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The Existence of Simple 6-(14, 7, 4) Designs
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A cyclic 5-(13, 6, 4) design is constructed and is extended to a simple 6-(14, 7, 4)
design via a theorem of Alltop. This design is the smallest possible nontrivial simple
6-design that can exist. Both have full automorphism group cyclic of order 13.
© 1986 Academic Press, Inc.

1. INTRODUCTION

A t-design, or t-(v, k, A) design is a pair (X, B) with a v-set X of points
and a family B of k-subsets of X called blocks such that any ¢ points are
contained in exactly 4 blocks. A 7-(v, k, A) design (X, B) is said to be cyclic
if X={0, 1, 2,...,v—1} and whenever K is a block K+ 1= {x+1: xe K} is
also a block, addition preformed modulo v.

In this paper we give a brief exposition of our construction of two non-
isomorphic pairwise disjoint 6-(14, 7, 4) designs partitioning all of the (%)
7T-subsets. We first construct a 5-(13, 6, 4) design by using a cyclic group of
order 13 and then extend it to a 6-design with the extension theorem of
Alltop [1]. With the exception of the two 5-designs discovered by Kramer
[2, 4] and the two 5-designs discovered by Magliveras and Leavitt [9] this
is the only other small parameter situation in which a 5-design on an odd
number of points is known to exist. Finally, we show that these designs
have full automorphism group cyclic of order 13 and are unique up to
isomorphism.
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2. PRELIMINARIES

In 1973, Kramer and Mesner [4] made the following observation: A
t-(v, k, 1) design exists with G < Sym(X) as an automorphism group if and
only if there is a (0, 1)-solution vector U to the matrix equation

A, U=4J, (1)
where

(a) the rows of 4, are indexed by the G-orbits of z-subsets of X;
(b) the columns of 4, are indexed by the G-orbits of k-subsets of X;

() Auxl4,I'1=|{Kel"K>T,}|, where Toed is any represen-
tative;

d) J=[1,1,1,.,1]"

If we choose the group G to be Z,;, the integers modulo 13, and X=27,,
then each ge G can be thought of as the permutation x — x +g. In this
action G has exactly {5(’3) =99 orbits of 5-subsets and exactly (}})=132
orbits of 6-subsets. Hence the 4,4 matrix belonging to G has 99 rows and
132 columns. Thus to find a cyclic 5-(13, 6, 4) design one need only solve
99 linear Diophantine equations in 132 unknowns for a (0, 1)-solution vec-
tor U. This seemingly impossible task was accomplished by our basis
reduction algorithm presented at the 17th Southeastern International Con-
ference on Combinatorics Graph Theory and Computing [6]. We should
remark that this algorithm is based in part on the L3 algorithm of Lenstra,
Lenstra, and Lovasz [8], and was inspired by the work of Lagarias and
Odlyzko [7]. The algorithm we have constructed is apparently a powerful
tool for searching for short vectors in integer lattices with other
applications such as the subset-sum/knapsack problem [10].

The 6-(14, 7, 4) design is constructed via Theorem C of Alitop [1]. That
is, if (X, #) is a 5-(13, 6, 4) design and oo is a new point not in X then
(XU {0}, B UB")is a 6-(14, 7, 4) design where

B ={Ku{w}: Ke R}
B"={X—K:KeRB).

3. DaTa

Tables I-1V display the data which exhibit the construction of the new
5-designs.

Table 1 exhibits the orbit representatives of S-subsets, listed top to bot-
tom, left to right. To aide in our exhibition of the data after Eq. (1) was
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TABLE 1

