
SECURITYAND COMMUNICATION NETWORKS
Security Comm. Networks. (2008)
Published online in Wiley InterScience
(www.interscience.wiley.com) DOI: 10.1002/sec.39

NTRU-based sensor network security: a low-power hardware
implementation perspective

Fei Hu1, Kyle Wilhelm2, Michael Schab2, Marcin Lukowiak2, Stanislaw Radziszowski3 and Yang Xiao4*,y

1Department of Electrical and Computer Engineering, The University of Alabama, U.S.A.
2Department of Computer Engineering, RIT, Rochester, New York, U.S.A.
3Department of Computer Science, Rochester Institute of Technology, Rochester, New York, U.S.A.
4Department of Computer Science, University of Alabama, U.S.A.

Summary

Wireless sensor network security requires the cryptography software extremely low complex and energy efficient

due to the limited memory and CPU capacity in a sensor. The NTRU (Nth degree truncated polynomial ring)

encrypt algorithm has been shown to provide certain advantages when designing low power and resource

constrained systems, while still providing comparable security levels to higher complexity algorithms. Unlike the

current works that build NTRU software in a chip, this research focuses on the hardware implementation of NTRU

algorithms because hardware implementation has much higher execution speed than software implementation. In

contrast to previous research, the focus is shifted away from specific optimizations but rather provides a study of

many of the recommended practices and suggested optimizations with particular emphasis on polynomial

arithmetic and parameter selection. Recommendations for algorithm and parameter selection are made regarding

implementation in hardware with respect to the resources available. Copyright # 2008 John Wiley & Sons, Ltd.

KEY WORDS: sensor network security; NTRU; hardware design; cryptography algorithms

1. Introduction

Public-key cryptography can be used in both wired

and wireless networks. A general assumption that can

be made for wired network security is that the amount

of security desired is the driving factor for the cryp-

tosystem. In this case, the cryptosystem is allowed to

use any required resources for any required amount of

time, within practicality, to accomplish the desired

security level. The increasing number of applications

which transmit confidential data over insecure chan-

nels require that authentication is achieved through

public/private key pair. Typically the sender’s private

key is used to generate a message authentication code

(MAC) for the message and then the receiver can use

the sender’s public key to verify the source.

However, in wireless sensor networks, we have

serious restriction on the amount of computational

power, memory storage, gate area, and power that are

allowed to be consumed by tiny sensors [1]. Existing

public-key schemes have been found to be challen-

ging in terms of resource consumption (e.g., RSA [2])

or in terms of power scalability (e.g., ECC [3]).

This research aims to use the NTRU (Nth degree

truncated polynomial ring) algorithm in sensor net-

works since NTRU has been claimed to be able to

*Correspondence to: Yang Xiao, Department of Computer Science, University of Alabama, U.S.A.
yE-mail: yangxiao@ieee.org

Copyright # 2008 John Wiley & Sons, Ltd.



deliver security level similar to RSA or ECC at less

computational effort and lower power consumption

[4]. Once the session key is established with NTRU,

AES [2] can be used for encryption and decryption of

subsequent data [5].

Although NTRU encryption/decryption algorithms

could be implemented in pure software such as in C/

Cþþ/Java [6], many sensor networks need to achieve

real-time sensor data authentication and intrusion

detection (typically the stream decryption time cannot

go beyond 100ms [2]). In order to speed up the

security algorithms, hardware approach is necessary.

This research will propose a series of optimizations in

the NTRU circuit design to achieve required operation

speed with ultra-low-power dissipation. To the best of

our knowledge, there is no or very little research on

NTRU-based security hardware for sensor networks.

The rest of this paper is organized as follows:

Section 2 will briefly introduce the NTRU algorithms.

The NTRU optimization strategies for sensor net-

works will be explained in Section 3. We then provide

the RTL-level design (via VHL) in Section 4. Finally,

Section 5 concludes this paper.

2. NTRU Algorithms

For the convenience of future discussions, we first

briefly give the basic principle of lattice-based NTRU

ciphers. For details and security analysis of NTRU,

please refer to Reference [7]. The NTRU public key

cryptosystem is based on ring theory and relies for its

security on the difficulty of solving certain lattice

problems. It uses a ring R and two (relatively prime)

ideals p and q in R. Suppose f, g, r, e, and a are all ring

polynomials. A standard implementation of NTRU

uses the ring of convolution polynomials:

R ¼ Z½X�
ðXN � 1Þ

and all polynomials have integer coefficients.

