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Abstract
The classical Ramsey number R(rq,...,r,) is the least n > 0 such

that there is no k-coloring of the edges of K, which does not contain any
monochromatic complete subgraph K. in color 4, for all 1 <4 < k. In the
multicolor case (k > 2), the only known nontrivial value is R(3,3,3) = 17.
The only other case whose evaluation does not look hopeless is R(3, 3, 4),
which currently is known to be equal to 30 or 31 by an earlier work of the
authors. We report on progress towards deciding which of these two is the
correct value. Using computer algorithms we show that any critical coloring
of K5, proving R(3,3,4) = 31 must satisfy some additional properties,
beyond those implied directly by the definitions, further pruning the search
space. This progress, though substantial, is not yet sufficient to launch the
final attack on the exact value of R(3,3,4).

1. Introduction and Notation

An (ry,7y,...,1y) coloring, r; > 1 for 1 < ¢ < k, is an assignment
of one of k colors to each edge in a complete graph, such that it does not
contain monochromatic complete subgraph K, in color 4, for 1 < i < k.

Similarly, an (ry,r,,...,7;n) coloring is an (ry,...,r;) coloring of K,,.
Let R(rq,...,r,) and R(rq,...,r,;n) denote the set of all (ry,...,r,) and
(ry,...,rg;n) colorings, respectively. The Ramsey number R(r,...,r,) is

defined to be the least n > 0 such that R(r,...,r,;n) is empty.

* Supported in part by RIT/FEAD grant, 2001.
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A coloring using k colors will be called a k-coloring. In this paper we
consider k-colorings only for £ = 2 (equivalent to graphs) or k¥ = 3. In the
multicolor case (k > 2), the only known nontrivial value of the Ramsey
number is R(3,3,3) = 17 [GG]. The only other case whose evaluation does
not look hopeless is R(3,3,4), which currently is known to be equal to 30
or 31 by an earlier work of the authors [PR]. Here we report on progress
towards deciding which of these two is the correct value. An electronic
dynamic survey of the most recent results on bounds on Ramsey numbers
can be found on-line at [Rad].

Two k-colorings are isomorphic if there exist a bijection between the
vertices of the underlying complete graphs preserving all the colors of edges,
and they are weakly isomorphic if there exists a bijection between vertices
which preserves the relation of two edges having the same color. It is
convenient to think of a weak isomorphism as a composition of permutation
of colors with an isomorphism. Let C' be a k-coloring and G be a simple
undirected graph. In the sequel we will use the same notation as in the
previous paper [PR].

degy(x) — the degree of vertex x in graph G

n(G), e(G)  — the number of vertices and edges in graph G
V(@), E(G) — the vertex and edge sets of graph G

Ng(x) — the neighborhood of vertex z in graph G

Cl[i] — the graph formed by edges of color i in coloring C
Cq — the coloring induced in C' by vertices in Ngp(z)
Cil4] — the graph formed by edges of color j in coloring C%,

R(aa ba (6K 2 n) 7 Uan R(aa b7 G k)

Section 2 summarizes old and new results, and section 3 describes the
algorithms and computations.

2. Old and New Results

Previous results on the Ramsey number R(3,3,4) by Kalbfleisch (lower
bound, [Kalb]) and the authors [PR] are summarized in the following the-
orem.

Theorem 1. 30 < R(3,3,4), R(3,3,4) < 31, and R(3,3,4) = 31 if and
only if there exists a (3,3,4;30) coloring C' such that every triangle T C C|[3]
has a verter x € T with degcz(z) = 13. Furthermore, C has at least 14
vertices v such that degcy)(v) = degeoppy(v) = 8 and degops(v) = 13.
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If Cis a (3,3,4;m) coloring, then for every vertex z, C2 is a (3,3,3;
degcrs)(¢)) coloring, and Cj, for 1 <4 < 2, is a (2,3,4;d) or a (2,3,4;d)
coloring, respectively, where d = degc[i](;v). In the latter cases C., is equiv-
alent to a (3,4;d) graph, since it cannot have edges of color i. Clearly,
degcy(z) + degopy(w) + degepz (z) = m — 1, and furthermore for m = 30
the equalities R(3,4) = 9 and R(3,3,3) = 17 [GG] imply color degree
bounds 5 < degcpy(2), degop(z) < 8 and 13 < degys)(z)) < 16. There
are only 48 (3,4;d) graphs (36 for 5 < d < 8), and all of them are known
since the early work by Kalbfleisch [Kalb].

