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Abstract— This paper presents an FPGA design and perfor-
mance analysis of a recently proposed parallelizaplhash func-
tion — PHASH. The main feature of PHASH is that itis able to
process multiple data blocks at once making it suible for
achieving ultra high-performance. It utilizes the W cipher, as
described in the Whirlpool hashing function at itscore. A Virtex-
4 FX60 FPGA was used in order to verify functionaty of the
implementation of the algorithm in hardware. To acheve high
performance, state-of-the-art Virtex-5 LX330 FPGA wa used as
target platform. PHASH achieved a throughput over 5 Gbps
using a single W cipher instance and 182 Gbps for6linstances.
For fair comparison of the performance of PHASH wit widely
accepted SHA-512 and Whirlpool hashing functions wlave also
developed their high performance implementations tageting the
same FPGA platforms. SHA-512 implementation attaing a
throughput of 1828 Mbps, and Whirlpool attains 7687Mbps.

Index Terms— scalable FPGA design; hash function;

performance analysis.

|. INTRODUCTION

Hashing functions play a fundamental role in modap-
tography [1]. Such functions process data to preducsmall
fixed size output referred to as a digest or hagpical appli-
cations of these functions include data integréyification and
message authentication schemes. The SHA (SHA-0,-EHA
SHA-2) family of functions is one of the first wiljeaccepted
standards for hashing. SHA-512 is one of the fiagants be-
longing to the SHA-2 family of hashing functionshieh in
August 2002 was announced as the US federal sthradar
fined in the FIPS PUBS 180-2 [2]. According to @mtly pub-
lished literature [4], the fastest SHA-512 impletagion on
FPGA achieves a throughput of 1550 Mbps. Hashimgtfon
Whirlpool [5] provides comparable security to SHAZbut is
able to achieve much better performance. Accorttirgurrent-
ly published literature, the fastest Whirlpool irplentation on
FPGA achieves a throughput of 4790 Mbps [6].

Newly proposed PHASH [8] is the main function intkes
gated in this work. For fair comparison we have asveloped
high performance implementations of SHA-512 and Ngbol
hashing functions targeting the same FPGA platform.

[I. OVERVIEW OFPHASH

PHASH [8] is a hash function designed to allow coiap
tions on data blocks to be performed in paralketonsists of
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three stages: message padding, message comprasdianes-
sage reduction. Figure 1 shows a high level diagodrthe
PHASH hashing function computed sequentially. Thenes
function can be computed in parallel as outlinethi;m sequel.
PHASH relies on a block cipher for message commesany
sufficiently large block cipher could be used fhistpurpose.
For completeness, the W cipher, as presented ikvthidpool
hashing function [5], is used here. The messagéctieh stage

is responsible focombining the intermediate values generated
by the message compression stage into a single hash

message .
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Figure 1: High level block diagram of PHASH

Figure 2 shows a detailed block diagram of the PHAS
hashing function. The message compression stags dch
896-hit block, X and partitions it into two sub-blocks; and
Z (not labeled explicitly in Figure 2), where i repents the'l
block of the message to be hashed, after paddingpnsists of
the 384 most significant bits of;Xand Z consists of the re-
maining 512 bits. The ;Yblock is concatenated with an un-
signed 128 bit representation of i, producing a-bitdlock,
V. Recall that the W cipher [5] takes a 512-bit i@kt input
and a 512-bit initial key. For each Mock the \( block is used
as the plaintext to the W cipher, and thélack is used as the
key to the W cipher. The 512-bit compressed blocksGhe
resulting ciphertext. The computation of thés@an be per-
formed in parallel, since the computations are greréd on
independent blocks of data. In the message redustage the
previously computed ;Cblocks are reduced into; blocks.
Computation of each ;block involves using the computed C
blocks. The first 128 Chlocks undergo the XOR operation
with each other. The next 128 Klocks undergo the same op-
eration. If less than 256; Glocks are computed, the remaining
blocks consist of all ‘0’ bits. As a result of thbove process,
256 512-bit values are reduced to two 512-bit \aldehese
two values are then fed into the W cipher as thedte plain-
text, respectively, and a single 512-bit ciphertd®d is pro-



duced as a result. If more than 25@{0cks are computed, the The twice unrolled architecture that used the rsifiox ap-

next 256 Gblocks are used in order to generatarbthe man-
ner described above. The process continues uhfil; dlocks

have been generated. Then the same reduction prasgsre-
viously described is applied to all Blocks until a single 512-
bit value remains as a result of the reduction gsecThis final
512-bit value represents the hash of the origiredgage.
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Figure 2. Detailed block diagram of PHASH

