
Przemysław ZALEWSKI, Marcin ŁUKOWIAK, Stanisław RADZISZOWSKI
Rochester Institute of Technology, Rochester NY, U.S.A.

Case Study on FPGA Performance of Parallel Hash Functions

Streszczenie. Funkcje haszujące (nazywane też funkcjami skrótu) odgrywają istotną role we współczesnej kryptografii. Funkcje te przekształcają
dowolną ilość danych wejściowych w skrót o ściśle określonej długości. Typowe zastosowania funkcji haszujących obejmują weryfikację spójności
danych i schematy komunikacji z uwierzytelnieniem. Poniższy artykuł jest głosem w dyskusji na temat jakimi właściwościami powinien sie charaktery-
zować nowy standard dla funkcji haszujących SHA-3. W naszym przekonaniu, niezmiernie istotną cechą nowego algorytmu powinna być możliwość
do pracy w trybie równoległym. W niniejszym artykule szczegółowo opisujemy i analizujemy implementację funkcji haszującej PHASH w matrycy
FPGA. Funkcja ta jest szkieletem który umożliwia przetwarzanie danych z wykorzystaniem szyfru blokowego. Głównym atutem PHASH jest to, że jego
tryb pracy równoległej pozwala osiągnąć bardzo dużą wydajność. Nasze pomiary wykazały, że PHASH osiąga przepustowość 15Gbps w systemie z
jednym szyfrem blokowym i 182Gbps przy wykorzystaniu 16 szyfrów blokowych.

Abstract. Hashing functions play a fundamental role in modern cryptography. Such functions process data to produce a small fixed size output
referred to as a digest or hash. Typical applications of these functions include data integrity verification and message authentication schemes. We
argue that high parallelizability of the forthcoming new SHA-3 hash standard should be a critical and achievable property of proposed algorithms. In this
paper we present an FPGA design and performance analysis of a recently proposed parallelizable hash function PHASH. It is not a SHA-3 candidate
but rather a hash template using tree hashing and a block cipher. The main feature of PHASH is that it is able to process multiple data blocks at once
making it suitable for achieving ultra high performance. PHASH achieved a throughput over 15 Gbps using a single block cipher instance and 182
Gbps for 16 instances.

Słowa kluczowe: skalowalna implementacja FPGA, funkcja haszująca, analiza wydajności
Keywords: scalable FPGA design, hash function, performance analysis

Introduction
A hash function H : {0, 1}∗ → {0, 1}m produces an

m-bit digest of an arbitrary message, file, or even an entire
file system. Typically, one wants hash functions to be easy
to compute, but also infeasible to invert or to find collisions
(pairs of inputs which hash to the same value). Hash func-
tions are fundamental cryptographic primitives, and they are
used extensively in authentication, preserving data integrity,
digital signatures, and many other security applications [1],
[2]. The two most widely used hash functions are MD5 (Mes-
sage Digest, m = 128) and SHA-1 (Secure Hash Algorithm,
m = 160), the latter supported by the US government as a
standard FIPS-180-2 [3]. The collisions for MD5 were found
five years ago [4], and by now they can be produced quickly
by software available on the Net. The SHA-1 algorithm also
seems to be in trouble (and other algorithms in the SHA-
2 family, with m = 256, 384, 512, might follow). No colli-
sions for SHA-1 have been found so far, but attacks much
better than the simple birthday attack approach have been
designed. Breaking SHA-1 soon is a likely possibility, which
if happens, may lead to some dramatic tensions in computer
security. The currently tentative SHA-2 doesn’t have much
support in the community. The computer security industry ur-
gently needs a new high quality SHA-3 standard. On October
31, 2008, NIST (National Institute of Standards and Technol-
ogy) closed the period of submitting proposals for the new
hash function SHA-3 [5]. The design tune-up and the win-
ner selection process is tentatively scheduled to conclude in
December 2012.