Our knowledge about possible (3, 3, 3; deg(5(z)) subcolorings includes
the following. Kalbfleisch and Stanton [KS] proved that there are exactly
two nonisomorphic (3, 3,3;16) colorings, both vertex transitive. Deleting
one point from each leads to two nonisomorphic (3,3, 3;15) colorings, and
as proved by Heinrich [Hein] there are no others. We found that there
are exactly 651 nonisomorphic (3,3, 3;14) colorings, which is reduced to
only 115 up to weak isomorphism. Further statistics about colorings in
R(3,3,3;14) can be found in [PR]. In summary, we know all of R(3, 3, 3; >
14), but not R(3, 3, 3; 13). Exhaustive generation of all (3, 3, 3; 13) colorings
is on the edge of feasibility, because of their very large number, and even if
their full enumeration were completed, it would not be possible to perform
much computations with each coloring.

The results of this work are stated in the next two theorems.

Theorem 2. R(3,3,4) = 31 if and only if there exists a (3, 3,4; 30) coloring
C such that every triangle T C C[3] has at least two vertices x,y € T with
degcps) () = degeys (y) = 13.

Proof. The computations described in the next section showed that no
coloring in R(3, 3,4; 30) can have a triangle T' with at most one such vertex.
Note that Theorem 1 guarantees at least one.

Theorem 3. R(3,3,4) = 31 if and only if there exists a (3,3,4;30) col-
oring C such that every edge in the third color has at least one endpoint x
with degcps)(x) = 13. Furthermore, C has at least 25 vertices v such that

degcpy(v) = degepp)(v) = 8 and degcs)(v) = 13.

Proof. Assume that C is a (3,3,4;30) coloring. For every vertex z, C2 is
a (3,3, 3;> 13) coloring, in which every vertex is adjacent to at least 2 (and
at most 5 = R(3,3)—1) vertices in each color. Hence, for any edge xy in the
third color there must be a vertex z such that xyz forms a triangle in the
third color in C'. Thus, by Theorem 2, degcs)(z) = 13 or degc5)(y) = 13.
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Since R(3,3) = 6, each subset of vertices S C V(C) of order higher than
5 must contain an edge in the third color, so one of its endpoints = has
degcopsy(z) =13. 1

We consider that this work provides additional evidence to support the
conjecture that R(3,3,4) = 30 [PR]. Further elimination of all vertices with
degree at least 14 in the third color is perhaps feasible. Unfortunately, our
current approach is not efficient enough to proceed computationally with
all (3,3, 3;13) colorings, which likely is needed in order to obtain the final
answer.

3. Algorithms and Computations

We describe an algorithm A constructing all (3,3,4;30) colorings X
which have a triangle T C X[3] with at least two vertices z,y € T such
that degx 3 (), degx(3)(y) > 14. The starting configurations for algorithm
A are produced by the gluing procedure GLUE, and then the full search is
performed using the operations REDUCE, FILTER and BRANCH.

Procedure GLUE
Given C,D € R(3,3,3;> 14), v € V(C) and w € V(D) such that
degcs)(v) = degps(w), for each isomorphism 7 : Ngz)(v) = Nppg)(w)
create a new partial coloring H = Glue(C,D,v,w,w) by overlapping D
with C on the vertices Ng3;(v) using , so that
(1) for each z € Ny3)(v) the vertices z and 7(x) are identified in H,
(2) for each z € V(D) the edge vz has color 3 in H,
(3) for each z € V(C) the edge wx has color 3 in H,
(4) for all z € V(C) — (Ngpz)(v) U {v}) and y € V(D) — (Nppz(w) U {w})
the edge zy remains uncolored.
The new coloring H has now n = [V(C)|+|V(D)|—|N¢z(v)| vertices.
Finally, extend H to 30 vertices by adding 30 —n isolated vertices (with all
adjacent edges uncolored).

Let GLUE(C, D) denote the set of all partial colorings H which can be
obtained by Glue(C,D,v,w,r) for some v € V(C), w € V(D) and some
isomorphism 7 as above. Obviously, any (3, 3,4; 30) coloring X with an edge
zy in color 3 and degx(3)(z), degx3(y) > 14 contains as a subcoloring an
element of GLUE(C, D), for some colorings C, D € R(3,3,3;> 14).
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Operation REDUCE

In each input partial (3,3, 4; 30) coloring C, assign three possible colors
to each uncolored edge, and iterate the following process. For each edge
with more than one possible color, delete colors which lead to a forbidden
clique or violate obvious degree restrictions listed in section 2. Terminate
with empty output if some edge has no possible colors. If there is no edge
for which the deletion of possible colors is enforced, then create the output
coloring REDUCE(C) treating all edges with more than one possible color
as uncolored. Clearly, any (3,3,4;30) coloring containing subcoloring C
contains REDUCE(C') as well.

