
Scalable FPGA Design and Performance Analysis
of PHASH Hashing Function

Przemysław Zalewski
Department of Computer Engineering

Rochester Institute of Technology
Rochester, NY 14623

Marcin Łukowiak
Department of Computer Engineering

Rochester Institute of Technology
Rochester, NY 14623

Stanisław Radziszowski
Department of Computer Science
Rochester Institute of Technology

Rochester, NY 14623

Abstract— This paper presents an FPGA design and perfor-

mance analysis of a recently proposed parallelizable hash func-
tion – PHASH. The main feature of PHASH is that it is able to
process multiple data blocks at once making it suitable for
achieving ultra high-performance. It utilizes the W cipher, as
described in the Whirlpool hashing function at its core. A Virtex-
4 FX60 FPGA was used in order to verify functionality of the
implementation of the algorithm in hardware. To achieve high
performance, state-of-the-art Virtex-5 LX330 FPGA was used as
target platform. PHASH achieved a throughput over 15 Gbps
using a single W cipher instance and 182 Gbps for 16 instances.
For fair comparison of the performance of PHASH with widely
accepted SHA-512 and Whirlpool hashing functions we have also
developed their high performance implementations targeting the
same FPGA platforms. SHA-512 implementation attained a
throughput of 1828 Mbps, and Whirlpool attains 7687 Mbps.

Index Terms— scalable FPGA design; hash function;
performance analysis.

I. INTRODUCTION

Hashing functions play a fundamental role in modern cryp-
tography [1]. Such functions process data to produce a small
fixed size output referred to as a digest or hash. Typical appli-
cations of these functions include data integrity verification and
message authentication schemes. The SHA (SHA-0, SHA-1,
SHA-2) family of functions is one of the first widely accepted
standards for hashing. SHA-512 is one of the five variants be-
longing to the SHA-2 family of hashing functions, which in
August 2002 was announced as the US federal standard de-
fined in the FIPS PUBS 180-2 [2]. According to currently pub-
lished literature [4], the fastest SHA-512 implementation on
FPGA achieves a throughput of 1550 Mbps. Hashing function
Whirlpool [5] provides comparable security to SHA-512 but is
able to achieve much better performance. According to current-
ly published literature, the fastest Whirlpool implementation on
FPGA achieves a throughput of 4790 Mbps [6].

Newly proposed PHASH [8] is the main function investi-
gated in this work. For fair comparison we have also developed
high performance implementations of SHA-512 and Whirlpool
hashing functions targeting the same FPGA platform.

II. OVERVIEW OF PHASH

PHASH [8] is a hash function designed to allow computa-
tions on data blocks to be performed in parallel. It consists of

three stages: message padding, message compression and mes-
sage reduction. Figure 1 shows a high level diagram of the
PHASH hashing function computed sequentially. The same
function can be computed in parallel as outlined in the sequel.
PHASH relies on a block cipher for message compression. Any
sufficiently large block cipher could be used for this purpose.
For completeness, the W cipher, as presented in the Whirlpool
hashing function [5], is used here. The message reduction stage
is responsible for combining the intermediate values generated
by the message compression stage into a single hash.

Figure 1: High level block diagram of PHASH

Figure 2 shows a detailed block diagram of the PHASH

hashing function. The message compression stage takes each
896-bit block, Xi, and partitions it into two sub-blocks, Yi and
Zi (not labeled explicitly in Figure 2), where i represents the ith

block of the message to be hashed, after padding. Yi consists of
the 384 most significant bits of Xi, and Zi consists of the re-
maining 512 bits. The Yi block is concatenated with an un-
signed 128 bit representation of i, producing a 512-bit block,
V i. Recall that the W cipher [5] takes a 512-bit plaintext input
and a 512-bit initial key. For each Yi block the Vi block is used
as the plaintext to the W cipher, and the Zi block is used as the
key to the W cipher. The 512-bit compressed block Ci is the
resulting ciphertext. The computation of the Ci’s can be per-
formed in parallel, since the computations are performed on
independent blocks of data. In the message reduction stage the
previously computed Ci blocks are reduced into Di blocks.
Computation of each Di block involves using the computed Ci
blocks. The first 128 Ci blocks undergo the XOR operation
with each other. The next 128 Ci blocks undergo the same op-
eration. If less than 256 Ci blocks are computed, the remaining
blocks consist of all ’0’ bits. As a result of the above process,
256 512-bit values are reduced to two 512-bit values. These
two values are then fed into the W cipher as the key and plain-
text, respectively, and a single 512-bit ciphertext, D0 is pro-

