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Abstract

Given a set of n points in general position in the plane, where n is even, a halving line is a line going
through two of the points and cutting the remaining set of n—2 points in half. Let h(n) denote the maximum
number of halving lines that can be realized by a planar set of n points. The problem naturally generalizes
to pseudoconfigurations; denote the maximum number of halving pseudolines over all pseudoconfigurations
of size n by h(n). We prove that 2(12) = 18 and that the pseudoconfiguration on 12 points with the largest
number of halving pseudolines is unique up to isomorphism; this pseudoconfiguration is realizable, implying
h(12) = 18. We show several structural results that substantially reduce the computational effort needed
to obtain the exact value of iz(n) for larger n. Using these techniques, we enumerate all topologically
distinct, simple arrangements of 10 pseudolines with a marked cell. We also prove that h(14) = 22 using
certain properties of degree sequences of halving edges graphs.

1 Introduction

Given a set S of n points in general position (no three collinear) in the plane, where n is even, let a halving
line be a line going through two of the points and cutting the remaining set of n — 2 points in half. Simmons
raised the following question: What is the maximum number h(n) of halving lines that can be realized by a
set of n points? Around 1970, Straus described a construction of a set of n points in the plane with O(nlogn)
halving lines. This was generalized by Erdés, Lovész, Simmons, and Straus [ELSS73] (and later independently
by Edelsbrunner and Welzl [EWS85]) to 2(nlog k) lower bound on the maximum number of k-sets. A subset S’
of k points in S is called a k-set of S if it can be cut off S by a straight line going through two points of S\S’.
A halving line cuts S into two (n — 2)/2-sets. Erdés et al. [ELSS73] considered several structural properties
of geometric k-graphs induced by S, denoted G (S). The vertices of G (S) are the points of S, and the edges
are the directed straight line segments pg such that the directed line through p and ¢ has exactly k points
of S to its right, i.e. slices a k-set from S. Obviously, G,,_r—_2(S) is equal to G(S) with the direction of all
edges reversed; hence it suffices to consider k-graphs only for k£ < (n —2)/2. If n is even, H(S) = G (n—2)/2(S5)
is the graph of halving edges of S. Clearly, each edge of H(S) occurs in both directions, so the graph can be
considered undirected.

Unaware of Erdés’ lower bound, Edelsbrunner and Welzl [EW85] gave a construction of a set of n points
with |inlog,(2n/3)| halving lines. This lower bound is sharp for all even n < 14 and it was tempting to
conjecture that it is exact for all even n (see Table 1). However, Téth [T6t00] recently presented a construction
of a planar set of n points with n22(vVI°8n) halving lines, refuting this conjecture. This was the first essential
improvement of the lower bound since the problem was first posed.
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n |inlog,(2n/3)] h(n) source

2 1 1 trivial

4 3 3 trivial

6 6 6  trivial

8 9 9  easily obtainable
10 13 13 [Epp92], [Fel97], [St684]
12 18 18 [AAHP™98] and this paper
14 22 22 this paper
16 27 > 27 [Epp92] (heuristic computer search)
18 32 > 32 [Epp92] (heuristic computer search)

Table 1: Values of h(n) for n < 18.

In the dual setting, the problem naturally generalizes to pseudoline arrangements (sacrificing the straight-
ness, but preserving all combinatorial properties). An arrangement of n pseudolines is a finite collection of
n simple closed curves in the projective plane not all passing through the same point, with the property that
every pair intersects exactly once. An arrangement is said to be simple if all the (g) intersection points are dis-
tinct. Here we are interested in bounding the maximum possible number of intersection points having exactly
(n — 2)/2 pseudolines above them. An unpublished constructive lower bound n2%(vVI°&™) on this quantity is
known [KPP82]. The arrangement of pseudolines produced by this construction is not known to be realizable
in the plane; however, it matches the lower bound of Téth for the plane. For an extended treatment of k-
sets, k-levels and related notions, see a survey of Andrzejak and Welzl [AW97] (where the above construction
[KPP82] is described).