The performance of hash function implementations, both
in software and hardware, is critical because of the increas-
ing need to hash very long inputs. As multi-core processors,
and parallel systems are the dominant force in computing,
some of the proposed hashing algorithms are attempting to
take advantage of these resources by offering parallel hash-
ing options. Allowing multiple parts of the data to be operated
on simultaneously has the potential of reducing time com-
plexity from O(n) to O(log(n)). The algorithm PHASH hash
function [6] is highly parallelizable, while Whirlpool and all of
the SHA-family functions are not. PHASH is not a candidate
in the NIST hash design competition. Still, the goal of this
paper is to argue that during the evaluation process the com-

munity should put favorable attention to easily parallelizable
candidates.

In this work we design and analyze the performance of
a scalable Field Programmable Gate Array (PFGA) hardware
for parallel hashing function - PHASH [6]. For comparison
purposes, we have also developed high performance imple-
mentations of standard serial hash functions - SHA-512 [3]
and Whirlpool [7] targeting the same FPGA platform. Ac-
cording to currently published literature [8], the fastest SHA-
512 implementation on FPGA achieves a throughput of 1550
Mbps. Hashing function Whirlpool [7], [9]. provides secu-
rity comparable to SHA-512 but is able to achieve much bet-
ter performance. According to currently published literature,
the fastest Whirlpool implementation on FPGA achieves a
throughput of 4790 Mbps [10]. In this paper we do not ad-
dress cryptographic security of hash functions, which is a
property of foremost importance of the designs. The reader
is encouraged to consult [1], [2] or postings at [5] or [11].

Overview of PHASH
PHASH [6] is a hash function designed to allow compu-

tations on data blocks to be performed in parallel. It consists
of three stages: message padding, message compression
and message reduction.

Fig. 1. High level block diagram of PHASH

Fig. 1 presents a high level diagram of the PHASH hash-
ing function computed sequentially. The same function can
be computed in parallel as outlined in the sequel. PHASH
relies on a block cipher for message compression. Any suffi-
ciently large block cipher could be used for this purpose. For
completeness, the cipher W, as presented in the Whirlpool
hashing function [7], is used here. The message reduction
stage is responsible for combining the intermediate values
generated by the message compression stage into a single
hash.

PRZEGLĄD ELEKTROTECHNICZNY (Electrical Review), ISSN 0033-2097, R. 86 NR 11a/2010 151



Fig. 2. Detailed block diagram of PHASH

Fig. 2 shows a detailed block diagram of the PHASH
hashing function. The message compression stage takes
each 896-bit block, Xi, and partitions it into two sub-blocks,
Yi and Zi (not labeled explicitly in Fig. 2), where i represents
the ith block of the message to be hashed, after padding. Yi

consists of the 384 most significant bits of Xi, and Zi con-
sists of the remaining 512 bits. The Yi block is concatenated
with an unsigned 128 bit representation of i, producing a 512-
bit block, Vi. Recall that the cipher W[7] takes a 512-bit plain-
text input and a 512-bit initial key. For each Yi block the Vi

block is used as the plaintext, and the Zi block is used as the
key. The 512-bit compressed block Ci is the resulting cipher-
text. The computation of the Ci’s can be performed in par-
allel, since the computations are performed on independent
blocks of data. In the message reduction stage the previously
computed Ci blocks are reduced into Di blocks. Computa-
tion of each Di block involves using the computed Ci blocks.
The first 128 Ci blocks undergo the XOR operation with each
other. The next 128 Ci blocks undergo the same operation. If
less than 256 Ci blocks are computed, the remaining blocks
consist of all ’0’ bits. As a result of the above process, 256
512-bit values are reduced to two 512-bit values. These two
values are then fed into W as the key and plaintext, respec-
tively, and a single 512-bit ciphertext D0 is produced as a re-
sult. If more than 256 Ci blocks are computed, the next 256
Ci blocks are used in order to generate D1 in the manner
described above. The process continues until all Di blocks
have been generated. Then the same reduction process is
applied to all Di blocks until a single 512-bit value remains
as a result of the reduction. This final 512-bit value repre-
sents the hash of the original message.