duced as a result. If more than 256 Ci blocks are computed, the
next 256 Ci blocks are used in order to generate D1 in the man-
ner described above. The process continues until all Di blocks
have been generated. Then the same reduction process as pre-
viously described is applied to all Di blocks until a single 512-
bit value remains as a result of the reduction process. This final
512-bit value represents the hash of the original message.

Figure 2. Detailed block diagram of PHASH

III. PREVIOUS WORK ON SHA-512 AND WHIRLPOOL

The SHA-512 and Whirlpool designs in this work have
been derived as follows. The reference SHA-512 implementa-
tion descriptions were obtained from a combination of [3, 4, 9,
10, 11, 12 and 13]. In [4] a partially unrolled SHA-512 imple-
mentation is presented. The message compression stage is un-
rolled two times. In [11] a quasi-pipelined implementation of
SHA-512 is introduced. The message compression stage is
pipelined, as it dictates the critical delay of the algorithm. The
basic message expansion stage is altered so as to decrease the
delay of the individual computations. The delay balancing
technique is used to achieve a decrease in the delay of this
stage. To perform the required additions carry-save and carry
look-ahead adders are used. In [3] yet another SHA-512 im-
plementation is presented. The implementation draws on the
collective strengths of most of the previously published work.
It is quasi-pipelined and unrolled. The implementation uses
carry-save and carry propagation adders, as presented in [12].
BlockRAMs are used to store the Kt constants, as presented in
[13]. In [10] operation rescheduling was used. This technique
also involves pre-computation in order to minimize the critical
delay.

The reference Whirlpool implementation descriptions were
obtained from a combination of [6 and 7]. In [6] the substitute
bytes stage was implemented using both a full look-up table
placed in BlockRAMs, as well as by implementing the three
mini s-boxes in the distributed RAM located in CLB slices.

The twice unrolled architecture that used the mini s-box ap-
proach to implement this stage was also presented. As a result
three different Whirlpool implementations were obtained. The
shift columns stage was implemented with no additional logic;
the data paths were hardwired to perform the reordering of the
data. The mix rows stage was implemented by shifting the in-
put byte around and the modular reduction step was performed,
if necessary, on the fly. The add key stage consisted of only
XOR operations. In [7] Whirlpool was implemented using the
architecture that duplicates the key schedule, as well as the
architecture which integrates the key schedule into the design.
The substitute bytes stage was implemented using both the
mini s-box approach and the Boolean expression approach. As
a result four different Whirlpool implementations were ob-
tained. The shift columns stage was implemented using combi-
national shifters. The mix rows stage was implemented by us-
ing a look-up table containing the results of the multiplications
of all possible inputs by the reduction polynomial in GF(28).
The add key stage consisted of simple XOR operations.

IV. DESIGN

A. SHA-512, Whirlpool and PHASH Design

A model for each of the three algorithms was created using
VHDL (VHSIC (Very High Speed Integrated Circuits) Hard-
ware Description Language).

The SHA-512 implementation was simple and straightfor-
ward. No unrolling or operation rescheduling was used. Distri-
buted RAM or BlockRAM were used to store the required Kt
constants for the message compression stage.