01234 023856 01457 035667 03458 01278 03678 01469 01579
01235 01456 02457 04567 01268 013878 04678 02469 02579
01245 024586 03457 01238 01368 02378 01259 034869 03579
01345 03456 01267 01248 02368 01478 01359 01569 03679
02345 01237 01387 01348 01468 02478 02359 02569 03489
01236 01247 02367 02348 [o2468] 03478 01459 03&69 02589
01246 01347 01467 01258 03468 0156578 02459 01379 03589
013486 02347 02467 013568 01568 02578 03459 023879 03689
023486 01257 03467 02368 02568 03578 01269 01479 014710
012586 018687 01567 01468 03568 04578 01369 02479 024710
013586 023567 025867 02458 04568 02678 02369 03479 025710

solved, the columns of 454 were permuted so that the first 66 columns give
the desired design.
Table II exhibits the orbit representatives, listed top to bottom, left to

right, labeling the first 66 columns of A,¢. Furthermore, if these 66 6-sub-
sets are developed into 858 6-subsets by adding modulo 13 each of
0,1, 2,..., 12, they will be the blocks of a 5-(13, 6, 4) design.

Table III exhibits the orbit representatives, listed top to bottom, left to
right, labeling the /ast 66 columns of A;¢. Furthermore, if these 66 6-sub-
sets are developed into 858 6-subsets by adding modulo 13 each of
0, 1, 2,.., 12, they will be the blocks of a 5-(13, 6, 4) design.

Table IV exhibits the 45 matrix. Each entry in this table represents one
of the 99 rows by giving the positions in which there is a nonzero entry. A
subscript of 2 indicates the entry is 2, otherwise it is 1. For example, row 50
is given by

50 39 51 66, 81 82 84 91

and represents the row of 132 entries:

00000000000000000000000000000000000000100000
00000010000000000000020000000000000011010000
00100000000000000000000000000000000000000000.

TABLE I
012345 023458 013578 014569 035679 036789
012346 012368 023578 024569 023489 0124710
012456 013468 024578 012479 013589 0234710
012357 012568 012678 013479 023589 0125710
013467 013568 025678 012579 014589 0145710
023467 014568 045678 [013579] 012689 0245710
013567 034568 013459 034579 [024689] 0146710
023567 012378 023459 023679 034689 0135810
014567 012478 012369 014679 025689 0245810
024567 013478 023469 034679 035689 0236810
012458 023478 012569 025679 014789 1[0246810]
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TABLE III
012356 012348 023678 023569 013489 0134710
013456 012358 014678 034569 012589 0135710
023456 013458 (024678 012379 024589 0235710
012347 (012468 034678 023479 034589 0136710
012457 023468 015678 023579 013689 0236710
013457 023568 035678 014579 023689 0246710
023457 (024568 012359 024579 014689 0256710
012367 012578 012459 012679 024789 0235810
012467 014578 012469 013679 034789 0145810
012567 034578 013469 024679 025789 0136810
034567 013678 013569 015679 035789 0146810

Observe that in each entry of Table IV there are 4 positions, counting those
with subscript 2 twice, that have value less than or equal to 66. These
correspond to the orbits used by the design given in Table II to cover each
of the 5-subsets in some orbit exactly 4 time. For example, the row 50 entry
says to use orbits 39, 51, and 66 to cover orbit number 50 of 5-subsets
exactly 4 times. Similarly there are 4 values greater than 66. The orbit
representatives in the above example appear in brackets with bold face in
Tables I, II, and III

4. FuLL AUTOMORPHISM GROUP

Using computer search techniques the full automorphism groups of these
designs were established.

For notation definitions and theorems on permutation groups the reader
is directed to Wielandt [12]. Here we introduce some notation and con-
cepts relevant to the present paper. If X is a set then Sym(X) denotes the
symmetric group on X. A group G is said to act on a set X if there is a
function XxG — X (usually denoted by (o, g) — a® ) such that for all
g8 heG and aeX:

a'=a and  al#W = (a®)"

Such a function is said to be a group action of G on X and is denoted by
G | X. Thus, if G| X is a group action, then G may be thought of as being
mapped homomorphically onto a subgroup of Sym(X), and a? is the image
of e X under geG. If ae X, the stabilizer in G of o is the subgroup
G,={geG:af=a} nd the orbit of « under G is a® = {a®: ge G}. We note
that |G| =|a®| - |G,|. A group action G | X induces a natural action on the
collection of all k-subsets of X, for any k, 0 <k <|X]|. For if K< X, |K| =k,
and ge G then we define K¢ by K2 = {s%:se K}.