Previous work on SHA-512 and Whirlpool
The SHA-512 and Whirlpool designs in this work have

been derived as follows. The reference SHA-512 implemen-
tation descriptions were obtained from a combination of [12],
[8], [14], [15], [16], [17], and [18]. In [8] a partially unrolled
SHA-512 implementation is presented. The message com-
pression stage is unrolled two times. In [16] a quasi-pipelined
implementation of SHA-512 is introduced. The message
compression stage is pipelined, as it dictates the critical de-
lay of the algorithm. The basic message expansion stage is
altered so as to decrease the delay of the individual compu-
tations. The delay balancing technique is used to achieve a

decrease in the delay of this stage. To perform the required
additions carry-save and carry look-ahead adders are used.
In [12] yet another SHA-512 implementation is presented. It
draws on the collective strengths of most of the previously
published work. It is quasi-pipelined and unrolled. The im-
plementation uses carry-save and carry propagation adders,
as presented in [17]. BlockRAMs are used to store the Kt

constants, as presented in [18]. In [15] operation reschedul-
ing was used. This technique also involves precomputation
in order to minimize the critical delay.

The reference Whirlpool implementation descriptions
were obtained from a combination of [10] and [13]. In [10]
the substitute bytes stage was implemented using both a full
look-up table placed in BlockRAMs, as well as by implement-
ing the three mini s-boxes in the distributed RAM located in
CLB slices. The twice unrolled architecture that used the mini
s-box approach to implement this stage was also presented.
As a result three different Whirlpool implementations were
obtained. The shift columns stage was implemented with no
additional logic; the data paths were hardwired to perform the
reordering of the data. The mix rows stage was implemented
by shifting the input byte around and the modular reduction
step was performed, if necessary, on the fly. The add key
stage consisted of only XOR operations. In [13] Whirlpool
was implemented using the architecture that duplicates the
key schedule, as well as the architecture which integrates
the key schedule into the design. The substitute bytes stage
was implemented using both the mini s-box approach and
the Boolean expression approach. As a result four different
Whirlpool implementations were obtained. The shift columns
stage was implemented using combinational shifters. The
mix rows stage was implemented by using a look-up table
containing the results of the multiplications of all possible in-
puts by the reduction polynomial in GF (28). The add key
stage consisted of simple XOR operations.

SHA-512, Whirlpool and PHASH design
A model for each of the three algorithms was created

using VHDL (Very High Speed Integrated Circuits Hard-
ware Description Language). The SHA-512 implementation
was simple and straightforward. No unrolling or operation
rescheduling was used. Distributed RAM or BlockRAM were
used to store the required Kt constants for the message
compression stage. The Whirlpool implementation was more
involved. Three implementations of the substitute bytes stage
were created. The first implementation stored the s-box en-
tirely in BlockRAM. The second implementation implemented
the s-box using mini s-boxes. These mini s-boxes were imple-
mented as look-up tables in distributed RAM. The final, third
implementation of the substitute bytes stage implemented the
mini s-boxes using simple Boolean expressions. Two imple-
mentations of the mix rows stage were also created. The
first implementation performed the required Galois field mul-
tiplications using look-up tables stored in distributed RAM.
In the second implementation, the Galois field multipliers
were realized using Boolean expressions. All combinations
of the above described implementations were then synthe-
sized. Post place and route timing information was used in
order to determine the combination which provides the most
efficient Whirlpool implementation. Since the cipher W is at
the core of the Whirlpool hashing algorithm, it was assumed
that the most efficient Whirlpool implementation also contains
the most efficient cipher W implementation. This implemen-
tation was then used in PHASH. It should be noted that only
cipher W implementations which do not use BlockRAM were

152 PRZEGLĄD ELEKTROTECHNICZNY (Electrical Review), ISSN 0033-2097, R. 86 NR 11a/2010



considered as it would not be possible to implement PHASH
with more than 4 instances of W, using BlockRAM, on most
currently available FPGAs. Post place and route timing infor-
mation showed that the most efficient Whirlpool configuration
proved to be the one in which the substitute bytes stage was
implemented using mini s-boxes; they were implemented us-
ing look-up tables and stored in distributed RAM. The Ga-
lois field multipliers in the mix rows stage were implemented
using Boolean expressions. The model of PHASH is highly
configurable with two restrictions. The first one is that the
number of instances of W is required to be a power of 2. The
implementation in this work also restricts the maximum num-
ber of reduction levels in PHASH to three. The structure of
the PHASH model is shown in Fig. 3. All components are
described below.