Meanwhile, the best known upper bounds are much larger, leaving a fairly big gap. In the very first paper
on the subject, Lovasz [Lov71] proved that a set of n points in the plane has at most O(n3/2) halving lines.
Erd6s et al. [ELSS73] generalized his result to O(nk'/?) for the number of k-sets. They also conjectured that
this upper bound is far from the true value. Nevertheless, this remained the best known upper bound until
1989, when Pack, Steiger, and Szemerédi [PSS92] (see also a preliminary version [PSS89]) slightly improved it
to O(nk'/?/log* n). Recently, Dey [Dey98] made the first significant improvement, reducing the upper bound
to O(nk'/?). His proof uses the notion of ”convex chains” [AACS98] to show that the number of pairs of
crossing edges of a halving lines graph cannot exceed O(n?). Using Székely’s probabilistic technique [Szé97]
(an application of the crossing lemma of Ajtai et al. [ACNS82, Lei83], in disguise) any graph with n vertices
and a crossing number O(n?) has at most O(n*/?) edges; thus any halving lines graph has at most O(n*/?)
edges. The proof of the O(nkl/ 3) upper bound on the number of k-sets is lifted from the above upper bound
for halving lines using the fact that the number of (< k)-sets is at most n(k—1), due to Alon and Gy6ri [AG86].
A different proof of the bound O(n*/?) was given by Andrzejak et al. [AAHP*98] by relating the crossing
number to the degrees of vertices of G. Their result implies the exact value of h(12).

Dey’s original argument has been extended to pseudoline arrangements [TT97]; thus the current bounds
for straight line arrangements match the bounds for pseudoline arrangements. Essentially dual to pseudolines
are pseudoconfigurations (or generalized configurations): a pseudoconfiguration is a finite set of points in the
projective plane, together with a pseudoline joining each pair, the pseudolines forming an arrangement. A
pseudoconfiguration is said to be simple if the corresponding arrangement is simple. Let A(n) be the maximum
number of halving pseudolines over all simple pseudoconfigurations of size n, for even n. Clearly, h(n) > h(n).
It is open whether all pseudoconfigurations maximizing the number of halving pseudolines are realizable as
planar point sets. We show that this is true for even n < 12. (For n < 8, this claim holds vacuously, because
all pseudoconfigurations of size less than 9 are realizable [GP80].)

We obtain the exact value of ﬁ(12) and show that the pseudoconfiguration maximizing the number of
halving pseudolines is unigue up to isomorphism. Furthermore, it is realizable, giving another proof of h(12) =
18. In Section 3 we show some structural properties of halving graphs; these properties dramatically reduce



the computational effort needed to compute the exact value of h(n) for larger n.

We transform the geometric problem into the combinatorial setting of counterclockwise systems (CC-
systems) [Knu92]. The counterclockwise relation pqr says that points p, ¢, r are encountered in this order
when the circle through p, ¢, r is traversed counterclockwise starting from point p. A CC-system is a set of
ordered triples of points that combinatorially encode (in some precise sense) the orientation properties of a
point configuration. Section 5 discusses different equivalence classes and our enumeration results obtained as a
byproduct of the search for sets with many halving lines. In particular, we enumerate all topologically distinct,
simple arrangements of 10 pseudolines with a marked cell. This implies the enumeration of nonisomorphic
CC-systems on 10 points, filling in the last two missing entries in the Knuth’s table ([Knu92, page 35], see
also [GO97, page 102]) for n = 10. Section 4 proves that h(14) = 22 using the main identity of Andrzejak et
al. [AAHP19g].

2 Preliminaries

Let X denote a set of size n > 1. The elements of X will be referred to as points. A CC system on X,
as defined by Knuth [Knu92], is a relation on the set of ordered triples of points from X such that for any
three distinct points p, ¢, and r the following axioms hold: pgr = g¢rp (cycle symmetry); pgr = -prq
(antisymmetry); pgr V prq (nondegeneracy); tqr A ptr A pgt = pqr for any point ¢t & {p,q,r} (interiority);
tsp A tsq A tsr Atpg A tgr = tpr for any distinct points t,s € {p,q,7} (transitivity). (Whenever we quantify
over points, we quantify over the points in X.)

Let S denote a CC system on X. A halving pair of S is an ordered pair pq of distinct points such that
there are precisely |(n —2)/2] points ¢ such that ptq holds. If n is even, the reverse of any halving pair is also
a halving pair; hence the pairs can be considered unordered. Let H(S) denote the set of all halving pairs of
S. We define the conver hull of S to be the set of all ordered pairs ts (called conver hull edges) such that tsp
holds for all p & {t,s}. A point ¢ is extreme if it appears in one of the pairs in the convex hull. An extreme
point defines a linear ordering of all the other points in the set; hence it appears exactly twice among the
ordered halving pairs, once as the first element and once as the second. Knuth ([Knu92, page 45]) showed
that the pairs constituting the convex hull of a CC system always form a unique cycle. A point p is said to
lie in the convex closure of S if either p is an extreme point of S or tsp holds for every pair ts in the convex
hull of S.

