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ABSTRACT

In 1976, Kramer and Mesner observed that finding a t-design with a given

automorphism group can be reduced to solving a matrix problem of the form
AX =M, X[i]=0or 1, foralli, 1<i<n,

where A is an m by n positive integer matrix built from the required
automorphism group and M is a particular m dimensional integer vector. This
problem is NP-complete. We present an algorithm that searches for a solution
when given an instance of this 0-1 matrix problem. This algorithm always
halts in polynomial time but does not always find a solution when one exists.
The problem is first converted to one of finding a particular short vector in a
l:miée and then uses a lattice basis reduction algorithm due to A.K. Lenstra,
H.W. Lenstra and L. Lovisz [9] to attempt to find it. We apply this method to
the search for simple t-designs with t> 6 and duplicate the results of Leavitt,
Kramer and Magliveras [3,10] in substantially shorter time. Furthermore, a
new simple 6-design was found using the algorithm described in this paper.

1. Introductlon

A t-design, or t-(v,k,\) design is a pair (X,B) with a v-set X of points and a family B of
k-subsets of X called blocks such that any t points are contained in exactly A blocks. The
problem is of course to find them. As an illustration of the principles involved in our

algorithm we give a small example.

Example of a 2-(7.3,1) design.

The well known projective plane of order 2 is the 2-{7,3,1) design (X,B) given by:

* X =(1,2,3,4,56,7)
and
B = (124,235,346,457,156,267,137)
mupporud in part by the National Sci Foundation under grant DCR-8606378
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This design can be represented by the picture found in figure 1. The points of the 6 lines

and 1 circle in this picture form the blocks of this design.

Figure 1: The 2-(7,3,1) design.

An automorphism of a t=(v,k,\) design (X,B) is a permutation of X which preserves B.

It is clear from figure 1 that this 2-(7,3,1) design has
G=<(145276).26)(45)5>= S,

as an automorphism group. We note that the full automorphism group of this design is
PSL,(7) and is generated by (1 4 52 7 6), (26)4 5),and (1234567).
In 1973, Kramer and Mesner [4] made the following observation:

A t-(v,k,A) design exists with G < Sym(X) as an automorphism group if and only

if there is a (0,1)-solution U to the matrix equation

AaU = AL, m

where:

2. The m rows of Ay are labeled by the G-orbits of t-subsets of X;

b. The n columns of Ay are labeled by the G-orbits of k-subsets of X;

c.  AulAT)= |(Kel:K5Tg}| where To€4, is any representative;

d  Ia=[1,1,1,..1]%
Following our example, the Az matrix for G = <(1 4 5)(2 7 6),(2 6)X4 5)> = Sa, is given in
figure 2. Observe that U = [O,I,0,0,0.0,I,0,0.I]"' gives a solution to the equation AzxU =],
with A =1 and thus gives a 2-(7,3,1) design.

This single observation led directly to the discovery of many previously unknown
designs, and probably has the best chance in lcading to the discovery of an infinite family of
t-d;signs with t > 6 and small . Recently Teirlink [11] has shown to our amazement , using

other techniques, that there exist simple t-designs Tor all values of t, however, these designs
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Figure 2. The A, matrix of G = <(1 4 5)(2 7 6),(2 6)(4 5)>
have A=(t+1)l®*H), In particular. the following significant results in the theory of t-designs
were obtained by solving equatior (1):

1975: A 5-(17,8,80) the fr~»t example of a 5-design on an odd number of points,
Kramer {2).

1984: A 5-(33,6,42) and a 333,7,126) the second and third examples of 5-designs on
an odd number of peants, Magliveras and Leavitt [10}.

1984: A 6-(33,8,36) the fir:: cxample of a 6-design, Magliveras and Leavitt [10].
1984: A 6-(20,9,112) the »ccond example of a 6-design, Kramer, Leavitt and
Magliveras [3].
Recently, we have discovered s $-(13,6,4) design [7] and a 6-(14,7,4) design using the
techniques described below.

In order to effectively use t++ Kramer-Mesner observation the following three problems
need to be solved.
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1. Create a list of groups that are good candidates for finding t-designs;

2. Find an efficient algorithm for constructing the Au matrices;

3. Obtain an effective procedure for solving the equation AgU = AJ,, for (0,1)-vector U.
We propose to solve the last of these problems by using basis reduction. We alrcady have
found 2 solution to 2 although its efficiency could still be improved. The projective special
linear groups seem to be good candidates for finding t-designs, see [3), however other groups
have also proved to be fruitful Thus a careful study of the algebra of the Ay matrices [5,6]
should be completed.