I1l. PREVIOUSWORK ONSHA-512AND WHIRLPOOL

proach to implement this stage was also preseA®a@ result
three different Whirlpool implementations were diéal. The
shift columns stage was implemented with no additidogic;
the data paths were hardwired to perform the remglef the
data. The mix rows stage was implemented by shiftire in-
put byte around and the modular reduction steppea®rmed,
if necessary, on the fly. The add key stage catisf only
XOR operations. In [7] Whirlpool was implementedngsthe
architecture that duplicates the key schedule, @ &g the
architecture which integrates the key schedule tilodesign.
The substitute bytes stage was implemented usitly the
mini s-box approach and the Boolean expressionoagpr As
a result four different Whirlpool implementationsen® ob-
tained. The shift columns stage was implementeagusbmbi-
national shifters. The mix rows stage was implemerty us-
ing a look-up table containing the results of thdtiplications
of all possible inputs by the reduction polynomiIGF(Z).

The add key stage consisted of simple XOR operstion

IV. DESIGN

A. SHA-512, Whirlpool and PHASH Design

A model for each of the three algorithms was ciatsing
VHDL (VHSIC (Very High Speed Integrated Circuits)yid-
ware Description Language).

The SHA-512 implementation was simple and stragghtf
ward. No unrolling or operation rescheduling wasduDistri-
buted RAM or BlockRAM were used to store the reediKt
constants for the message compression stage.

The Whirlpool implementation was more involved. &ér

The SHA-512 and Whirlpool designs in this work haveimplementations of the substitute bytes stage vezeated.

been derived as follows. The reference SHA-512 émeinta-
tion descriptions were obtained from a combinatibfs, 4, 9,
10, 11, 12 and 13]. In [4] a partially unrolled S#3A2 imple-
mentation is presented. The message compressiga istain-
rolled two times. In [11] a quasi-pipelined implemteion of
SHA-512 is introduced. The message compressiore sigg
pipelined, as it dictates the critical delay of #igorithm. The
basic message expansion stage is altered so &=reade the
delay of the individual computations. The delayabaing
technique is used to achieve a decrease in thg d¢l¢his
stage. To perform the required additions carry-sawve carry
look-ahead adders are used. In [3] yet another SHAIM-
plementation is presented. The implementation drawshe
collective strengths of most of the previously pehed work.
It is quasi-pipelined and unrolled. The implemetatuses
carry-save and carry propagation adders, as pexbémt{12].
BlockRAMSs are used to store the Kt constants, asqnted in
[13]. In [10] operation rescheduling was used. Tteishnique
also involves pre-computation in order to minimike critical
delay.

The reference Whirlpool implementation descriptiovese
obtained from a combination of [6 and 7]. In [6¢ thubstitute
bytes stage was implemented using both a full logpkable
placed in BlockRAMs, as well as by implementing thesce
mini s-boxes in the distributed RAM located in Cldices.

The first implementation stored the s-box entirglyBlock-
RAM. The second implementation implemented the s
ing mini s-boxes. These mini s-boxes were impleettrdas
look-up tables in distributed RAM. The final, thinthplemen-
tation of the substitute bytes stage implemented rttini s-
boxes using simple Boolean expressions. Two impi¢atiens
of the mix rows stage were also created. The ifinplementa-
tion performed the required Galois field multiplicas using
look-up tables stored in distributed RAM. In theemad im-
plementation, the Galois field multipliers were lizzd using
Boolean expressions. All combinations of the abdescribed
implementations were then synthesized. Post pladeraute
timing information was used in order to determihe tombi-
nation which provides the most efficient Whirlpawiplemen-
tation. Since the W cipher is at the core of theinfybol hash-
ing algorithm, it was assumed that the most effici&hirlpool
implementation also contains the most efficient her im-
plementation. This implementation was then useBHASH.
It should be noted that only W cipher implementagiavhich
do not use BlockRAM were considered as it would bet
possible to implement PHASH with more than 4 W eiphn-
stances, using BlockRAM, on most currently avadabPGAs.
Post place and route timing information showed thatmost
efficient Whirlpool configuration proved to be thae in which
the substitute bytes stage was implemented usingsitioxes;



they were implemented using look-up tables ancedtam dis-
tributed RAM. The Galois field multipliers in theixnrows
stage were implemented using Boolean expressions.