We introduce the following geometric language that will facilitate the proofs. A pair of points will be
identified with a directed line segment. The line segments pq and rs intersect if and only if pgr # pgs and
prs # qrs. A pair of points pq also defines the directed line pg that separates X \{p,q} into two sets,
called semispaces. The right (respectively, left) semispace of Pg consists of all points ¢ & {p, ¢} such that ptq
(respectively, pgt) holds. A line defined by a halving pair is said to be halving.

Following Knuth [Knu92], define the four-point predicate Opgrs = pgr A grs Arsp A spg, i.e. Opgrs means
that points p, ¢, 7, and s are the vertices of a convex quadrilateral, enumerated in counterclockwise order.
Whenever Opgsr holds, the lines pg and 78 are said to meet if there exists a point ¢ such that both tgp and
trs hold.

We say that the lines pg and 73 intersect if one of the following conditions is true:

1. pgs # pgr or srp # srq, i.e. either one of the points (p, g,r, s) is in the convex combination of the other
three (in which case exactly one condition is satisfied), or the line segments pg and rs intersect (in which
case both conditions are satisfied).

2. Opgsr (or the mirror reflection drsgp) holds and the lines p¢ and 78 meet.
3. Opgrs (or the mirror reflection Osrgp) holds and the lines p¢ and 37 meet.

Lines p¢ and 73 are said to be parallel if they do not intersect. Of course, when a CC-system arises from a
set of points in the plane, the above terminology agrees with the standard geometric terminology. (Indeed, it
is motivated by the latter.)



3 The Symmetry

Given a CC system S on n points, consider all CC systems obtained from S by adding an extreme point.
Denote the set of all extensions by I' = I'(S). For any integer %, let T'; be the subset of I" consisting of systems
with exactly ¢ halving pairs, and let e; = |T';|. Denote the sum of the maximum and the minimum number of
halving pairs over all elements of I by 4(T").

Theorem 3.1 For all i we have e; = esry—;. Moreover, if n is odd, then 6(T') = |[H(S)| + 2.

In particular, this theorem implies that if we have the lower bound iL(Zn) > A, then in order to obtain the
exact value of h(2n), it suffices to extend only those systems on 2n — 1 points that have at least (A + n — 2)
halving pairs.

Before proving Theorem 3.1 we establish several lemmas.
Lemma 3.2 Any pair of lines determined by distinct elements of H(S) intersects in the convex closure of S.

Proof. Let p¢ and 73 be a pair of distinct halving lines of S. If either pgs # pgr or srp # srq (i.e.
either one of the points (p,q,r,s) is in the convex combination of the other three, or the segments pg and
rs intersect), then the lemma trivially holds. Otherwise, we have one of the following cases: Opgrs, Osrqgp,
Opgsr, or Orsgp. We can assume without loss of generality that Opgsr is true. Suppose that p¢ and 73 do not
intersect. Then there is no point ¢t & {p, q,r, s}, such that tgp A trs. Let (pg)~ and (pg)™ be the sets of points
to the left and to the right of pq, respectively. Similarly define (rs)~ and (rs)*. Then by our assumption,
(pg)T N (rs)™ = . Since pq and rs are halving, we have |(rs)~| = |(pg)~| = |(pg)~ N (rs) |+ |(rs)~| +2. This
implies |(pg)~ N (rs)*| < 0, a contradiction. O

For even n, a stronger version of Lemma 3.2 will be useful. Let H,/,_»(S) denote the set of ordered pairs
pq of distinct points such that there are precisely n/2 — 2 points t & {p, ¢} such that ptq holds in S. Let
A(S) = H(S) U Hyjaa(S).

Lemma 3.3 If n is even, then any pair pg and 73 of lines determined by distinct elements of A(S) intersects
in the convex closure of S, with the only exception when pq,rs € Hy/5_5(S) and Opgqrs is true (in which case
the lines D¢ and T3 are parallel).

Proof.  As in the proof of Lemma 3.2, we need only consider the case when points (p,q,r,s) form a convex
quadrilateral. Let (pg)~, (pg)*, (rs)™, and (rs)* be as before. The case when both pg and rs belong to
H(S) is covered by Lemma 3.2. First assume that exactly one of pg, rs belongs to H(S). Without loss of
generality, let this segment be pg, and assume that Opgsr is true. Then we have |(rs)~| = n/2. On the other
hand, |(pg)~| = |(pg)~ N (rs)*| + |(rs)~| + 2 = (n — 2)/2. Together this implies |(pg)~ N (rs)™| < 0, which is
impossible. Similar contradictions follow in the cases when either Osrgp or Opgrs or Orsgp is true.