In most cases p and q are primes, with p much

smaller than q. Most of subsequent computations are

done mod p or mod q, and all polynomials are taken

modulo (XN� 1). Multiplication in the ring R is

sometimes referred to as star multiplication (see

Reference [8] for details).

(1) Key creation: Suppose Bob creates a public key h

by choosing elements f; g 2 R, computing the

mod q inverse f�1
q of f, and setting:

h � f�1
q � g ðmod qÞ ð1Þ

Bob’s private key is the element f. Bob also

precomputes and stores the mod p inverse f�1
q of f.

(2) Encryption: In order to encrypt a plaintext mes-

sage m 2 R using the public key h, Alice selects a

random element r 2 R and forms the ciphertext:

e � r � hþ m ðmod qÞ ð2Þ

(3) Decryption: In order to decrypt the ciphertext e

using the private key f, Bob first computes:

a � f � e ðmod qÞ ð3Þ

Bob then chooses a 2 R to satisfy this congruence and

to lie in a certain prespecified subset of R. He next

does the mod p calculation f�1
q � a (mod p) and the

value he computes is equal to m modulo p.

As we can see from above descriptions, the basic

parameters of the NTRU cryptosystem are N, p, and q.

The parameter N is used to define the degree of

polynomials used in the convolution polynomial

ring. The modulus p is defined as the small modulus

and the modulus q is the large modulus, where p is

much less than q. Most operations in the convolution

ring will occur modulo q whereas the modulus p is

used to reduce the random generation components

used in encryption and to constrain the message space.

Modular reduction of a convolution polynomial is

performed by reducing each coefficient.

Although the NTRU algorithm has been scrutinized

and peer reviewed by numerous parties, there have not

been many widely published implementations in hard-

ware. NTRU Cryptosystems Inc. has made public

some of their own hardware design works [9,10],

while other significant works include References

[4,6] from the Worcester Polytechnic Institute. The

most recent source of interest found was a software

implementation that provided a possible increase in

efficiency for polynomial multiplication [11].

Although hardware aspects have been considered in

previously published works [4], there has been no

known publication of an in-depth study of the NTRU

system regarding implementation in sensor hardware.

With the goal of introducing many of the hardware-

related design issues, the general system will be

examined, followed by specific considerations for

design and modeling based on the IEEE 1363.1 draft

standard. While only the aspects for design are

F. HU ET AL.

Copyright # 2008 John Wiley & Sons, Ltd. Security Comm. Networks. (2008)

DOI:10.1002/sec



presented here, the following chapter will provide in-

depth discussion and analysis.

For implementation of almost any system, it is often

advisable to consider the primary operands and opera-

tions that are involved in the system. For the NTRU

system, the primary operands are convolution poly-

nomials or their integer coefficients. Operations to

consider are addition, multiplication, and inversion of

convolution polynomials and modular reduction and

inversion of coefficients. Although these factors can

be evaluated independently of the specific parameters

used in the system, often it is more valuable to assess

particular groups of parameters.

Depending on the choice of parameters, the length

of a polynomial used in the NTRU system can range

from around three thousand bits to well into the tens of

thousands of bits. Although one of these polynomials

may seem to fit trivially in the amount of memory that

is commonly available to hardware systems, several

polynomials are used in the system and the total

amount of memory needed may be unachievable for

some systems. In addition, access patterns should be

taken into account when deciding on the method of

operating on the polynomials, which is often depen-

dent on the type of storage used. At times it may be

better to pack coefficients in the minimum space

required but there are also situations where it may

be better to have padding between coefficients. Some

hardware configurations may not support arithmetic

on operands above a certain bit length or may be less

efficient when operating on bit lengths that are be-

tween standard operand boundaries. For example,

consider a configurable piece of hardware which has

embedded multiplier units accepting 16-bit operands.

If the system parameters allow for a minimum coeffi-

cients size of 10 bits, then an implementation using

only 10 bits might create an implementation using

configurable logic or lookup table version of a 10-bit

multiplier in order to keep the more efficient em-

bedded resources available. If the option is available,

it is possible to force the operation onto the embedded

resource anyway, but it would also be possible to pad

the coefficients out to 16 bits to cause a migration into

the embedded resource. Additional details concerning

storage methods and memory requirements can be

found in the following chapter.