2. The Algorithm
Let X be a v-set, G < Sym(X) and consider the matrix B below:

L 0
B= Ay =l @

where Ag is the m by n Kramer-Mesner matrix described in (1) and I, isthe n by n identity
matrix. Let L be the n+1 dimensional lattice spanned by the columns of B. That is:

L = (ReZ™":R =BS, for some S€ 2z,

Let E, be the m-dimensional zero vector. Then the following proposition is clear:

PROPOSITION 1: AqU =d:Ay, for some integer d if and only if [U.E" € L.

Thus to find a (0,1)-solution U to AqU=r]g we need only look for a linear combination

U=[U,E,J' of the columns of B such that U is a (0,1)-vector. If U#J, then we will have
found a t-(v,k,d-A) design for some positive integer d. Note that since the complement of a
design is a design then fUP<n/2. Thatis, U is a particular short vector in L. our
algorithm will try to find for L, a new basis all of whose vectors are as short as we can make

them.

2.1. Tools

Before describing our algorithm, we introduce the basic concepts about integer lattices

and the L? algorithm we use.

Let n be a positive integer. A subsct L of the n-dimensional real vector space R, r2n
is called a latrice iff there is a basis B = (b, b;, ., by) of an n-dimensional subspace of R such
that every member of L is an integer lincar combination of the vectors in B. Recall that
given a basis B = (b, by, -, by) of an n-dimensional subspace of R', an orthogonal basis
B’ = (b],b3,...b) of it may be obtained inductively via the Gram-Schmidt process of
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orthogonalization as follows;

L ‘-' L]
b = h-’zlpub,, forl1<ign,

By = (hybj‘)/(h',b")' for 1 < j <i < n,

where (-,) denotes the ordinary inner product on
lattice L will be said to be y-reduced (or reducea

i) lugl<¥% for 1<j<icn,

) I +puab P2y I P for 1<ign,

where y, h<y<lisa constant and ||| denotes
(1982) describe an algorithm, which when present
B = [b;, by, ., b,] for a lattice L, as input, prodL
output. The L® algorithm consists of applying
transformations:

T1: Interchange vectors b and by, if b + "
1<i<n, and the global constant Y € (%4,1). L

T2 Replace b by b ~rb;, where r = round(,
Iay| > %, for some 1< j<i<n.

' The efficient implementation of the sequen
mainly on the fact, that old values of uy and
transformation without using the full process of orth
the transformations T1 and T2 using a strateg:
however as H.W.Lenstra [9] remarks, any scquencc.
the reduced basis.

. The L® algorithm terminates when neither -
.sltuation implies that conditions i) and ii) are satis’
integer approximation to the basis B* defined by the
and as a consequence contains short vectors, as car

Lenstra et al. [9, prop. 1.) 1}
PROPOSITION 2: Let B = [by, bs, -, byl be a reduce

16, < 2 min( jbiP:be
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orthogonalization as follows:

b - I\_-Epn'bf, for 1gi<n, . ) o)
=1 £ :
my = (bby)/ (B b)), for 1< j<i<n, @

where (:,) denotes the ordinary inner product on R*, An ordered basis B = [b,, b, ..., b.] for a
lattice L will be said to be y-reduced (or reduced) if the following two conditions hold:

i) lugl<*% for 1<j<i<n,
i) I+ puabls P2 v I, P for 1<ign,

where y, %4 <y <1 is a constant and I} denotes ordinary Euclidean length. Lenstra et al.
(1982) describe an algorithm, which when presented with y, % <y < 1 and an ordered basis
B = [b;, by, b] for a lattice L as input, produces a reduced basis B’ = [b;, bz, b} as

output. The L% algorithm consists of applying a finite number of two kinds of linear
transformations:

T1: Interchange vectors by and by, if by + py b7, P > yibrs [ does not hold, for some
1<i<n, and the global constant y € (%,1).

T2: Replace b by b -rh, where r= round(uy) is the nearest integer to #y, and

Iyl > %, for some 1< j<i<n,

The efficient implementation of the sequence of transformations T1 and T2 relies
mainly on the fact, that old values of #y and llb.'n’ can be easily updated after each
transformation without using the full process of orthogonalization. The L? algorithm performs
the transformations T1 and T2 using a strategy resembling somewhat the bubble-sort,

however as H.W.Lenstra [9) remarks, any scquence of the these transformations will lead to
the reduced basis.