Now assume that both pg and rs belong to H,/,_»(S). Case 1, Opgsr. We have |(rs)”| = n/2 and
[(pg)~ N (rs)™| + |(rs)~| + 2 = n/2, yielding |(pg)~ N (rs)*| < 0 as before. Case 2, Orsgp. This is a
mirror reflection of Case 1: we have |(rs)*| =n/2—2 and |(pg)™ N (rs)~| + |(rs)T| + 2 = n/2 — 2, and thus
|(pg)* N (rs)~| < 0, which is again impossible. Case 3, Osrgp. The same argument gives |(rs)~| = n/2 and
[(pg)* N (rs)*| + |(rs)~| + 2 =n/2 — 2, implying |(pg)* N (rs)*| < 0. Case 4, (pgrs (a mirror reflection of
Case 3). We now have |[(pg) ™ N (rs)~ |+ |(rs)T| + 2 =n/2 and |(rs)*| = n/2 — 2, implying (pg)~ N (rs)~ = 0,
but not yielding a contradiction. In this case the lines p¢§ and 73 are parallel. The smallest example is a
convex quadrilateral S: all four edges constituting the convex hull belong to H,,/,_»(S), and any pair of lines
determined by disjoint convex hull edges is parallel. O

Let D be a set of ordered pairs of distinct points of X. We say that two extensions in I' are D-equivalent if
and only if they have the same orientation of every triple consisting of the (n + 1)st point and a pair in D.



Let II(D) be the set of D-equivalence classes. Clearly, these partition I'. For any @ € T, let IIo(D) be the
equivalence class in II(D) containing (). To simplify notation, let II denote II(H(S)).

For the time being, assume that S is realizable as a planar point set in general position. Without loss of
generality, we label the points of S by using the numbers 1,... ,n. Let L be a directed line not orthogonal to any
direction determined by two points of S. Then the orthogonal projection of S on L determines a permutation
of 1,...,n. As L rotates counterclockwise about a fixed point, the permutation changes whenever L passes
through the direction orthogonal to that determined by a pair of points in S. This defines an infinite sequence
of permutations in an obvious way. Following Goodman and Pollack [GP84] we call this sequence the circular
sequence associated to S. Notice that the sequence always has the following properties: it is periodic with
period at most n(n — 1); the move from each permutation to the next consists of reversing the order of one or
more pairs of adjacent numbers; if the points p and g are switched, then every other pair is switched before
p and q are switched again. The last property guarantees that each period breaks into two half-periods, with
each switch of the first half reversed in the second; hence permutations that are a half-period apart are the
reversals of each other. An infinite sequence of permutations of 1,... ,n satisfying the above properties is
called an allowable sequence [GP84]. If an allowable sequence is induced by a realizable CC system, then it
is said to be realizable. An allowable sequence ¥ associated to S encodes many properties of S that have a
sensible geometric interpretation. For example, a point p is an extreme point of S if and only if p is the first
(and therefore the last) element in some permutation of ¥. The line p¢ is parallel to 7% in S if and only if p
and ¢ are switched in the same move as r and s. The relation pgr holds if and only of pq is reversed before pr
(within the half-period of ¥ containing both ordered pairs). Triples pgr and pgs have different orientation if
and only if when p and ¢ switch, r and s are on opposite sides of pq (or gp) in the corresponding permutation.
Notice that permutations in ¥ correspond to extensions in I' in an obvious way: the (n + 1)-st point in any
extension is extreme; hence any extension is uniquely determined by a linear ordering (permutation) of the
points in S. Each move of ¥ from one permutation to the next consists of one or more switches; a switch pg
corresponds to inverting the orientation of the triple containing p, ¢, and the (n + 1)-st point.

Lemma 3.4 |II| = 2|H(S)|.

Proof. Consider the partition of ¥ into subsequences obtained by grouping adjacent permutations such that
the switches that take us from each one to the next do not involve halving pairs of S. We call this sequence
of subsequences a sequence induced by H(S). According to Lemma 3.2, no two halving lines of S are parallel.
Consequently, the period of the induced sequence is precisely 2| H(S)|. Notice that each element of the induced
sequence uniquely corresponds to some equivalence class in II (by associating extensions in I’ with permutations
of 1,--- ,n). Clearly, extensions that belong to the same class (equivalently, permutations that belong to the
same subsequence) are H(S)-equivalent. The lemma follows. O

If n is odd, let the degree of Ilg for @ € T, denoted by deg(Ilg), be the number of halving pairs of S that
remain halving in Q. Let @ denote the extension that is identical to @ except that it inverts the orientation
of every triple containing the (n + 1)-st point. We shall call ) the reversal of ). Notice that the permutation
associated with @ is the reversal of the permutation associated with (; hence corresponding to each class is
the antipodal class containing the reversals of all extensions in the class.