Fig. 3. Block diagram of PHASH design

• The phash_data_buffer units are 896-bit shift regis-
ters. They simply collect input data when enabled.

• The data_mux unit consists of two 4-to-1 multiplexers.
They are used to provide the appropriate plaintext and
key to the cipher W units. The four inputs consist of the
Zi and Vi blocks and two accumulators at each of the
three reduction levels. These accumulators are named
c_left, c_right, d_left, d_right, e_left and e_right.

• The w_cipher unit contains an implementation of the
cipher W. It takes as inputs entire 512-bit plaintext and
key blocks and outputs the resulting 512-bit hash over a
single cycle. A multiplexer is added in order to ensure
that the newly specified key is to be used at the begin-
ning of the first round.

• The xor_update unit accumulates the hashes of the
compressed blocks at each reduction level. Two 512-
bit registers are used, one to accumulate the results of
the first 128 blocks, and the other to accumulate the re-
sults of the remaining 128 blocks at that reduction level.
This unit also provides data to the first cipher W instance
through the data multiplexer.

• The phash_control_unit unit is responsible for syn-
chronizing the operation of all components in order to
implement the PHASH hashing algorithm.
The state diagram for the control unit is shown in Fig. 4.

The initial state is called idle. Once the phash_run signal
is asserted a transition to the read_data state occurs. At
the same time data is ready to be read and the data buffer
is enabled. Once an entire block of data has been read a
transition to the rst_wp state occurs. At this time, the cipher
W instances are ready to be reset and the data multiplexer
unit passes Zi and Vi to W. This discussion assumes that
the final hash is not yet being computed. A discussion of the
final hash computation now follows. During the rst_wp state
certain cipher W instances are enabled, while others are dis-
abled. If the total number of data blocks to be processed,
data_num_blocks is less than the number of instances,

Fig. 4. State diagram of the PHASH control unit

num_instances only data_num_blocks instances are en-
abled, while the others are disabled. Otherwise all ci-
pher W instances are enabled until num_blocks_left be-
comes less than num_instances. When this occurs only
num_blocks_left instances are enabled, and the rest are
disabled. After the appropriate instances are enabled a tran-
sition to the do_wp state occurs. The majority of the PHASH
algorithm is controlled in this state. This state always waits
for the wp_hash_ready signal from the cipher W instances.
The control logic is broken down by the total number of re-
ductions which need to be performed. If only a single re-
duction level is required c_block_counter is incremented
every time a block is processed, and num_blocks_left is
decremented accordingly. After a block is processed and
num_finalize_steps_left is greater than 0, a transition to
do_phash occurs, otherwise if the final hash has been com-
puted a transition to send_hash occurs.

In the do_phash stage, if c_block_counter,
d_block_counter or e_block_counter is less than 128
the resulting hashes will be accumulated into c_left,
d_left or e_left respectively. Otherwise the results will be
accumulated into c_right, d_right or e_right respectively.
The appropriate counters are also incremented. If there
are still more blocks to process and if the final hash is not
being computed a transition back to the read_data state
occurs. If two or more reduction levels are required the
algorithm progresses as described above. However once
c_block_counter, d_block_counter or e_block_counter
equals 256, an additional hash needs to be computed
using the appropriate registers from the XOR update
unit as the key and plaintext. This is accomplished by a
transition back to the rst_wp state. The computation is
performed in the do_wp state. During this computation
only the first W instance is enabled. After the computation
completes the appropriate set of registers is reset. On
the next cycle a transition to the do_phash state occurs.
When there are no more blocks to process a transition

PRZEGLĄD ELEKTROTECHNICZNY (Electrical Review), ISSN 0033-2097, R. 86 NR 11a/2010 153



from the do_phash state to the finalize state occurs.
After entering this state num_finalize_steps_left passes
through the hashing states are performed. The value of
num_finalize_steps_left depends on the highest reduc-
tion level attained. When finalizing the hash only the first
cipher W instance is enabled. The initial key and plaintext
inputs to this instance are c_left and c_right. If two reduc-
tions are to be done the next set of key and plaintext inputs
are d_left and d_right. Likewise, if three reductions are to
be done the final set of key and plaintext inputs are e_left
and e_right. When the final hash is ready a transition to the
send_hash occurs. The final hash is contained in the final
hash output of the first cipher W instance. It is output over 8
clock cycles and upon completion the phash_done signal is
asserted.