Following almost every operation in the NTRU

system, the result is reduced either modulo p or q.

The modular reduction of a polynomial being defined

by reducing each coefficient, there are N reductions

per operation. Assuming that a general modulus is

used, a general reduction algorithm would have to be

used, but often the form of the chosen modulo allows

for better performance. In hardware, power of two

reductions is performed at no cost by truncating the

result of an operation or can be performed at minimal

cost using a masking operation.

NTRU Cryptosystems Inc. has set out to define

standard interfaces to provide definitions on secure

and efficient ways to implement an NTRU system.

Although NTRU Cryptosystems is active in numerous

bodies, the two most frequently referenced are the

Institute of Electrical and Electronics Engineers

(IEEE) and the Consortium for Efficient Embedded

Security (CEES). Collaboration with the CEES has

generated the Efficient Embedded Security Standard

#1 (EESS) [12]. Current work with the IEEE has

generated the 1363.1 draft standard [13], a work that

is still in progress. The scope differs between the two.

The EESS document seeks to provide a standard

implementation interface for the NTRU system in

wired and wireless applications. The EESS is also

targeted more toward applications using a microcon-

troller and so limits the scope of the parameters

recommended. The IEEE 1363.1 document is more

of a reference for techniques, theoretic background,

and security considerations. Due to the difference, the

EESS document contains much more material on

interface definitions but references the IEEE 1363.1

document for detailed discussion of security. Perhaps

due to still being a draft revision, the IEEE 1363.1

document lacks the detailed information on NTRU-

Sign, a signature scheme based on the NTRU opera-

tions, which can be found in the EESS document.

Despite these differences, the similarities between the

two standards are apparent when analyzing the re-

commended primitives and procedures.

3. Hardware Design—Optimization
Strategies

3.1. Design Plan of NTRU Polynomial Multiplier

This project has designed and integrated the following

major hardware components to achieve polynomial

multiplications operations in the NTRU data path.

The top-level structure of our design is presented in

Figure 1.

(1) Public/private key memory which maps the

indices of the public and private key polynomial

coefficients to their values; additional informa-

tion, whether the value of the coefficient is 0 or

NTRU-BASED SENSOR NETWORK SECURITY

Copyright # 2008 John Wiley & Sons, Ltd. Security Comm. Networks. (2008)

DOI:10.1002/sec



not, is stored in the value bit portion of the

memory (it will be later used to optimize the

arithmetic operations and logical activity on inter-

connections).

(2) Message memory which maps the indices of the

message polynomial coefficients to their values.

(3) Specialized tri-state buffers-based selection unit

which implement low-power selection of the

polynomial coefficient for processing.

(4) Processing unit which is a low-level optimized

glitch free adder.

(5) Control unit which is a state machine that controls

the process of polynomial multiplication.

3.2. NTRU Throughput
Optimizations—Algorithm Level

Obviously, if we could shape the circuit design based

on more time-efficient NTRU algorithms, we would

improve throughput and thus speed up the encryption

and decryption process. This project has investigated

the optimization of the corresponding NTRU

circuits based on the following NTRU algorithmic

optimizations:

� Since the most time consuming part is polynomial

multiplications, (this includes the calculation of the

product (r � h mod q) during encryption process,

the two products during decryption: ðf � e mod qÞ
and ðf�1

p a mod pÞ, and the inverses f�1
p and f�1

q

during key creation), we have enhanced the control

unit circuit so it is possible to store and access the

coefficients of a polynomial f(x).

� We have also investigated another way to speed up

the encryption and decryption processes, that is,

adopting products of low Hamming weight poly-

nomials to decompose r(x) [14]. In other words, we

can significantly reduce the star multiplication time

by taking r(x) to be a product of polynomials with

fewer ones. Thus, suppose that r(x)¼ r1(x)�r2(x),
where r1 and r2 are binary polynomials with d1 and

d2 ones, respectively. Then r(x) will have approxi-

mately d1�d2 ones. Notice that the computation of

the product r(x) � h(x)¼ r1(x) � (r2(x) � h(x)) re-

quires only (d1þ d2)�N operations, so the computa-

tional time is largely reduced. From hardware

implementation viewpoint, this project has de-

signed a path-equalized multiplier with two

sets of coefficients from low Hamming weight

polynomials.