Proposition 3.5 If n is odd, then for any pair llg and Iz of antipodal classes in II,
deg(Ilg) + deg(Ilg) = [H(S)|.

Proof. Notice that the (n + 1)-st point in @ and the (n + 1)-st point in @ lie on opposite sides of any pair
in H(S); hence H(S) can be split into two subsets with cardinalities deg(Ilg) and deg(Ilz) corresponding to

subsets of pairs that remain halving in @ and @, respectively. It follows that deg(Ilg) + deg(Ilg) = [H(S)|-
O



For even n, the above definition of degree is not interesting, because all halving pairs of S remain halving in any
extension ). However, some elements of H,,/>_»(S) may now be halving in (). Therefore, we need to consider
A(S)-equivalence of extensions instead of H(S)-equivalence. (Recall that A(S) = H(S) U H,,/2_2(S).) The
degree of Il = IIg(A(S)), denoted by deg(Ilg) as before, is now defined as the number of pairs in Hy, »_(S)
that are halving in (). The situation here is slightly more complicated: by Lemma 3.3, a pair of lines determined
by elements of H,,/>_»(S) may be parallel. Let pg,rs € Hy/5_2(S) be such elements; by Lemma 3.3, Opgrs is
true, and pg, 78 are parallel. Consider extensions () and @ that are the same except for the orientation of all
triples containing the (n + 1)-st point and not containing {p, ¢} or {r, s}. We call such pair of reversals special.
We will also say that pq and rs define (Q, Q). Notice that @ and @ do not correspond to permutations in the
sequence induced by A(S); they fall on the switches that simultaneously reverse (p,q) and (r, s).

Proposition 3.6 If n is even, then for any pair Ilg = lg(A(S)) and IIg = II5(A(S)) of antipodal classes
in II(A)
deg(Ilg) + deg(HQ) = |Hp2-2(9)] = A,

where A = 2 if the pair (Q, Q) is special, and A = 0 otherwise.

Proof. The (n + 1)-st point in @ and the (n + 1)-st point in @ lie on opposite sides of any segment in
H,,/5_2(S), unless the pair (@, Q) is special, in which case the points lie on opposite sides of any segment
in Hy/5_5(S) other than the two segments pg and rs that define (@, (). Furthermore, Opgrs holds, and
the points lie to the left of both pg and rs. Therefore, neither pg nor rs is a halving pair of Q or Q. The
proposition follows. O

We are now ready to prove Theorem 3.1. In the sequel, let x(T') = §(T")/2.

Proof of Theorem 38.1.

Case 1, n is odd. Consider an extension € I'. The (n + 1)-st point of @ is extreme, and thus defines a
linear ordering of the points in S, giving rise to exactly one new halving pair. All the other halving pairs of
Q belong to H(S); hence |H(Q)| = deg(Ilg) + 1. By Proposition 3.5, @ preserves |H(S)| — deg(Ilg) halving
pairs of S. Hence () contributes one t0 €qeg(r1g)+1, While its reversal Q contributes one to € H(S)|—deg(Ilg)+1-
This results in a symmetry centered at x(I') = |[H(S)|/2 + 1.

Case 2, n is even. Let @) be an extension of S as before. The (n + 1)-st point of @ is extreme, and
since (n + 1) is odd, it gives rise to exactly two new halving pairs. As remarked earlier, all halving pairs
of S remain halving in @; hence we only need to count the pairs in H,/;_5(S), which may be halving
in ). These observations imply that () contributes one to €| (s)|+deg(110)+25 While By Proposition 3.6, Q
contributes one t0 €|1(s)|+|H, »_5(S)|~deg(llg)+2 if the pair (Q, Q) is not special; otherwise @ contributes one
0 €| H(S)|+|H, 2 »(S)|—deg(Ilq) - This leads to a symmetry similar to that of Case 1. However, since pairs of
lines determined by elements of H,/»_»(S) may be parallel, the sequence of permutations induced by A(S)
may have more than one switch within the same move. Therefore, the period of this induced sequence is not
necessarily fixed, and the center of the symmetry does not depend only on the number of halving pairs in S.
O