Testing functionality
Throughout the implementation process many tests

were performed to verify the functionality of individual com-
ponents and the entire system. The VHDL testbench was
responsible for reading pre-padded data to be hashed from
a file, sending the data at the appropriate time, as well as
comparing the obtained hash to a known value. The SHA-
512 and Whirlpool test data consisted of 240 tests, starting
with 20 bytes of data and incrementing by 20 bytes for each
consecutive test, for a total of 4800 bytes. The PHASH test
data consisted of three separate tests. The first consisted of
128 test cases. The first case ensured only a single block is
hashed, and each consecutive test hashed an extra block. As
a result 128 tests ranging from a single block to 128 blocks
were performed. The second test consisted of hashing 256
and 257 data blocks. These block counts cause the transition
between the first and second reduction levels. The final test
consisted of hashing 65536 and 65537 blocks. These block
counts cause the transition between the second and third re-
duction levels.

Hardware verification
The available hardware platform to verify the functional-

ity of the designs was the Xilinx ML410 development board.
The ML410 is a complete development system containing a
Virtex-4 FX60 FPGA as well as a multitude of additional pe-
ripherals. The Virtex-4 FX60 FPGA is a hybrid FPGA, con-
taining not only FPGA logic, but also two PowerPC 405 cores.
Several other notable features of this FPGA include 232 18-
Kbit BlockRAMs, up to 20 DCMs, 25280 CLB slices, equiv-
alent to 56880 logic cells, 128 XtremeDSP slices as well as
multi-gigabit RocketIO transceivers. Additional features of the
ML410 development board used in these implementations in-
clude 256 MB DDR-2 external memory, 512 MB CF card and
a single UART. The features of the Virtex-4 FX60 FPGA used
include CLB slices, BlockRAMs and DCMs. Xilinx ISE 9.2.04i
was used in order to obtain utilization and timing information.
A total of 10 hardware systems were created, two for SHA-
512, six for Whirlpool and two for PHASH. The limitation for
PHASH was due to the fact that the Virtex4 FX60 FPGA can
accommodate PHASH with up to two cipher Ws only. Table 1
summarizes the implementation results. Since all implemen-
tations achieved an operating frequency of at least 100 MHz
it was possible to integrate them into a system which utilized
a PowerPC processor with its communication bus operating
at 100 MHz. Xilinx EDK 9.2.02 software was used in order to
design and implement the final hardware systems required to
test the functionality of the implementations.

Algorithm Configuration Slices Freq. Throughput

(MHz) (Mbps)

SHA-512 Distr. RAM 2073 106.65 1365

SHA-512 BlockRAM 1917 103.17 1321

Whirlpool 1 6605 122.09 6251

Whirlpool 2 6597 123.50 6323

Whirlpool 3 7327 105.28 5390

Whirlpool 4 7937 112.38 5754

Whirlpool 5 4833 138.96 7115

Whirlpool 6 3914 137.08 7018

PHASH 1 1 W 11010 126.71 11353

PHASH 2 2 W 16901 124.24 22264

Table 1. Implementation results for Virtex-4 FX60 FPGA

Algorithm Slices Freq. Throughput

(MHz) (Mbps)