Operation FILTER

Let C be an input partial (3,3,4;30) coloring. Let S be the set of all
vertices v such that there is a triangle vzy in color 3 and degq3)(7) > 14,
degcrg (y) > 14. For each v € S check whether the subcoloring induced
by C! has a possibility to be extended to one of the three nonisomorphic
(2,3, 4;8) colorings, and whether the subcoloring induced by C? has a pos-
sibility to be extended to a (3,2, 4;8) coloring. If for each v € S the answer
is affirmative in both cases, then we say that the partial coloring C satisfies
property F. By Theorem 1, every subcoloring of C' must have property F'.
Operation FZLT ER will be used to eliminate colorings failing property F'.

Operation BRANCH

Let C be an input partial (3,3,4;30) coloring, and suppose C is a
subcoloring of some D € R(3,3,4;30). Let S be the set of all vertices v
such that there is a triangle vzy in color 3 and degc3)(7), degeps (y) > 14
Observe that by Theorem 1 these conditions imply that for v € S we must
have degpyy1(v) = degps)(v) = 8 and degps)(v) = 13. We exploit the latter
by trying to color some edges in C in a part already almost colored and
leading to limited branching.

Choose a vertex v € S and color k € {1,2} maximizing the number of
colored edges in C¥, ignoring v and k giving complete subcolorings of C*
(necessarily on 8 vertices). If there is no such pair the process terminates
with unchanged C on output. Otherwise, each of the three nonisomorphic
(2,3,4;8) colorings (k = 1) or each of the three nonisomorphic (3,2, 4;8)
colorings (k = 2) is embedded into C in all possible ways, so that C* be-
comes completely colored when the vertices of (2,3,4;8) (or (3,2,4;8)) are
identified with the corresponding vertices of V(C'), and the colors of already
colored edges in C are preserved. Denote the set of all such extensions by
BRANCH(C). Note that such branching is correct in the sense that if
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input C' is a subcoloring of a (3,3,4;30) coloring D, then at least one of
the elements of BRANCH(C) is also a subcoloring of D.

Algorithm A4

Step 1. For each pair of colorings C, D € R(3,3,3; > 14) create the set of
starting partial colorings M = GLUE(C, D).

Step 2. For each partial coloring C' € M replace C with REDUCE(C)
(remove C from M if REDUCE(C) has empty output). Using FZLTER,
delete from M all partial colorings which fail property F. Remove from M
isomorphic copies of colorings.

Step 3. Iterate until M’ after step (3.3) is the same as M at step (3.1).
(1) Assign M’ =0.
(2) For each partial coloring C € M add BRANCH(C) to M'.

(3) For each partial coloring C' € M’ replace C with REDUCE(C). Using
FILTER, delete from M’ all partial coloring C' which fail property
F. Remove from M’ isomorphic copies of colorings.

(4) Assign M = M'".

Proof. (of Theorem 2) Suppose there exists a (3, 3, 4; 30) coloring X which
has a triangle T C X[3] with at least two vertices z,y € T such that
degx3)(7), degx(3(y) > 14. It is easy to see that the set of starters gen-
erated by GLUE in Step 1 of algorithm A must produce a subcoloring of
X. The other three operations REDUCE, FILTER and BRANCH used
in algorithm A produce at least one coloring if performed on subcolorings
of X. Consequently, the set M must contain a subcoloring of X at the
termination of A, or if M = () then no such X exists.

The algorithm A was run for all starting pairs of colorings C,D €
R(3,3,3;> 14). In each case it produced an empty set M after a small
number of iterations (in most cases 4, 5 or 6) of Step 3. This completes the
proof of Theorem 2. 1

Computations

The set M after Step 1 in algorithm A was split into 11135 smaller
parts, and the computations were performed separately for each of them.
Significant parts of computations were repeated with an independent im-
plementation by the second author, and the two implementations agreed
on all partial colorings produced in sample cases, up to isomorphism.
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Two general public domain programs written by Brendan McKay were
used in this work: nauty [McK1] for testing isomorphism of edge colorings,
and autoson [McK2] for distributing jobs over a local network. The total
time required for all computations was about 4 CPU years, mostly on Sun
Ultra 5 and 10 systems. This was achieved in a reasonable amount of time
by employing a large number of computers simultaneously.
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