Theorem 3.1 gives a considerable restriction on the extension process sufficient to obtain the value of ﬁ(n) for
small n. Let an (n, k)-configuration be a CC system on n points with k& halving pairs, and let f(n, k) denote
the largest integer such that any (n,> k)-configuration is an extension of an (n — 1,> f(n, k))-configuration.
If n is even, the center of symmetry x(T') is @ + 1. On the other hand, we certainly have x(T') > #
Thus f(n,k) > n/2+ k — 2. In particular, in order to obtain all (12, > 18)-configurations, it is sufficient to
extend only (11, > 22)-configurations. (The maximum number of halving pairs over all systems of 11 points
is 24, while the minimum is 11.)

We can further bound the extension process by considering two-point restrictions of S.



Number of Total number of | Number of nonisomorphic | Ratio
halving lines extensions extensions
5 2,247,826 517,423 0.23
6 10,596,609 2,584,235 0.24
7 19,204,602 4,865,400 0.25
8 16,482,171 4,290,426 0.26
9 6,578,464 1,757,011 0.27
10 1,021,892 283,580 0.28
11 73,972 21,389 0.29
12 2,326 713 0.31
13 14 5 0.36

Table 2: Statistics on the number of CC systems on 10 points (obtained by extending CC systems on 9 points)
according to the number of halving pairs. The inverse of the ratio indicates the average number of extreme
points that systems with a corresponding number of halving pairs tend to have; thus systems with at least 12
halving pairs tend to have three extreme points on average.

Lemma 3.7 Any (2n, k)-configuration with m extreme points is a two-point extension of a (2n — 2,>
[2 (k/m — 2/(m — 1))])-configuration.

Proof. Let S be a (2n, k)-configuration with m extreme points. Consider the family of (Z’) restrictions obtained
from S by removing a pair of extreme points. Call a pair pg € H(S) good for a restriction T if it remains
halving in T'. In this case T is said to preserve pq. Clearly, pq has at least one extreme point on each of its
sides, since any induced subsystem of a CC system (and in particular the one induced by points in a semispace
of pq together with p and ¢) is also a CC system; and any CC system has at least three extreme points.

If a halving pair pg does not involve an extreme point, it will be good for at least m —1 restrictions obtained
by removing a pair of extreme points that lie on opposite sides of pg. Notice that there are at least k — m
such pq. Similarly, a halving pair one (or both) of whose elements are extreme, will be good for at least m — 3
restrictions. By the averaging argument, there must exist a restriction preserving at least

o o). (2 2)

2

halving pairs. O

In the special case when S has three extreme points, any halving pair can contain at most one of them.
Evidently, any halving pair that does contain an extreme point, will be good for precisely one restriction.
Any other halving pair will be good for precisely two restrictions. Therefore, there exists a restriction of S
preserving at least [2k/3] — 1 halving pairs.

Corollary. Any (12, > 18)-configuration is an extension of a (10, > 11)-configuration. Therefore, only about
one tenth of a percent of all CC systems on 10 points need to be extended (see Table 2).

4 h(14) = 22

Let S be a set of n points in general position in the plane, where n is even, and let H(S) be a geometric graph
of halving edges of S. We say that S is an (n, k)-set if it contains k halving edges, i.e. an (n,k)-set is an
(n, k)-configuration realizable as an actual set of points in the plane.

The set of halving segments of a planar point set is completely characterized by the Lovasz crossing lemma.
It was introduced by Lovész in [Lov71] and has been a major technique for proving upper bounds for the related
problems ever since. The lemma appears in different disguised forms, as in [Dey98, AW98, ELSS73, LovT71].



Lemma 4.1 (Lovész) Take any pointp in S and a line | going through p and missing every other point of S.
Call the side of | that contains more (less) points the larger (smaller) side of I. These are uniquely defined,
since there are n — 1 points on both sides of I.

1. There is exactly one more halving edge emanating from p into the larger side of I than into the smaller
side of 1.

2. For any pair of halving edges emanating from p into one side of 1, there must exist a halving edge
emanating from p into the other side of | with an intermediate slope. Thus, p is adjacent to an odd
number of halving edges.

Andrzejak et al. [AAHP198] showed the following identity.

Lemma 4.2 (Andrzejak et al.)
(degp+1)/2\ _ (n/2
cC+y ( ) =15 )
peS

where deg p is the number of halving edges incident to p and C is the number of crossing pairs of halving edges.