SHA-512 1102 142.88 1829

Whirlpool 2892 162.34 8312

Table 2. SHA-512 and Whirlpool results for Virtex-5 LX330 FPGA

High performance design
To exploit parallelizability of PHASH and determine its

maximum possible throughput on the state-of-the-art FPGAs
the VHDL model was synthesized into Virtex-5 LX330 de-
vice. For comparison purposes SHA-512 and Whirlpool were
also implemented on the same platform. Table 2 shows the
results obtained for SHA-512 and Whirlpool. It is important
to note that the slice counts in Virtex-5 devices are not di-
rectly comparable to those in Virtex-4 devices. The Virtex-5
devices have less slices, however each slice contains about
twice as many resources as a single Virtex-4 slice. It is ev-
ident that the performance optimized Whirlpool implemen-
tation greatly outperforms the SHA-512 implementation in
terms of throughput. However, it requires more than twice
as many slices to implement. Table 3 shows a similar set of
metrics for several PHASH implementations. For each im-
plementation a different number of cipher W instances were
included. By increasing the number of instances a significant
increase in throughput was observed, at the cost of increased
slice usage. The speedup factor represents the efficiency at
which the implementation scales. The throughput obtained
with a single W instance is used as the baseline and there-
fore its speed-up factor is 1.00. The maximum theoretical
speedup factor would be equal to the number of W instances
used. Looking at the results in Table 2 and Table 3 it is also
evident that the PHASH implementations greatly outperform
both SHA-512 and Whirlpool in terms of throughput. The
PHASH implementation with a single cipher W instance re-
quires slightly more slices than the Whirlpool implementation;
however it is able to achieve nearly twice as much through-
put. For a visual comparison, a bar graph of the maximum
throughput of all three algorithms targeted for the Virtex-5
LX330 FPGA is shown in Fig. 5.

By looking at the number of slices required in order to
achieve 1 Mbps of throughput both the area and operating
frequency can be incorporated into a single metric. The
SHA-512 implementation requires 0.60 slices per 1 Mbps of
throughput, whereas the Whirlpool implementation requires

154 PRZEGLĄD ELEKTROTECHNICZNY (Electrical Review), ISSN 0033-2097, R. 86 NR 11a/2010



cipher W Slices Speedup Freq. Throughput

instances Factor (MHz) (Mbps)

1 4469 1.00 168.07 15059

2 8031 1.92 161.29 28903

4 13537 3.69 155.04 55566

8 24427 6.70 140.85 100958

16 42362 12.13 127.39 182624

Table 3. PHASH result for Virtex-5 LX330 FPGA

Fig. 5. Throughput comparison

only 0.35 slices per 1 Mbps of throughput. A PHASH imple-
mentation with a single cipher W instance requires only 0.30
slices per 1 Mbps of throughput. The remaining implemen-
tations require between 0.28 and 0.24 slices per Mbps. This
shows that the PHASH implementations utilize the available
slices very efficiently, even as the implementation scales.

Conclusion and future work
The main point of this paper is that high parallelizability

of the forthcoming new SHA-3 hash standard should be a crit-
ical and achievable property of the proposed algorithm. This
is supported by demonstrating that the PHASH can be seen
as a template of a general hash design with such properties.
In the technical part we presented a case study on FPGA
performance of PHASH. By exploiting parallelism PHASH is
achieving a much higher throughput than any other currently
available serial hashing function. A PHASH implementation
using only a single cipher W is able to achieve over 15 Gbps
of throughput. When the number of cipher W instances is
increased to 16, a throughput of over 182 Gbps is achieved.
A fair comparison between SHA-512 and Whirlpool on the
same FPGA implies overall better performance of Whirlpool.
Several assumptions were made during the implementation
of PHASH in order to facilitate the development process. Fu-
ture work should include removing most, if not all, of these
assumptions in order to create a less constrained implemen-
tation. The most noticeable restriction in this implementation
of PHASH is that the number of cipher W instances used is
required to be a power of 2. If a new implementation were to
remove this restriction several more instances would be able
to fit onto the Virtex-5 LX330 FPGA. Finally, the implementa-
tion in this work restricts the maximum number of reduction
levels in PHASH to three. Future implementations can re-
move this restriction.

BIBLIOGRAPHY
[1] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone: Hand-

book of Applied Cryptography, CRC Press, 1996.
[2] D. R. Stinson, Cryptography: Theory and Practice, third edition,

CRC Press 2006.
[3] FIPS 180-2. Secure Hash Standard, August 2002.