A group action G | X is said to be transitive if a® = X, for some a € X, it is
doubly transitive if both G | X and G, | (X — {a}) are transitive. A subset
of X, 1 < |y| <|X] is said to be a nontrivial set of imprimitivity of the group
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TABLE 1V
Row Non-tgero
no Positions

1 1222869 70 77 78 34 7 8 45 58 77 90 94 120 67 85 56 57 59 88 89 92 94

2 124186778 7995 35 9 10 28 31 77 93 95 102 68 28 30 32 46 90 91 92 103

3 1361167 718796 36 13 19 27 28 78 79 93 94 69 33 84 35 38 95 96 101 112

4 13882968 72 8092 37 11 20 44 45 78 81 95 110 70 29 39 40 47 95 99 105 106

5 11012 30 68 69 73 94 38 14 21 53 54 78 80 96 111 71 30 42 43 48 95 100 104 109

] 2121331677074 101 39 12 22 29 46 78 82 120 121 72 29 34 49, 96 105 113 114

7 2 38 440 75 81 82 97 40 11 15 31 58 79 85 112 128 78 30 35 51 52 96 106 118 117

8 25144368 7183 98 41 16 23 47 68 79 80 97 124 74 29 30 40 55 101 114 118 119

9 26324569 72 82 84 42 12 24 48 61 79 83 98 129 75 31 33 50 56 97 107 119 121
10 815 223367 74 76 114 43 11 17 33 49 80 86 126 130 76 31 57 60 61 98 99 108 115
11 7 16 24 52 67 68 75 99 44 11 12 25 64 84 99 113 127 77 31 32 41 62 100 116 122 127
12 5 8 25 54 67 69 83 100 48 12 18 34 59 80 87 114 128 78 34 42 59 64 97 98 117 130
13 3917 34 68 76 89 119 46 138 15 26 50 81 102 118 120 | 79 32 35 51 66 97 109 128 132
14 8 710 35 69 84 91 121 47 18 14 16 36 88 115 129 131 | 80 32 43 52 60 98 101 125 131
15 9 18 27 66 68 69 77 101 48 13 37 64 65 82 83 89 116 81 33 34 49 65 99 110 111 117
16 419 30 56 70 74 78 102 49 14 17 38 65 81 90 117 132 82 33 38 44 53 100 125 130 132
17 2082868770717 79 50 39 51 66, 81 82 84 91 83 45 54 62 65 99 100 101 126
18 5 11 21 37 70 72 100 122 51 14 18 52 638 82 92 105 1238 84 37 39 41 44 102 107 108 109
19 6 22 85 58 70 78 80 108 52 15 16 17 47 98 107 111 115 | 85 41 50 51 53 102 108 104 116
20 413 38 59 71 76 85 103 538 15 27 53 63 83 84 108 131 86 36 37 42 55 105 126 127 128
21 4723839 72 81104 123 54 16 18 42 54 83 94 124 129 87 36 63 65 66 103 106 109 118
22 48142473 104 108 124 58 17 18 28 36 84 96 97 110 88 37 40 43 62 108 119 130 132
238 9 15 41 60 71 72 86 105 56 19 20 26, 85 88 90 93 89 38 39 46 51 105 110 113 118
24 10 16 25 61 71 73 106 109 | 57 19 21 28 42 88 107 108 110 | 90 38 44 64 66 104 106 120 181
28 17 40 44 57 72 73 77 87 58 19 22 24 50 89 111 115 117 | 91 39 40 45 66 104 121 127 182
26 19 26 46 55 74 75 76 107 59 20 21 55 62 86 50 112 125 92 41 43 45 66 108 122 128 125
27 57 20 48 74 88 108 125 60 20 22 25 47 91 118 131 132 | 93 46 47 49 52 111 112 114 119
28 68 21 41 74 89 113 126 61 21 22 49 60 87 92 119 130 o4 48 53 59 60 112 118 120 123
29 5 94262 75 85 90 116 62 23 46 48 50 85 86 93 116 o5 47 48 54 63 114 121 128 130
30 6 10 23 51 75 91 109 127 63 24 25 27 65 85 115 120 129 | 96 52 54 56 58 115 116 124 126
31 56 43 53 77 86 92 122 64 23 24 61 64 87 94 117 121 97 67 58 60 62 1225 125 126
32 7926 50 76 98 110 112 65 25 28 29 37 86 87 98 111 o8 57 58 61 65 123 124 127 131
33 8 10 27 44 76 88 118 128 68 26 27 36 38 89 91 102 107 29 59 61 63 64 124 128 129,