Let (di,ds,...,d,) denote the non-decreasing sequence of degrees of vertices of H(S), and let n; denote the
number of vertices of degree ¢ in H(S). Note that ¢ must be odd. The following inequality is immediately

implied by Lemma 4.2:
Z ((z + 1)/2>m < (n/Z)-
2 2

i
We also have ). in; = 2h(n), because every edge contributes 2 to the sum of all degrees; and just counting
vertices gives ) . n; = n. Since there are at least three extreme points and every extreme point has degree

one, we also have ny; > 3.
If we want to show the upper bound h(n) < A for some n and A, we must prove the nonexistence of an

(n,> A)-set. The properties of the coefficients in the sum }_, ((H;)/ 2)n,- imply that if there does not exist
an (n,> A)-set with n; extreme points, then there does not exist an (n,> A)-set with more than n; extreme
points. It is easy to see that the sequence minimizing the sum ", ((’+;)/ 2) n; for given n and A, is
(]-a]-alaqa"' yd, Dy 0 ap)a
—— N —rf
Nq Np

where n, = narg/(n—3)1+1 = d mod (n — 3), ng = Na(4/(n—3)]+1 = N — Ny — 3, and d = (2h — n)/2. These
observations imply the following upper bounds for small values of n:

- h(12) < 18; In conjunction with the known lower bound ([Epp92]), this implies the equality h(12) = 18.

The only degree sequence that a (12,18)-set can have is (1,1,1,3,3,3,3,3,3,5,5,5).

- h(14) < 23; Together with the known lower bound ([Epp92]), we have 22 < h(14) < 23. Moreover,
h(14) = 23 if and only if there exists a planar set of 14 points with the degree sequence

(1,1,1,3,3,3,3,3,3,5,5,5,5,5).

— 27 < h(16) < 28; Furthermore, h(16) = 28 if and only if there exists a planar set of 16 points with one
of three degree sequences:
( ) b ) b b ) ) b ) »

1,1,1,3,3,3,3,3,3,5,5,5,5,5,5
(1,1,1,3,3,3,3,3,3,3,5,5,5,5,5,
(1,1,1,1,3,3,3,3,5,5,5,5,5,5,5
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Throughout the rest of the section, let S be a hypothetical (14, 23)-set. From the identity in Lemma 4.2, the
crossing number of H(S) must be 0. In other words, if S exists, then H(S) is planar. The degree sequence of
H(S) implies that S must have exactly three extreme points.

Definition 4.3 Let p be an extreme point of S, and let g be the only neighbor of p in H(S). Denote the other
two neighbors of ¢ by r and s in such a way that qrs holds; hence r is to the right and s is to the left of pq.
Call the region bounded by rays q¢ and @8 (i.e. the region consisting of all points t such that tsq and tqr
holds) the wedge of q, denoted Zsqr, and s and r the points defining it.

Proposition 4.4 The wedge of any extreme point of S is empty (i.e. does not contain any points of S).

Proof. Let p be an extreme point of S, and let ¢, r, s be as in Definition 4.3. The ray p¢ splits Zsqr into a
left wedge and a right wedge. The number of points that lie to the left of pg and g8 is the same; hence the
left wedge of ¢ is empty. By a symmetric argument, the right wedge is also empty. O

Proposition 4.5 All six points defining the wedges of S are distinct.

Proof. Let p and w be two of the three extreme points of S, and let ¢ and z be their respective neighbors in
H(S). Iy

\

Figure 1.

Let r and z be the points defining the right wedge of ¢ and the left wedge of x, respectively; see Figure 1. The
segments ¢r and zz cannot cross by the assumption of planarity. We will show that r and z cannot coincide.
Assume the contrary. There are nine unlabeled points remaining. Since pq is halving, region Y must contain
exactly three points; similarly, since wz is halving, region S must contain exactly three points. Hence the
remaining three points must lie in region A, which contradicts the fact that the segment containing = and the
point defining the right wedge of z is halving. (Notice that region B bounded by points p, ¢, r, 2z, 2, w, cannot
contain any points of S. Suppose that it does, and let i be the point with the shortest orthogonal segment
connecting it to pg, among all the points in B. Consider the line through 4 parallel to pg (we may assume
that it misses all the other points of S); evidently, there can be no halving segment incident to ¢ emanating
into the smaller side of this this line. The Lovész crossing lemma applied to ¢ says that ¢ must have degree 1,
which is impossible. Therefore ¢ cannot belong to B, but then the same argument can be applied to the point
with the shortest orthogonal segment among the points remaining in B when i is removed, and so on, until
we show that B is empty.) O

Proposition 4.6 The edges defining a wedge of S cannot cross any other wedges of S.