The Whirlpool implementation was more involved. Three
implementations of the substitute bytes stage were created.
The first implementation stored the s-box entirely in Block-
RAM. The second implementation implemented the s-box us-
ing mini s-boxes. These mini s-boxes were implemented as
look-up tables in distributed RAM. The final, third implemen-
tation of the substitute bytes stage implemented the mini s-
boxes using simple Boolean expressions. Two implementations
of the mix rows stage were also created. The first implementa-
tion performed the required Galois field multiplications using
look-up tables stored in distributed RAM. In the second im-
plementation, the Galois field multipliers were realized using
Boolean expressions. All combinations of the above described
implementations were then synthesized. Post place and route
timing information was used in order to determine the combi-
nation which provides the most efficient Whirlpool implemen-
tation. Since the W cipher is at the core of the Whirlpool hash-
ing algorithm, it was assumed that the most efficient Whirlpool
implementation also contains the most efficient W cipher im-
plementation. This implementation was then used in PHASH.
It should be noted that only W cipher implementations which
do not use BlockRAM were considered as it would not be
possible to implement PHASH with more than 4 W cipher in-
stances, using BlockRAM, on most currently available FPGAs.
Post place and route timing information showed that the most
efficient Whirlpool configuration proved to be the one in which
the substitute bytes stage was implemented using mini s-boxes;

they were implemented using look-up tables and stored in dis-
tributed RAM. The Galois field multipliers in the mix rows
stage were implemented using Boolean expressions.

The model of PHASH is highly configurable with two re-
strictions. The first one is that the number of W cipher in-
stances used is required to be a power of 2. The implementa-
tion in this work also restricts the maximum number of reduc-
tion levels in PHASH to three. The structure of the PHASH
model is shown in Figure 3.

phash_control_unit

phash_data_buffer (0) data_mux w_cipher (0)

xor_updatephash_data_buffer (1) w_cipher (1)

phash_data_buffer (N) w_cipher (N)

. . .

. . .

phash_hash_out

Figure 3. Block diagram of PHASH design

B. Testing Functionality

Throughout the implementation process many tests were
performed to verify the functionality of individual components
and entire systems. The VHDL testbench was responsible for
reading pre-padded data to be hashed from a file, sending the
data at the appropriate time, as well as comparing the obtained
hash to a known value. The SHA-512 and Whirlpool test data
consisted of 240 tests, starting with 20 bytes of data and incre-
menting by 20 bytes for each consecutive test, for a total of
4800 bytes. The PHASH test data consisted of three separate
tests. The first consisted of 128 test cases. The first case en-
sured only a single block is hashed, and each consecutive test
hashed an extra block. As a result 128 tests ranging from a sin-
gle block to 128 blocks were performed. The second test con-
sisted of hashing 256 and 257 data blocks. These block counts
represent the transition between the first and second reduction
levels. The final test consisted of hashing 65536 and 65537
blocks. These block counts represent the transition between the
second and third reduction levels.

C. Hardware Verification

The available hardware platform to verify the functionality
of the designs was the Xilinx ML410 development board. The
ML410 is a complete development system containing a Virtex-
4 FX60 FPGA as well as a multitude of additional peripherals.
The Virtex-4 FX60 FPGA is a hybrid FPGA, containing not
only FPGA logic, but also two PowerPC 405 cores. Several
other notable features of this FPGA include 232 18-Kbit
BlockRAMs, up to 20 DCMs, 25280 CLB slices, equivalent to
56880 logic cells, 128 XtremeDSP slices as well as multi-
gigabit RocketIO transceivers. Additional features of the
ML410 development board used in these implementations in-
clude 256 MB DDR-2 external memory, 512 MB CF card and

a single UART. The features of the Virtex-4 FX60 FPGA used
include CLB slices, BlockRAMs and DCMs. Xilinx ISE
9.2.04i was used in order to obtain utilization and timing in-
formation.

A total of 10 hardware systems (as described in subsection
A) were created, two for SHA-512, six for Whirlpool and two
for PHASH. The limitation for PHASH was due to the fact that
the Virtex4 FX60 FPGA can accommodate PHASH with up to
two W ciphers only. Table I summarizes the implementation
results.