During the final step of the decryption process, the

inverse of the private key modulo the small modulus p

is multiplied by the candidate value to obtain the

candidate plain text. One of the optimizations used

is to choose the form of the private key to be

f¼ 1þ p �F, where F is a random polynomial with

dF non-zero coefficients. By choosing the private key

in this form, the inverse modulo p of the private key is

simply one which eliminates the need for the final

convolution multiplication during decryption. Addi-

tional savings are achieved in terms of storage and key

generation computations, as the inverse of the private

key modulo p does not need to be stored or computed.

To obtain greater efficiency during multiplication

operations, an alternative form is suggested that takes

Fig. 1. Top-level structure of the NTRU polynomial multiplier.

F. HU ET AL.

Copyright # 2008 John Wiley & Sons, Ltd. Security Comm. Networks. (2008)

DOI:10.1002/sec



advantage of sparse polynomials. The suggested form,

f¼ f1 � f2þ f3, is constructed from polynomials f1, f2,

and f3 having df1, df2, and df3 non-zero coefficients

respectively. By multiplying against these separate

vectors, the entire multiplication by f would require

(df1þ df2þ df3)N operations instead of (df)N opera-

tions per coefficient.

For example, with N¼ 251 and df¼ 90, one might

choose df1¼ df2¼ df3¼ 9. A multiplication of a poly-

nomial a by f would require (df)N¼ 22590 operations

per coefficient. Using the alternative representation,

the result could be calculated in three steps by a � f1,
(a � f1) � f2, and a � f3, leading to (df1þ df2þ df3)N¼
6777 operations per coefficient.

Operating under the assumption that construction

of message using a binary small modulus would be

appealing, an algorithm is provided for efficient multi-

plication of a binary polynomial with a large modulus

reduced polynomial. The algorithm takes advantage

of representing the binary polynomial by a vector of

positions of the non-zero elements. While such an

approach might be applicable to a larger modulus, the

efficiency of storing the positions of non-zero ele-

ments would be reduced with the need to store what

value the non-zero elements were.

Optimizations can also be made to perform faster

reduction of certain classes of moduli, such as Mers-

enne primes [9] which are of the form p¼ 2x� 1. An

example of a fast algorithm for reduction of Mersenne

primes is shown in Figure 2. Modular inversion of

integers is used during key generation in the NTRU

system depending on the choice of inversion used for

polynomials. Polynomial inversion using the Ex-

tended Euclidean Algorithm (EEA) requires an inte-

ger modular inversion per iteration and one final

inversion to calculate the result. For smaller moduli,

the inverse can often be easily stored in a lookup table,

but the EEA can also be used for large moduli. In

order to calculate the inverse modulo the power of a

prime, an algorithm based on Newton’s iteration is

presented in Reference [15] and is repeated here, for

convenience, in Figure 3. Although the algorithm is

presented for convolution polynomials, the same

method is applicable to integers as well.

3.3. NTRU Throughput Optimizations—Circuit
Level

To improve NTRU throughput at circuit level, we

have investigated two possible approaches—paralle-

lization and pipelining of the Arithmetic Units (AUs)

(see Figure 4). Adding memory elements (registers) to

the inputs and outputs of the AUs will allow the use of

multiple instances of AU component (between 2 and

K (K< 2N)) to implement quasi-parallel structure.

The AUs’ inputs and outputs will be controlled by a

modified FSM. One advantage of the quasi-parallel

circuit is that it does not sacrifice throughput/power

ratio. The only additional components are registers in

the AUs and a few states in the control unit. Addi-

tional registers can be implemented inside the AUs to

allow further processing speed-up through pipelining.

This research has targeted the following issues:

designing the data path to allow quasi-parallel ac-

cesses by tapping the polynomial coefficients into

different positions; designing the FSM to accept

multiple AU outputs without idle waiting between

transition states; avoiding the access conflict (to

reduce latency) between the NTRU inner and outer

nested loops.

3.4. NTRU Circuitry Power Optimizations

Power dissipation P in digital circuit is usually di-

vided into dynamic power (consumed by switching

and short-circuit) and static power (leakage), as

shown in Equation (4) (where N is the number of

gate output transitions per clock cycle, and f is the

operating frequency). The switching power is due to

charge and discharge of the capacitors driven by the

circuit; the short-circuit power is caused by the

simultaneous conducting of nMOS and pMOS tran-

sistors; the static power is due to the leakage currents.Fig. 2. Reduction of mersenne primes [9].