(NIST). http://csrc.nist.gov/publications/fips/
fips180-2/fips180-2.pdf

[4] X. Wang and H. Yu, How to Break MD5 and Other Hash Func-
tions, LNCS, 3494:19–35, 2005.

[5] NIST SHA-3 timeline, http://csrc.nist.gov/groups/ST/
hash/timeline.html

[6] A. Kaminsky and S. Radziszowski: A case for a paralleliz-
able hash, in Proceedings of IEEE MILCOM, San Diego, CA,
November 2008.

[7] P. Barreto and V. Rijmen: Whirlpool Hash Function, 2006.
http://paginas.terra.com.br/informatica/
paulobarreto/WhirlpoolPage.html

[8] F. Aisopos, K. Aisopos, D. Schinianakis, H. Michail, and A.
P. Kakarountas: A novel high-throughput implementation of a
partially unrolled SHA-512, Proceedings of the Mediterranean
Electrotechnical Conference, 61–65, 2006.

[9] W. Stallings, The Whirlpool Secure Hash Function, Cryptologia,
30:55–67, 2006.

[10] M. McLoone, C. McIvor, and A. Savage: High-speed hard-
ware architectures of the Whirlpool hash function, Proceedings
- IEEE International Conference on Field Programmable Tech-
nology, 147–153, 2005.

[11] SHA-3 Zoo, unofficial hash function candidates evaluations
http://ehash.iaik.tugraz.at/wiki/The_SHA-3_Zoo

[12] R. P. McEvoy, F. M. Crowe, C. C. Murphy, and W. P. Mar-
nane: Optimisation of the SHA-2 family of hash functions on
FPGAs, Proceedings - IEEE Computer Society Annual Sympo-
sium on Emerging VLSI Technologies and Architectures, 317–
322, 2006.

[13] P. Kitsos and O. Koufopavlou: Efficient architecture and hard-
ware implementation of the Whirlpool hash function, IEEE
Transactions on Consumer Electronics, 50(1):208–213, 2004.

[14] I. Ahmad and A. S. Das: Hardware implementation analysis of
SHA-256 and SHA-512 algorithms on FPGAs, Computers and
Electrical Engineering, 31(6):345–360, 2005.

[15] R. Chaves, G. Kuzmanov, L. Sousa, and S. Vassiliadis: Improv-
ing SHA-2 hardware implementations, Lecture Notes in Com-
puter Science, 4249 NCS:298–310, 2006.

[16] L. Dadda, M. Macchetti, and J. Owen: An ASIC design for a
high speed implementation of the hash function SHA-256 (384,
512), Proceedings of the ACM Great Lakes Symposium on
VLSI, 421–425, 2004.

[17] T. Grembowski, R. Lien, K. Gaj, N. Nguyen, P. Bellows, J. Flidr,
T. Lehman, and B. Schott: Comparative analysis of the hard-
ware implementations of hash functions SHA-1 and SHA-512,
Information Security. 5th International Conference ISC 2002.
Proceedings (Lecture Notes in Computer Science Vol.2433),
75–89, 2002.

[18] M. McLoone and J. V. McCanny: Efficient single-chip implemen-
tation of SHA-384 and SHA-512, 2002 IEEE International Con-
ference on Field-Programmable Technology (FPT). Proceed-
ings (Cat. No.02EX603), 311–14, 2002.

[19] N. Sklavos and O. Koufopavlou: On the hardware implemen-
tations of the SHA-2 (256, 384, 512) hash functions, Proceed-
ings - IEEE International Symposium on Circuits and Systems,
5:153–156, 2003.

Authors:
Przemysław Zalewski, Marcin Łukowiak,
Department of Computer Engineering
Stanisław Radziszowski,
Department of Computer Science
Rochester Institute of Technology,
Rochester, NY 14623, U.S.A.
corresponding email: mxleec@rit.edu

PRZEGLĄD ELEKTROTECHNICZNY (Electrical Review), ISSN 0033-2097, R. 86 NR 11a/2010 155