TABLE I. IMPLEMENTATION RESULTS FOR VIRTEX-4 FX60 FPGA

Algorithm Configuration Slices Freq.
(MHz)

Throughput
(Mbps)

SHA-512 Distributed RAM 2073 106.65 1365
SHA-512 BlockRAM 1917 103.17 1321
Whirlpool 1 6605 122.09 6251
Whirlpool 2 6597 123.50 6323
Whirlpool 3 7327 105.28 5390
Whirlpool 4 7937 112.38 5754
Whirlpool 5 4833 138.96 7115
Whirlpool 6 3914 137.08 7018
PHASH 1 1 W 11010 126.71 11353
PHASH 2 2 W 16901 124.24 22264

Since all implementations achieved an operating frequency of
at least 100 MHz it was possible to integrate them into a sys-
tem which utilized a PowerPC processor with its communica-
tion bus operating at 100 MHz. Xilinx EDK 9.2.02 software
was used in order to design and implement the final hardware
systems required to test the functionality of the implementa-
tions. All the hardware verifications were successful.

D. High Performance Design

To exploit parallelizability of PHASH and determine its
maximum possible throughput on the state-of-the-art FPGAs
the VHDL model was synthesized into Virtex-5 LX330 device.
For comparison purposes SHA-512 and Whirlpool were also
implemented on the same platform. Table II shows the results
obtained for SHA-512 and Whirlpool. It is important to note
that the slice counts in Virtex-5 devices are not directly compa-
rable to those in Virtex-4 devices. The Virtex-5 devices have
less slices, however each slice contains about twice as many
resources as a single Virtex-4 slice.

TABLE II. SHA-512 AND WHIRLPOOL RESULTS FOR VIRTEX-5 LX330 FPGA

Algorithm Slices Frequency
(MHz)

Throughput
(Mbps)

SHA-512 1102 142.88 1829
Whirlpool 2892 162.34 8312

It is evident that the performance optimized Whirlpool imple-
mentation greatly outperforms the SHA-512 implementation in
terms of throughput. However it requires more than twice as
many slices to implement. Table III shows a similar set of me-
trics for several PHASH implementations. For each implemen-
tation a different number of W cipher instances were included.
By increasing the number of instances a significant increase in
throughput was observed, at the cost of increased slice usage.

TABLE III. PHASH RESULTS FOR VIRTEX-5 LX330 FPGA

W cipher
instances

Slices Speedup
Factor

Frequency
(MHz)

Throughput
(Mbps)

1 4469 1.00 168.07 15059
2 8031 1.92 161.29 28903
4 13537 3.69 155.04 55566
8 24427 6.70 140.85 100958
16 42362 12.13 127.39 182624

The speedup factor represents the efficiency at which the im-
plementation scales. The throughput obtained with a single W
cipher instance is used as the baseline and therefore its speedup
factor is 1.00. The maximum theoretical speedup factor would
be equal to the number of W cipher instances used. Looking at
the results in Table II and Table III it is also evident that the
PHASH implementations greatly outperform both SHA-512
and Whirlpool in terms of throughput. The PHASH implemen-
tation with a single W cipher instance requires slightly more
slices than the Whirlpool implementation; however it is able to
achieve nearly twice as much throughput. For a visual compar-
ison, a bar graph of the maximum throughput of all three algo-
rithms targeted for the Virtex-5 LX330 FPGA is shown in Fig-
ure 4. By looking at the number of slices required in order to
achieve 1 Mbps of throughput both the area and operating fre-
quency can be incorporated into a single metric. The SHA-512
implementation requires 0.60 slices per 1 Mbps of throughput,
whereas the Whirlpool implementation requires only 0.35 slic-
es per 1 Mbps of throughput.

Figure 4. Maximum throughput

A PHASH implementation with a single W cipher instance
requires only 0.30 slices per 1 Mbps of throughput. The re-
maining implementations require between 0.28 and 0.24 slices
per Mbps. This shows that the PHASH implementations utilize
the available slices very efficiently, even as the implementation
scales.