Fig. 3. Newton’s iteration [15].

NTRU-BASED SENSOR NETWORK SECURITY

Copyright # 2008 John Wiley & Sons, Ltd. Security Comm. Networks. (2008)

DOI:10.1002/sec



The dynamic part of the total power is still the

dominating part in technologies of 90 nm and larger;

static power is gaining importance at sub-90 nm

technologies.

P ¼ PDynamuc þ PStatic

¼ f � N � CLoad � V2
DD

2
þ ISCavrage � VDD

� �
þ ILeakage � VDD

ð4Þ

It is possible to analyze and optimize power dis-

sipation at several levels such as algorithm, architec-

ture, circuit, and device. The choice of target

technology determines which of the levels are avail-

able. If FPGA or standard cell ASIC are the target

technologies, power consumption can be optimized at

algorithm, architecture, and circuit levels. If the target

technology is full custom ASIC (each primitive logic

cell or transistor is manually designed and optimized)

then power consumption can be additionally opti-

mized at the device level, however, in this case the

initial design cost and design time are much higher.

Very effective technique, that can be used in conjunc-

tion with those already mentioned, is voltage scaling.

Here, the digital system is designed in the way so it

will accept different supply voltages to allow control-

ling the speed and power consumption requirements.

In this part of our project, we have used a hier-

archical approach to the power optimization of hard-

ware implementation of a NTRU processor. First, we

have analyzed the key components of NTRU algo-

rithm and their activation depending on input transi-

tions, scheduling, allocation and binding. This allows

us to develop power-aware high-level architecture

by applying the usual steps of high-level synthesis

(however, with emphasis on the minimization of the

power consumption). The NTRU architecture ob-

tained in this way can be further optimized at circuit

and device levels depending on the chosen target

technology.

Based on the above power source analysis, we have

summarized the following six important principles we

have followed during the design of power-saving

NTRU circuits:

(1) Minimize the number of gates’ output transitions

to reduce the dynamic power dissipation.

(2) Minimize the size of the circuit (number and sizes

of transistors) to reduce both the dynamic and

static power dissipation.

(3) Minimize the number of glitches in combinational

part to reduce dynamic power dissipation.

(4) If target technology allows, implement non-criti-

cal paths using transistors with higher threshold

voltage to reduce static power dissipation.

(5) Make non-critical paths operate at lower power

supply to reduce both the dynamic and static

power consumption.

(6) Apply additional techniques (e.g., substrate bias-

ing) to reduce static power consumption if target

technology is 90 nm or less.

3.5. Implementation of Power Optimized
NTRU Circuitry

First, based on Principles 1, 2, and 3 (see above), less

circuit units could reduce power consumption. Thus

this research looks for all possible strategies that can

reduce the circuit size with emphasis on power con-

Fig. 4. Parallel/pipelined architecture of the NTRU datapath to improve throughput.

F. HU ET AL.

Copyright # 2008 John Wiley & Sons, Ltd. Security Comm. Networks. (2008)

DOI:10.1002/sec



sumption. For instance, the control unit implemented

as finite state machine (FSM) should use minimum

number of states but encoded in a way that will also

minimize the size of the next state and output logic. It

is very important that state transitions do not create

any unnecessary glitches, so states will be encoded

using Gray (and decomposed) codes in as many places

as possible. As another example, we have noticed that

we could use smaller word size mod p for coefficients

of the random polynomial r(x) (see Equation (2)).

This can directly translate into fewer storage elements

such as flip-flops.

Second, the NTRU star multiplications could con-

sume significant power among all NTRU arithmetic

operations. Suppose c(X)¼ a(X) � b(X), we can calcu-

late the coefficients of polynomial c(X) as follows:

ck ¼ a0bk þ a1bk�1 þ � � � þ aN�1bKþ1 ¼
X

iþj�k mod N

aibj

ð5Þ

We have designed NTRU circuits with the follow-

ing three features to save power during star multi-

plication:

(1) Based on the observation that the sparse nature of

fi(X) causes most of the inner product terms to be

0, we designed a value bit memory to be used in

the selection of the operands for only those inner

product terms which may be non-zero. Thus we

largely save the power consumed on computing

zero terms. Using additional memory seems to be

better approach then comparing the value of each

coefficient every time it is read from the mem-

ory—especially for the coefficients of the key

which will not change during computations.