The L® algorithm terminates when neither T1 nor T2 can be applied and such a
situation implies that conditions i) and ii) are satisfied. The resulting reduced basis B’ is an
integer approximation to the basis B® defined by the Gram-Schmidt orthogonalization process
and as a consequence contains short vectors, as can be scen in the following proposition of
Lenstra et al. [9, prop. 1.1 1k

PROPOSITION 2: Let B’ = [b;, by, ... b.] be a reduced basis of a lattice L. Then:

o, P < 2*min( IbIP:be L and by0).
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They also give the following polynomial worst-case running time for its performance [Lenstra
et al. (1982), prop 12.6).
PROPOSITION 3: Let B = [by, by, ..., by] be an ordered basis for an integer lattice L such that
P < Max for 1 < i< n Then the L® algorithm produces a reduced basis B = [by, b;.....l\:.:]
Jor L using at most O(n*logaMax) arithmetic operations, and the integers on which these
operations are performed have length at most O(n log 1 Max).

In summary, the effect of the L? algorithm is such that when given a basis B of the n-
dimensional lattice L C Z* it produces a reduced basis B’ of L, and:

i I? uses at most O(n*) arithmetic operations.

ii. B’ is almost orthogonal (integer approximation to Gram-Schmidt orthogonal

basis).

iii. B’ contains short vectors.
Furthermore, we point out that although it is proven only that B’ does contain a vector
shorter than 2(°-1/2.(length of shortest nonzero vector in L) 19), in practice the L* algorithm
find much much shorter vectors [8).
When the number of rows in the Ay matrix is m = 1 then (1) reduces to the knapsack or
subset-sum problem. The application of using the 13 algorithm to solve the subset sum
problem was first studied in 1985 by J.C. Lagarias and AM. Odlyzko [8). Our improvements
in this direction are to be presented at the Third SIAM Conference on Discrete Mathematics
at Clemson University, May 1986.

When the number of rows in the Ay matrix is greater than 1 then unfortunately L3 by
itself doesn't find t-designs. Thus further reduction methods are necessary.

2.2. Weight Reductlon

If B is the (n+1)-dimensional reduced basis produced by the L? algorithm applied to (2),
then there will often exist pairs of indices i and j, 1<ij<n+l, i #j, and a choice of ¢ such
that

y-h#‘(h‘ G-il’ and (S)
vl < max{ I i1}

A pair (i,j), i%j, satisfies the last condition iff max( P b ) < 2:1(bby)]. In such a case
we can choose ¢ to have a different sign from (by,by) and substitute the longer of by and by by
v, obtaining a new basis with decreased total weight

. w(B)= 'EIM’-
p=1
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In the process of finding successive pairs
to recalculate fv|P and (v,by) from the definiti
Iy P and inn; =(by,by), for 1<j<i<n+1, using fo

WE = b+
(v.by) = inny, + einny,, fo

A simple algorithm for finding all such pairs ¢;
for each reduction, producing as output a bas
call it Weight-Reduction, i3 a useful complement
algorithms L® and Weight-Reduction jointly ten
L3 or Weight-Reduction alone:

B — L3(B);
repeat
Weight-Reduct
sort basis witt
B — L¥B);
until (w(B) does r
Weight-Reduction.

The L? algorithm can remove the vector |
shorter vector, since for i=2 if the transform
{note that this is not true when i > 2). Hence so
that the shortest vector in the basis B will not
shorter vector is found.

Following the above approach one can try
by, - »b,, for some k>2, in the basis B, such !

k
\z , for some
gepb,’ che

is shorter than by, where by, is the longest vect:

of basis B can be decreased by substituting by t

i<l = bF =3,

i=t

and a necessary condition for (6) is
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In the process of finding successive pairs of indices (i,j) satisfying (5) it is not necessary
to recalculate vl and (v,b,) from the definitions, instecad we can keep track of the integers
Iby [P and inny =(by,by), for 1<j<i<n+l, using formulas:

WP = I F < Iy P -2]inny),
(v,by) = inny +einny,, for 1<k<n+1, ki and k¥j.

A simple algorithm for finding all such pairs can be designed and implemented in time on?
for each reduction, producing as output a basis with smaller weight. This algorithm, let us
call it Weight-Reduction, is a useful complement to the L algorithm. When used as follows, the

algorithms L® and Weight-Reduction jointly tend to produce much shorter vectors than using
L3 or Weight-Reduction alone:

B — L¥B);
repeat
Weight-Reduction;
sort basis with respect to fity I
B — L%(B);
until (w(B) does not decrease);
Weight-Reduction.

The L algorithm can remove the vector b, from the basis B only by replacing it with a
shorter vector, since for i=2 if the transformation T1 can be applied then [P < My, P
(note that this is not true when i > 2). Hence sorting the basis with respect to It P guarantees

that the shortest vector in the basis B will not disappear in the next itcration, unless a new
shorter vector is found.