V. CONCLUSION AND FUTURE WORK

This paper presented FPGA design and performance analy-
sis of the SHA-512, Whirlpool and the newly proposed
PHASH algorithm. The novelty of PHASH is that it is able to
exploit parallelism and as a result achieve a much higher
throughput than any other currently available hashing function.
A PHASH implementation using only a single W cipher is able
to achieve over 15 Gbps of throughput. When the number of W
cipher instances is increased to 16, a throughput of over 182
Gbps is achieved. A fair comparison between SHA-512 and
Whirlpool on the same FPGA implies overall better perfor-
mance of Whirlpool. Several assumptions were made during

the implementation of PHASH in order to facilitate the devel-
opment process. Future work should include removing most, if
not all, of these assumptions in order to create a less con-
strained implementation. The most noticeable restriction in this
implementation of PHASH is that the number of W cipher in-
stances used is required to be a power of 2. If a new implemen-
tation were to remove this restriction several more instances
would be able to fit onto the Virtex-5 LX330 FPGA. Finally,
the implementation in this work restricts the maximum number
of reduction levels in PHASH to three. Future implementations
can remove this restriction.

REFERENCES
[1] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of

Applied Cryptography. CRC Press, 1996.

[2] FIPS 180-2. Secure Hash Standard, August 2002. (NIST).
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf

[3] R. P. McEvoy, F. M. Crowe, C. C. Murphy, and W. P. Marnane.
Optimisation of the SHA-2 family of hash functions on FPGAs.
Proceedings - IEEE Computer Society Annual Symposium on Emerging
VLSI Technologies and Architectures 2006, 2006:317 – 322, 2006.

[4] F. Aisopos, K. Aisopos, D. Schinianakis, H. Michail, and A. P.
Kakarountas. A novel high-throughput implementation of a partially
unrolled SHA-512. Proceedings of the Mediterranean Electrotechnical
Conference - MELECON, 2006, 61 – 65, 2006.

[5] P. Barreto and V. Rijmen. Whirlpool Hash Function. 2006.
http://paginas.terra.com.br/informatica/paulobarreto/WhirlpoolPage.html

[6] M. McLoone, C. McIvor, and A. Savage. High-speed hardware
architectures of the Whirlpool hash function. Proceedings - 2005 IEEE
International Conference on Field Programmable Technology, 2005:147
– 153, 2005.

[7] P. Kitsos and O. Koufopavlou. Efficient architecture and hardware
implementation of the Whirlpool hash function. IEEE Transactions on
Consumer Electronics, 50(1):208 – 213, 2004.

[8] A. Kaminsky and S. Radziszowski. A case for a parallelizable hash.
MILCOM 2008, San Diego, CA, USA, November 2008.

[9] I. Ahmad and A. S. Das. Hardware implementation analysis of SHA-256
and SHA-512 algorithms on FPGAs. Computers and Electrical
Engineering, 31(6):345 – 360, 2005.

[10] R. Chaves, G. Kuzmanov, L. Sousa, and S. Vassiliadis. Improving SHA-
2 hardware implementations. Lecture Notes in Computer Science, 4249
NCS:298 – 310, 2006.

[11] L. Dadda, M. Macchetti, and J. Owen. An ASIC design for a high speed
implementation of the hash function SHA-256 (384, 512). Proceedings
of the ACM Great Lakes Symposium on VLSI, pages 421 – 425, 2004.

[12] T. Grembowski, R. Lien, K. Gaj, N. Nguyen, P. Bellows, J. Flidr, T.
Lehman, and B. Schott. Comparative analysis of the hardware
implementations of hash functions SHA-1 and SHA-512. Information
Security. 5th International Conference ISC 2002. Proceedings (Lecture
Notes in Computer Science Vol.2433), pages 75 – 89, 2002.

[13] M. McLoone and J. V. McCanny. Efficient single-chip implementation
of SHA-384 and SHA-512. 2002 IEEE International Conference on
Field-Programmable Technology (FPT). Proceedings (Cat.
No.02EX603), pages 311 – 14, 2002.

[14] N. Sklavos and O. Koufopavlou. On the hardware implementations of
the SHA-2 (256, 384, 512) hash functions. Proceedings - IEEE
International Symposium on Circuits and Systems, 5:153 – 156, 2003.

