
An Improvement to Mathon’s
Cyclotomic Ramsey Colorings

Xiaodong Xu∗

Guangxi Academy of Sciences
Nanning, 530003, China
xxdmaths@sina.com

Stanis law P. Radziszowski†

Department of Computer Science
Rochester Institute of Technology

Rochester, NY 14623, USA
spr@cs.rit.edu

Abstract

In this note we show how to extend Mathon’s cyclotomic colorings
of the edges of some complete graphs without increasing the maximum
order of monochromatic complete subgraphs. This improves the well
known lower bound construction for multicolor Ramsy numbers, in
particular we obtain R3(7) ≥ 3214.
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1 Introduction and Notation

A (k1, k2, . . . , km)-coloring, for integers m, ki ≥ 1, is an assignment of one of
m colors to each edge in a complete graph, such that it does not contain any
monochromatic complete subgraph Kki

in color i, for 1 ≤ i ≤ m. Similarly,
a (k1, k2, . . . , km; n)-coloring is a (k1, . . . , km)-coloring of the complete graph
on n vertices Kn. Let R(k1, . . . , km) and R(k1, . . . , km; n) denote the set of all
(k1, . . . , km)- and (k1, . . . , km; n)-colorings, respectively. The Ramsey number
R(k1, . . . , km) is defined to be the least n > 0 such that R(k1, . . . , km; n) is
empty. In the diagonal case, where k1 = . . . = km = k, we will use simpler
notation Rm(k) and Rm(k; n) for sets of colorings, and Rm(k) for the Ramsey
numbers.

In the case of 2 colors (m = 2) we deal with classical graph Ramsey num-
bers, which have been studied extensively for 50 years. Much less has been
done for multicolor numbers (m ≥ 3). A related area of interest has been
the study of generalized Ramsey colorings, wherein the forbidden monochro-
matic subgraphs are not restricted to complete graphs. The second author
maintains a regularly updated survey [2] of the most recent results on the
best known bounds on various types of Ramsey numbers.

The next section shows how to improve on the well known construction
by Mathon [1] for establishing lower bounds for Rm(k).

2 Extending Mathon’s Construction

In 1987, Mathon [1] gave a very elegant algebraical construction of certain
m-class cyclotomic association schemes over finite field Fp, which when inter-
preted as m-colorings of the edges of Kp and Km(p+1) give constructive lower
bounds for the corresponding classical diagonal Ramsey numbers. Specifi-
cally, for a prime power p = mt + 1 with even t, one considers the basic
m-th residue graph Hm

p with vertices in Fp and {x, y} an edge if for some
0 6= z ∈ Fp, x − y = zm, Then, if α is the order of the maximum clique in
Hm

p , the construction gives m-colorings of the edges of Kp and Km(p+1) with
the orders of the maximum monochromatic cliques equal to α and α + 1,
respectively.
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In the case of quadratic (m = 2) cyclotomic relations Mathon’s construc-
tion is equivalent to the ”doubling” of Paley graph described independently
by Shearer [3], which, directly and indirectly, led to several best known lower
bounds for Ramsey numbers (cf. [4]).

Higher order (m ≥ 3) cyclotomic relations beyond the basic Hm
p so far

seem to be not much exploited in the context of Ramsey constructions. Here,
our main interest is in the Mathon’s cubic association scheme (also pointed
to, but not analyzed, by Shearer [3]). We show how to improve on Mathon’s
scheme in the case of cubic residues in Zp for K3p+3, though as remarked at
the end, a similar improvement holds for all Fp and m ≥ 2. In the following
we show how to include three additional vertices and obtain a 3-coloring of
the edges of K3p+6 without increasing the order of monochromatic complete
subgraphs.

We begin with a description of Mathon’s construction instantiated for 3
colors over Zp. Let p be a prime of the form p = 3t + 1 with even t, and let
β be a primitive element (generator) of Z∗

p . The condition p ≡ 1 (mod 6)

implies that −1 ≡ (βq/2)3 (mod p) is a cubic residue, which is needed for
the associated coloring to be well defined. Consider 3-coloring H3

p with the
vertex set Zp, where the edge {x, y} has color of the cubic character of x− y

in Z∗

p , i.e. {x, y} has color i ∈ {0, 1, 2} if and only if x−y ≡ β3s+i (mod p),
for some integer s. It is well known that the subgraphs induced in H3

p by the
three colors are isomorphic to each other [1]. Let αp denote the order of the
largest monochromatic clique in H3

p .
Next, we ”triple” the coloring H3

p to the coloring Mp on the vertex set
X = U ∪ V of 3p + 3 vertices, where U, V ⊂ Zp ×Zp, |U | = 3, |V | = 3p, and
U and V are defined by

U = {u0, u1, u2} = {(0, 1), (0, β), (0, β2)},
V = V0 ∪ V1 ∪ V2, where Vi = {(βi, a)|a ∈ Zp}, for i ∈ {0, 1, 2}.

