} \log n)$ times, which is the same as $O(\log^4 n)$.

Using Fast Fourier Transform in \mathbb{Z}_n, multiplication of two polynomials having degree $\leq r$ modulo a polynomial having degree r can be done in

$$O(r \log r \log n) = O((\log^7 n)\text{poly}(\log r))$$

steps.

If repeated squaring is used for powering, a single test requires $O((\log^8 n)\text{poly}(\log r))$ steps.

Thus, the Binomial Power Test requires $O((\log^{12} n)\text{poly}(\log \log n))$ steps.
Cost of the Prime Power Test
(lines 16-17)

Prime Power Test makes $O(\log n)$ rounds.

If the binary search is used for root finding, then one round of the Prime Power Test requires only $O(\log^3 n)$ steps.

Prime Power Test runs in time $O(\log^4 n)$.

Total Cost

Total running time is dominated by the Binomial Power Test, and thus is bounded by

$$O((\log^{12} n)\text{poly}(\log \log n)).$$

This completes the proof of Theorem 1.
Reference

This is a presentation based on the original paper "PRIMES in P" by Agrawal, Kayal and Saxena, posted on August 6, 2002 at

http://www.cse.iitk.ac.in/news/primality.html

Revisions

revision #1, October 28, 2002, presented by Mitsunori Ogihara at the University of Rochester.

revision #2, November 28, 2002, presented by Stanisław Radziszowski at the Technical University of Gdańsk.

revision #3, December 13, 2002.