The model of PHASH is highly configurable with twe-
strictions. The first one is that the number of VWgher in-
stances used is required to be a power of 2. Tidementa-
tion in this work also restricts the maximum numbéreduc-
tion levels in PHASH to three. The structure of PIHASH
model is shown in Figure 3.

phash_data_buffer (0) data_mux w_cipher (0) —phash_hash_out—pp»
4 4

a single UART. The features of the Virtex-4 FX60GA°used
include CLB slices, BlockRAMs and DCMs. Xilinx ISE
9.2.04i was used in order to obtain utilization dmling in-
formation.

A total of 10 hardware systems (as described irsextipn
A) were created, two for SHA-512, six for Whirlpaaoid two
for PHASH. The limitation for PHASH was due to flaet that
the Virtex4 FX60 FPGA can accommodate PHASH withtaip
two W ciphers only. Table | summarizes the impletagon
results.

TABLE I. IMPLEMENTATION RESULTS FORVIRTEX-4 FX60FPGA
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phash_data_buffer (1) :‘ w_cipher (1) > xor_update J

A

4

phash_data_buffer (N)

phash_control_unit

Figure 3. Block diagram of PHASH design

B. Testing Functionality

Throughout the implementation process many teste we
performed to verify the functionality of individuabmponents
and entire systems. The VHDL testbench was resplenfir
reading pre-padded data to be hashed from a élisg the
data at the appropriate time, as well as compadhagbtained
hash to a known value. The SHA-512 and Whirlpost tata
consisted of 240 tests, starting with 20 bytesaidind incre-
menting by 20 bytes for each consecutive testafdotal of
4800 bytes. The PHASH test data consisted of theparate
tests. The first consisted of 128 test cases. irhedase en-
sured only a single block is hashed, and each catige test
hashed an extra block. As a result 128 tests rgrfgim a sin-
gle block to 128 blocks were performed. The sedest con-
sisted of hashing 256 and 257 data blocks. Thes ldounts
represent the transition between the first and receduction
levels. The final test consisted of hashing 655868 65537
blocks. These block counts represent the trandit@ween the
second and third reduction levels.

C. Hardware Verification

The available hardware platform to verify the fuoality
of the designs was the Xilinx ML410 developmentrdodhe
ML410 is a complete development system containiiirix-
4 FX60 FPGA as well as a multitude of additionaiipieerals.
The Virtex-4 FX60 FPGA is a hybrid FPGA, containingt
only FPGA logic, but also two PowerPC 405 coresresa
other notable features of this FPGA include 232Kb&-
BlockRAMSs, up to 20 DCMs, 25280 CLB slices, equéardlto
56880 logic cells, 128 XtremeDSP slices as wellmasti-
gigabit RocketlO transceivers. Additional feature$ the
ML410 development board used in these implememtsitio-
clude 256 MB DDR-2 external memory, 512 MB CF candi

Algorithm Configuration Slices Freq. Throughput
(MHz) (Mbps)
SHA-512 Distributed RAM 2073 106.65 1365
SHA-512 BlockRAM 1917 103.17 1321
Whirlpool 1 6605 122.09 6251
Whirlpool 2 6597 123.50 6323
Whirlpool 3 7327 105.28 5390
Whirlpool 4 7937 112.38 5754
Whirlpool 5 4833 138.96 7115
Whirlpool 6 3914 137.08 7018
PHASH 1 1w 11010 126.71 11353
PHASH 2 2W 16901 124.24 22264

Since all implementations achieved an operatingueacy of
at least 100 MHz it was possible to integrate thetm a sys-
tem which utilized a PowerPC processor with its oamica-
tion bus operating at 100 MHz. Xilinx EDK 9.2.0@ftsvare
was used in order to design and implement the fiaadlware
systems required to test the functionality of theplementa-
tions. All the hardware verifications were succeksf

D. High Performance Design

To exploit parallelizability of PHASH and determirits
maximum possible throughput on the state-of-theFRGAs
the VHDL model was synthesized into Virtex-5 LX3@€vice.
For comparison purposes SHA-512 and Whirlpool wais®
implemented on the same platform. Table Il shovesrdsults
obtained for SHA-512 and Whirlpool. It is importatat note
that the slice counts in Virtex-5 devices are nigally compa-
rable to those in Virtex-4 devices. The Virtex-5vides have
less slices, however each slice contains abouetai many
resources as a single Virtex-4 slice.