Following the above approach one can try in general to find a k-tuple of distinct vectors
by, --- +by,, for some k>2, in the basis B, such that the vector

k
Ve 2:,%, for some choice of ¢, = 1, 1<p<k,
P=.

is shorter than by, where by, is the longest vector in the k-tuple. In the latter case the weight
of basis B can be decreased by substituting by, by v. Note that

Vi<l < P - .51 Iy P+ 5 0y, (b ) < I, P ©

and a necessary condition for (6) is
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Consequently, our approach is to search for such k-tuples of vectors by considering the
complete graph G, whose vertices are the basis vectors b, and whose cdges are labeled by
edge weight |(b,b)]. The endpoints of edges with large weight are "less” orthogonal, hence
they are good candidates for the desired k-tuple. We can try to construct it by finding
subgraphs of G with large edge weight.

Obviously, the complete analysis of all subgraphs in the graph G would be too
expensive, however we are satisfied with heuristic search for just a few of them of relatively
small size. They are used to decreasc the weight of basis B similarly as before. This
technique leads to the gencralization of the Weight-Reduction algorithm and improves further
the behavior of the L? algorithm.

2.3. Size Reduction
Recall that [UE.T € L if and only if there exist integers 2y, 83, .., 34y Such that:

HER

Whence, it follows that:

If there is one and only one j such that by, ¥0 for some h,n<h<n+m, then a;=0. (*)

In this case: we let B be B with row h and column j removed and L’ be the lattice spanned
by B’. Then the (n+m-1)-dimensional vector [U,E,,_J’eL' if and only if the (n+m)-
dimensional vector [UE.JTe L.

To achieve situation (*) for row h, n<h < n+m, we preform the following two operations:

1. Multiplyrow hbyc= m‘axhn’

2. apply Weight-Reduction and/or L®
This almost always produces such a situation.

If this procedure is successfully iterated for each h, h=n+m,n+m-1,.,n+l, then the
resulting basis B° will consist of n-m+1, n-dimensional vectors. Furthermore:

Uell e AgU=dA],

for some intcger d, see proposition 1. Thus the result of these iterations, let us call them
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collectively Size-Reduction, is a basis of shor
matrix equation AgU=dal, Consequently,
search the lattice spanned by B°. Finally our _

ALGORITHM MSYV |
input basis B of the
B—LB)
Bo—Size-Reduclion(B
repeat

Weight-Reduction
sort basis with res
B—L%(B)
until (weight(B) = >
Weight-Reduction.
Check for solution after |
Weight-Reduction and 13,

Figure 3. The o

3. Closing Remarks

We have duplicated the results of Kramer,
took only a few minutes whereas Leavitt’s Algor
We would like to thank Jeff Dinitz, Dan A
Michael Wertheimer and especially Andrew Od
encouragement during and after the 17-th South
Theory and Computing at which these results we

Finally, during the week following the ¢
design by solving, with the MSV algorithm, the
We note that this represents 99 linear Diophantin
the well known extension theorem of Alltop [1]
6-(14,7,4) design [7). This remarkable design is
Furthermore, we were able to show that there a

that have a cyclic 5-(13,6,4) derived design an
subsets.
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| vector [UEmajT€L’ if and only if the (n+m)-

d for each h, h=n+m,n+m-1,.,0+1, then the

collectively Size-Reduction, is a basis of short vectors for the integer solution space to the
matrix equation AqU =d-AJ, Consequently, to discover a t—{v,k,d-A) design we need only
scarch the lattice spanned by B°. Finally our complete algorithm is given in figure 3.

ALGORITHM MSV (Matrix Short Vector)
input basis B of the form m 2
B~1%(B)

BeSize-Reduction(B)
repeat
Weight-Reduction
sort basis with respect to fix P
B—L%B)
until (weight(B) = 3 iy F* does not decrease)
Weight-Reduction.
Check for solution after cach
Weight-Reduction and 12

Figure 3. The MSV algorithm

3. Closing Remarks

We have duplicated the results of Kramer, Leavitt and Magliveras [3,10]. Our algorithm
took only a few minutes whereas Leavitt's Algorithm took several hours.

We would like to thank Jeff Dinitz, Dan Archdeacon, Earl Kramer, Spyros Magliveras,
Michael Wertheimer and especially Andrew Odlyzko for their stimulating conversations and
encouragement during and after the 17-th Southeastern Conference on Combinatorics, Graph
Theory and Computing at which these results were first presented.

Finally, during the week following the conference we discovered a cyclic 5-(13,6,4)
design by solving, with the MSV algorithm, the Azq matrix with cyclic group G of order 13.
We note that this represents 99 linear Diophantine equations in 132 unknowns. Thus applying
the well known extension theorem of Alltop [1] we announce the existence of a new simple
6-(14,7,4) design [7). This remarkable design is the smallest simple 6-design that can exist.
Furthermore, we were able to show that there are, up to isomorphism, exactly two 6-designs

14
that have a cyclic 5-(13,6,4) derived design and that they partition the set of all (7) 7-
subsets,
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