(2) We carefully designed the counters layout for the

two nested loops that are used to implement cyclic

convolutions. Linear feedback shift registers

(LFSR) is a good choice for those counters in

order to reduce gate-switching activities. Clock

gating is used whenever possible to allow further

power reduction.

(3) Specialized selection is necessary for repeated

coefficient additions. However, a traditional sim-

ple register structure could cause many power-

intensive gates transitions. This research conducts

the design of a specialized tri-state buffers-based

selection structure as presented in Figure 5. The

value bit of each coefficient together with the

selection control signal will select only non-zero

coefficient for the processing.

4. RTL-level Hardware Design via VHDL

4.1. RTL Design Goal

To investigate the aspects of the NTRU system, a

hybrid behavioral and structural very large integrated

circuit hardware description language (VHDL) model

was designed. Components that were easily translatable

to hardware were implemented using structural mod-

els, while some of the more complex components

were written using behavioral style code. Two main

goals were used during the design and creation of the

IEEE 1363.1 system model (see Figure 6).

The first goal was to make the system as modular as

possible to facilitate the changing of individual mod-

ules without need for recreation of the entire model.

Due to the draft status of the IEEE 1363.1 standard, it

is likely that future edits could change the recom-

mended practices, which is reflected in the separation

of the system into fairly small functional blocks. Each

of the functional blocks making a sensible division,

the modules are mainly separated around the bound-

aries of the algorithms presented in the standard.

The second goal was to make the system flexible

with regard to changing of the top-level system para-

meters. Although the system could have been created

in a manner similar to the algorithm blocks defined in

the IEEE 1363.1 draft standard, the choice was instead

made to use generic declarations to control each

module. Use of generics in each module allowed the

system testbench to control the parameters used

in testing without modification of each individual

Fig. 5. Tri-state buffers based selection.

NTRU-BASED SENSOR NETWORK SECURITY

Copyright # 2008 John Wiley & Sons, Ltd. Security Comm. Networks. (2008)

DOI:10.1002/sec



module but also allowed for a reduced number of

inputs and outputs compared to that needed for a

dynamically changing system. The full modules for

key generation, encryption, and decryption were

wrapped in a testbench which provided inputs based

on available testing data and checked for the expected

outputs. The final model became a testing platform for

all of the pieces of the IEEE 1363.1 draft standard

with the ability to be piece-wise adapted for further

study and optimization.

Figure 7 shows our VHDL design procedure which

includes NTRU components implementation and test.

In order to facilitate the convolution multiplications of

a general system, a model was created to handle all of

the cases that might need to be handled (see Figure 8).

The model accepts two polynomials modulo p, two

polynomials modulo q or a combination of the both.

In addition, the output polynomial can be reduced

modulo an integer input, mod n, to allow for special

cases and also allows a scaling of the output poly-

nomial, through use of the integer input scale, before

reduction for calculations such as the public key

where the output needs to be scaled by p. The type

of input used and whether or not the output is scaled is

controlled by the input datyp. The calculation that

performs the convolution multiplication is the basic

algorithm, taking N2 operations, where each operation

is a multiplication and an addition. The calculation is

initiated by a rising edge on the daclk and is calculated

immediately due to the behavioral nature of the

model. In addition to the modulo p and q outputs,

there is a modulo two output used for directly input-

ting into the mask generation function after the

calculation of R¼ r � h (mod q). The generic values

Fig. 6. Our design is based on IEEE 1363.1 standard.

Fig. 7. NTRU hardware design procedure.

F. HU ET AL.

Copyright # 2008 John Wiley & Sons, Ltd. Security Comm. Networks. (2008)

DOI:10.1002/sec



cl2q and cl2p are used throughout the system and

represent the number of bits that should be used to

store each coefficient in q and p, respectively.

4.2. System Testing Results

The behavioral VHDL model was mainly tested using

data provided for the IEEE 1363.1 draft standard. The

four-parameter sets, that data were available for, were

ees347ep2, ees397ep1, ees587ep1, and ees787ep1.

Since testing data were not yet available for product

forms, the focus of the testing was conducted using

the less optimized full polynomial algorithms. The

testbench used a series of constant assignments ap-

plied through the generics for each individual compo-

nent model to control the parameters for testing.

Figure 9 shows our NTRU encryption/decryption

results in VHDL models.