action G | X if for each g e G the set i ¢ either coincides with ¥ or is disjoint
from y. A transitive group action G | X is said to be imprimitive if it has at
least one nontrivial set of imprimitivity otherwise it is primitive. A complete
list of primitive group actions on sets of size 20 or less was given by Sims
[11]. We note in passing that if G | X is doubly transitive or G | X is trans-
itive and | X} is prime then necessarily G | X is primitive.
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THEOREM 1. The full automorphism group of a cyclic 5-(13, 6, 4) design
is C,3, the cyclic group of order 13.

Proof. Let (X, #) be a cyclic 5-(13, 6, 4) design and suppose that G is
its full automorphism group. Then G | X is transitive and since |[X| =13 is
prime G acts primitively. Therefore G is one of 9 groups [11]:

— The symmetric and alternating groups on 13 points, Sym(X),
Alt(X);
— The projective special linear group PSL;(3);

— One of the 6 transitive subgroups of AF(13), the affine group on 13
points, AF(13)={x—ax+ f:a, feZ,;, a #0}.

Both Sym(X) and Alt(X) have exactly one orbit of 6-subsets and
therefore cannot be the automorphism group of any nontrivial 5-design on
13 points.

If G is PSL,(3) then G has 4 orbits I",, I',, I'5, and I', of orders 936,
468, 234, and 78, respectively. It is easy to see that |#| =858 is not the sum
of any of these numbers. Consequently, PSL,;(3) cannot be an
automorphism group of a 5-(13, 6, 4) design.

If G is a transitive subgroup of AF(13) then G is generated by the two
permutations given by

x—->x+1 and x- o',

where  is a primitive root modulo 13 and i€ {1, 2, 3,4, 6, 12}. It is suf-
ficient to show that i cannot be 6 or 4 since these correspond to the
minimal subgroups of AF(13) containing C,;. In either of these two cases
the matrices are relatively small (57 by 76 and 34 by 48, respectively) and
can be computer searched after size reduction given by the algorithm found
in [6]. Such a search shows that in both these situations there is no design.

COROLLARY 1. The full automorphism group of a 6-(14, 7, 4) design with
a cyclic derived design is cyclic of order 13.

Proof. Let (X, #) be a 6-(14, 7, 4) design and let G = Aut(#) be its full
automorphism group. If aeX is such that the 5-(13,6,4) design
(X—{a}, 8,), where #,={K— {a}:aeK and Ke R} is cyclic then by
Theorem 1, G,= {geG:a=a} is cyclic of order 13. Whence, if G+# G,
then G would be doubly transitive and hence primitive of order
|| - |G,| = 14- 13. There is, however, no such group [11 or 12]. Thus, G
is cyclic of order 13 as claimed.

To check if the designs in Tables II and III are not isomorphic one need
only consider those permutations that normalize C,;. That is, we need only
check inside AF(13). This easy procedure shows that the two designs are
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indeed nonisomorphic. Finally, a computer search was successfully com-
pleted enumerating all the possible cyclic 5-designs on 13 points. This
search resulted in exactly two nonisomorphic designs. That is, the designs

given in tables II and III are unique up to isomorphism. Consequently, we
state

THEOREM 2. There are exactly two nonisomorphic cyclic 5-(13, 6, 4)

designs. Furthermore, these designs are pairwise disjoint and partition all of
the ('2) 6-subsets.

An argument similar to the proof of Corollary 1 gives the following
result:

COROLLARY 2. There are exactly two nonisomorphic 6-(14, 7, 4) designs
with cyclic derived designs. Furthermore, these designs are pairwise disjoint
and partition all of the (%) 7-subsets.
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