TABLE Il. SHA-512AND WHIRLPOOL RESULTS FOR/IRTEX-5LX330 FPGA

Algorithm Slices Frequency Throughput
(MHz) (Mbps)
SHA-512 1102 142.88 1829
Whirlpool 2892 162.34 8312

It is evident that the performance optimized Whidpimple-
mentation greatly outperforms the SHA-512 impleragah in
terms of throughput. However it requires more thaite as
many slices to implement. Table Il shows a simdat of me-
trics for several PHASH implementations. For eanplemen-
tation a different number of W cipher instanceseniecluded.
By increasing the number of instances a significatrtease in
throughput was observed, at the cost of incredgadisage.



TABLE Ill. PHASHRESULTS FORVIRTEX-5LX330 FPGA

W cipher Slices Speedup Frequency Throughput
instances Factor (MHz) (Mbps)
1 4469 1.00 168.07 15059
2 8031 1.92 161.29 28903
4 13537 3.69 155.04 55566
8 24427 6.70 140.85 100958
16 42362 12.13 127.39 182624

The speedup factor represents the efficiency athwttie im-

plementation scales. The throughput obtained wigingle W

cipher instance is used as the baseline and tmern¢$ospeedup
factor is 1.00. The maximum theoretical speedupfasould

be equal to the number of W cipher instances ussoking at

the results in Table Il and Table Il it is alsoidant that the
PHASH implementations greatly outperform both SHE5
and Whirlpool in terms of throughput. The PHASH lempen-

tation with a single W cipher instance requireghgly more

slices than the Whirlpool implementation; howe\ds iable to
achieve nearly twice as much throughput. For aatisumpar-
ison, a bar graph of the maximum throughput oftake algo-
rithms targeted for the Virtex-5 LX330 FPGA is shoim Fig-

ure 4. By looking at the number of slices requiearder to

achieve 1 Mbps of throughput both the area andabiper fre-

guency can be incorporated into a single metri@ $HA-512

implementation requires 0.60 slices per 1 Mbpshadughput,

whereas the Whirlpool implementation requires dhi§5 slic-

es per 1 Mbps of throughput.
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Figure 4. Maximum throughput

A PHASH implementation with a single W cipher imsta
requires only 0.30 slices per 1 Mbps of throughfite re-
maining implementations require between 0.28 agd 6lices
per Mbps. This shows that the PHASH implementatigiize
the available slices very efficiently, even asithplementation
scales.

V. CONCLUSION AND FUTURE WORK
This paper presented FPGA design and performaralg-an

sis of the SHA-512, Whirlpool and the newly propbse

PHASH algorithm. The novelty of PHASH is that itable to
exploit parallelism and as a result achieve a mhigher
throughput than any other currently available hagliinction.
A PHASH implementation using only a single W cipfseable
to achieve over 15 Gbps of throughput. When thebmimof W
cipher instances is increased to 16, a throughpuoiver 182
Gbps is achieved. A fair comparison between SHA-&mhd
Whirlpool on the same FPGA implies overall betterfor-
mance of Whirlpool. Several assumptions were madingl

the implementation of PHASH in order to facilitdtee devel-
opment process. Future work should include remowiogt, if
not all, of these assumptions in order to createsa con-
strained implementation. The most noticeable &gini in this
implementation of PHASH is that the number of Whepin-

stances used is required to be a power of 2. dvaimplemen-
tation were to remove this restriction several mmgances
would be able to fit onto the Virtex-5 LX330 FPGRinally,

the implementation in this work restricts the maximnumber
of reduction levels in PHASH to three. Future inmpémtations
can remove this restriction.
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