The method of storage and the amount of storage

required to implement the NTRU system can be of

particular concern for those using resource constrained

hardware or for those seeking optimize performance.

The trivial method of storing polynomials is to store

each coefficient in a linear array, taking N � dlog2ðqÞe
or N � dlog2ðpÞe bits of storage for a polynomial

modulo q or p, respectively. The appeal of this method

is the simplicity involved, however, this is clearly not

as appealing as the number of bits needed to store

each coefficient or the degree of the polynomials

increase. Using the idea that many of the coefficients

involved in a polynomial will be zero, an alternative

method is to store each non-zero coefficient and the

degree that coefficient represents. Assuming there

were numnz percentage of non-zero coefficients, this

method would require:

N log2ðqÞd e þ log2ðNÞd eð Þnumnz or

N log2ðpÞd e þ log2ðNÞd eð Þnumnz

bits of storage per polynomial. To evaluate which

method is better in a general manner is difficult to

imagine because the equations are based on N, p, or q

Fig. 8. NTRU VHDL design modules.

Fig. 9. VHDL simulation results.

NTRU-BASED SENSOR NETWORK SECURITY

Copyright # 2008 John Wiley & Sons, Ltd. Security Comm. Networks. (2008)

DOI:10.1002/sec



and numnz, which requires varying of three input

variables and assessment of the output amount of

storage. Instead, to avoid over complication during

examination of the results, one of the three input

variables can be constant, a second can be varied

and a graph can be made for each of a series of values

for the third value. The choice was made to hold a

value for either p or q, vary N and graph the results for

a series of different values for numnz. To examine one

of the extremes, the results for p¼ 3 are shown in

Figure 10.

Inversion is an expensive operation in many cryp-

tosystems, and such is the case for the NTRU system.

For key generation in NTRU, the inverse of the private

key polynomial must be taken modulo the large

modulus, q. For security purposes, it is also checked

that the inverse of g exists modulo q. For now, two

suggested algorithms exist for calculation of the

inverse, the EEA and the almost inverse algorithm

(AIA) [10,16,17], of which only the EEA is recom-

mended for use in the IEEE 1363.1 draft standard.

Although an implementation of each algorithm was

tested during the course of this research, they were not

developed to the point where a reasonable comparison

of hardware results could be made. Instead, a compar-

ison can be made by examining one iteration of each

algorithm in terms of the operations required. To start

with, the general EEA presented can be compared

with the general AIA, as shown in Table I. From the

comparison in Table I, it might be thought that the

AIA contains more work per iteration than the EEA.

The AIA has two polynomial rotations and one poly-

nomial degree calculation more than the EEA, but one

fewer polynomial addition. While this could be con-

sidered a fair comparison of the main loops of each

algorithm, what it ignores is the inner loop inside the

Fig. 10. Memory overhead analysis.

Table I. Comparison of operations per iteration between inversion methods.

Operation # in EEA # in AIA Steps found in

Integer invasion 1 1 EEA: step 8
AIA: step 10

Polynomial rotation 0 2 AIA: step 4
Polynomial degree 1 2 EEA: step 9

AIA: steps 5 and 8
Polynomial addition/subtraction 1/2 0/2 EEA: step 13/steps 12 and 14

AIA: steps 11 and 12
Polynomial convolution multiplication 2 2 EEA: steps 12 and 14

AIA: steps 11 and 12

F. HU ET AL.

Copyright # 2008 John Wiley & Sons, Ltd. Security Comm. Networks. (2008)

DOI:10.1002/sec



EEA. The inner loop of the EEA contains a poly-

nomial degree calculation, a polynomial addition, a

polynomial subtraction and a polynomial convolution

multiplication. Assuming the inner loop executes at

least twice on a given iteration of the EEA, the AIA

achieves inversion through fewer computations.

5. Conclusions

In this paper, we have presented a parameter and

component flexible testing model for the NTRU pub-

lic-key cryptosystem in conformance to the IEEE

1363.1 draft standard. The model was successfully

tested using provided and generated test datasets and

is now adaptable for further software and hardware

research. Research conducted during creation and

testing of the model was used to analyze the NTRU

system with respect to both general underlying math-

ematical operations and specific qualities relating to

the IEEE 1363.1 draft standard. The results of the

research suggest that the system is highly adaptable to

many conditions based on choices in the system

parameters. Representation of the polynomial oper-

ands can be chosen to maximize storage efficiency.