Each edge e = {(x, y), (s, t)} in Mp is colored according to the cubic
character of xt − ys in Zp. If xt − ys = 0 then e has the special color
c 6∈ {0, 1, 2} (which later will be recolored), otherwise e has color i ∈ {0, 1, 2}
if and only if xt − ys ≡ β3s+i (mod p), for some integer s.

The main result related to this construction obtained by Mathon [1] is
that the order of any monochromatic clique in Mp is at most αp + 1. In
addition, the coloring Mp satisfies the following properties:
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A. Color c induces p+1 vertex disjoint triangles, U is one of them. For each
i, j ∈ {0, 1, 2}, ui’s neighborhood in color j, Nj(ui), is Vj+1 (mod 3).

B. Mp is vertex transitive, and colors {0, 1, 2} induce isomorphic colorings.
Thus, each vertex x ∈ X has degree p in each color i ∈ {0, 1, 2}, and
color i neighborhood of x, Ni(x), induces a coloring isomorphic to H3

p .

C. If the edge {x, y} has color c, then Ni(x)∩Ni(y) = ∅ for all i in {0, 1, 2}.
Consequently, after an arbitrary recoloring of the edges from color c to
colors {0, 1, 2}, any monochromatic clique in Mp contains at most one
vertex from U if it contains any vertices not in U .

Theorem 1 For prime p ≡ 1 (mod 6), let αp denote the order of the largest

monochromatic clique in the cubic residues coloring H3
p . If k = αp + 2 ≥ 4

then R(k, k, k) > 3(p + 2).

U V W

012 012 012

u0 01 120 012

u1 0 2 201 201

u2 12 012 120

V0 120 xxx 102

V1 201 xxx 021

V2 012 xxx 210

w0 021 102 01

w1 102 021 0 2

w2 210 210 12

Figure 1. Extending coloring Mp by vertices {w0, w1, w2} to M ′

p.
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Proof. We will extend the coloring Mp described above (isomorphic to
the construction by Mathon [1] for m = 3) by three additional vertices to
M ′

p, without incrementing the order of the largest monochromatic complete
subgraph. We define 3-coloring M ′

p of the edges of the complete graph on
the vertex set X ∪ W = U ∪ V ∪ W , where W = {w0, w1, w2}, and X, U, V

are as before. Figure 1 gives the colors of the edges.

The middle 3p × 3p section of the matrix with x’s is defined by the starting
coloring Mp, while other entries in the rows/columns corresponding to Vi

mean that all the edges adjacent to this set have the same color as indicated
in the matrix.

Let S be the maximum order clique in M ′

p in color i. If S ∩ W = ∅ then
S is restricted to original Mp, so |S| ≤ αp + 1. One can easily check in Fig.
1 that every monochromatic triangle can have at most one vertex in the set
U ∪ W , so we can assume that S ∩ U = ∅ but there exists x ∈ S ∩ W . By
properties B and C of Mp we have S \ {x} ⊂ Vj, so again |S| ≤ αp + 1. ♦

The next corollary improves on the old bound 3211 by Mathon [1]. The
new bound was not published, though it was already cited as an unpublished
result in the survey [2].

Corollary R(7, 7, 7) ≥ 3214.

Proof. For prime p = 1069, it is known that αp < 6 [1]. The bound 3214
follows from the Theorem. ♦

One can similarly improve Shearer/Mathon’s construction on Kmp+m for
other values of m, by producing m-colorings of Kmp+m!. Note that for m = 2
there is no improvement, and the case m = 3 is that of the Theorem. For
general m with αp + 1 ≥ m, after chosing the set U (now of m vertices) we
add a new set of vertices W so that |U∪W | = m!. With each x ∈ Y = U∪W

we associate a permutation (i0, · · · , im−1) and color all the edges from x to
Vij in color j. For x, y ∈ Y the edge {x, y} has color equal to the minimal
index of the position at which the corresponding permutations are different.
We omit the details since we don’t know any specific parameters with m > 3
for which this would improve on a best known published lower bound as in
the Corollary.
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