Hardware implementations benefit by using the max-

imum value of q which fits the bit width allowable in

the hardware, followed by adjustment in N to achieve

the desired security level. Parallelism in the opera-

tions of the system can be exploited to achieve better

efficiency but must be carefully considered to avoid

complications when adapting to new parameter sets.

Overall, the work presented here can be used as

underlying research for further investigation of the

NTRU system and IEEE 1363.1 draft standard.

Acknowledgement

This project has been supported in part by U.S.A.

National Scientific Foundation (NSF) under the grants

of CNS-0716211 and #CNS-0716455. Any ideas from

this paper do not necessarily reflect the opinions of

NSF.

References

1. Perrig A, Szewczyk R, Tygar JD, Wen V, Culler DE. Spins:
security protocols for sensor networks. In Wireless Networks,
V8, N5, Springer, Berlin, Germany, 2002; 521–534.

2. Stinson DR. Cryptography: Theory and Practice (3rd edn).
Chapman & Hall/CRC, New York, 2006.

3. Koblitz N. Elliptic curve cryptosystems. In Mathematics of
Computation, Vol. 48, 1987; 203–209.

4. Kaps J-P. Cryptography for ultra-low power devices. Ph.D.
dissertation, Worcester Polytechnic Institute, 2006.

5. Rivest R, Shamir A, Adleman L. A method for obtaining digital
signatures and public-key cryptosystems. In Communications
of the ACM, Vol. 21, 1978; 120–126.

6. O’Rourke CM. Efficient NTRU implementations. Master’s
thesis, Worcester Polytechnic Institute, 2002.

7. Hoffstein J, Pipher J, Silverman JH. NTRU: a ring-based public
key cryptosystem. In Algorithmic Number Theory (ANTS III),
Vol. 1423, Buhler JP (ed.). Lecture Notes in Computer Science
(LNCS) Springer, Berlin, 1998; 267288.

8. Howgrave-Graham N. A hybrid lattice-reduction and meet-in-
the-middle attack against NTRU. NTRU Cryptosystems Inc.,
2007.

9. Hoffstein J, Silverman JH, Whyte W. NTRU cryptosystems
technical report #12, version 2: estimated breaking times for
NTRU lattices. NTRU Cryptosystems Inc., 2003. [Online].
Available: http://ntru.com/

10. Silverman JH, WhyteW. NTRU cryptosystems technical report
#21, version 1: timing attacks on NTRUEncrypt via variation in
the number of hash calls. NTRU Cryptosystems Inc., 2006.
[Online]. Available: http://ntru.com/

11. Buchmann J, Döring M, Lindner R. Efficiency improvement
for NTRU. Technische Universität Darmstadt, 2007.

12. Bailey DV, Coffin D, Elbirt A, Silverman JH, Woodbury AD.
NTRU in constrained devices. In Workshop on Cryptographic
Hardware and Embedded Systems, CHES 2001, 2001; 266–
277.

13. IEEE P1363 working group for standards. In Public Key
Cryptography, IEEE 1363-2000 Standard Specifications for
Public-Key Cryptography. Institute of Electrical and Electro-
nics Engineers Inc., 2000. [Online]. Available: http://group-
er.ieee.org/groups/1363/P1363/

14. Hoffstein J, Silverman JH. Random small hamming weight
products with applications to cryptography. NTRU Cryptosys-
tems Inc., 2000. [Online]. Available: http://ntru.com/

15. Howgrave-Graham N, Silverman JH, Whyte W. Choosing
parameter sets for NTRUEncrypt with NAEP and SVES-3.
NTRU Cryptosystems Inc., 2005. [Online]. Available: http://
ntru.com/

16. Hoffstein J, Howgrave-Graham N, Pipher J, Silverman JH,
Whyte W. Hybrid lattice reduction and meet in the middle
resistant parameter selection for NTRUEncrypt. NTRU Cryp-
tosystems Inc., 2007.

17. Efficient embedded security standard (EESS) #1. Consortium
for Efficient Embedded Security, 2003. [Online]. Available:
http://www.ceesstandards.org

NTRU-BASED SENSOR NETWORK SECURITY

Copyright # 2008 John Wiley & Sons, Ltd. Security Comm. Networks. (2008)

DOI:10.1002/sec