Proof. Let a, p, w be the extreme points of S, and let b, ¢, z be their respective neighbors in H(S). Denote
the six points defining the wedges by ¢, d, r, s, y, z, as in Figure 2. Let ¢ and j be the last two “free” points,
and label the six non-empty regions in Figure 2 with C, D, R, S, Y, and Z, depending on which of the six
wedge points are on the boundary. We shall assume that the edge defining the right wedge of x crosses at
least one of Zdbc, Zsqr, and try to obtain a contradiction.



Figure 2.

Call a segment defining a wedge bad, if it crosses any other wedge of S. Case 1, y lies in region C, so that
zy crosses both Zdbc and Zsqr (hence zy is bad). Then none of the other segments defining the wedges is
bad, and the free points ¢ and j lie in regions Y and Z, respectively. By the Lovész crossing lemma, d must
have a halving neighbor to the left of bd. The only possibility is a point ¢ in Y, but then consider the line
through 4 parallel to gr (and without loss of generality missing all the other points of S): there is no point to
the left of this line that can be incident to ¢ without contradicting the planarity of H(S); hence by the Lovasz
crossing lemma, ¢ must have degree 1, which is impossible, because H(S) has only three points with degree
1. Case 2, y lies in region D (i.e. zy crosses only Zsqr). Neither gr nor ¢s is bad; otherwise they would
cross zy. The segments bc and bd cannot both be bad, because this would imply that wz has seven points
to its left, contradicting the fact that it is halving. Assume that only bc is bad; then the remaining points 4
and j must be in regions Y and C, but then the Lovész crossing lemma would say that ¢ and j have degree
1, which is impossible. Using the same argument, we can easily verify that bd is not bad. Then ¢ and j must
lie in regions Y and R, respectively. Consider the line going through i parallel to 7 (we may assume that it
misses all the other points of S). By the Lovdsz crossing lemma, 7 must have at least one halving neighbor on
the larger side of this line, which contradicts the fact that H(S) is planar, because neither w nor x can be a
neighbor of i. Therefore, y must lie in region Y. A symmetric argument shows that any other edge defining a
wedge of S cannot be bad. O

Lemma 4.7 The unbounded face of H(S) contains all the points of S.

Proof. Label the extreme points of S and the points defining the wedges of S as in the proof of Proposition 4.6.
Recall that all three wedges of S are empty, the six points defining these wedges are distinct, and the halving
segments defining the wedges cannot cross any other wedges of S. The three wedges account for 12 of the 14
points. The last two points must be separated by each wedge, so the triangular region bounded by the wedges
(if it exists) is also empty.

First we will show that for H(S) to be planar, the segments rs, c¢d, yz must be halving. Indeed, by the
Lovész crossing lemma, there must exist a halving edge emanating from r to the left of g#, and a halving edge
emanating from s to the right of g3. Since the wedge of ¢ is empty, these edges would have to cross (unless
they coincide), contradicting the fact that H(S) is planar; hence rs must be halving. Similarly, both e¢d and
yz must be halving.

The last two points ¢ and j must be placed in six regions bounded by the wedges and the segments rz,
¢s and dy; see Figure 3. Label these six regions with C, D, R, S, Y, and Z, depending on which of the six
wedge points are on the boundary. Points ¢ and j must be separated by each wedge; hence they can be placed
either in regions C' and Z, or R and D, or Y and S. If a free point, say ¢, were placed anywhere else, it would
violate the Lovész crossing lemma, because we would always be able to find a line through i (missing all the
other points of S) such that there can be no halving edges emanating from i to the smaller side of the line;
then the Lovész crossing lemma would imply that 7 has degree 1, which is impossible.
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Figure 3.

Clearly, if none of rz, yd, cs is a halving edge, we are done. Regardless of where we place the last two
points, the unbounded face will contain all the points of S. Consider the case when one of the segments
rz, yd, cs is halving. It is easy to see that at most one can be halving. Without loss of generality we may
assume that this segment is rz. We show below that in this case ¢ and j must be placed in regions S and Y,
respectively. Suppose that the points are in regions R and D, instead of S and Y. Then the Lovéasz crossing
lemma implies that the segments i and zi are halving. Consider the line through ¢ parallel to rz; it is easy to
see that 7i and zi are the only halving segments incident to ¢ emanating into the larger side of this line (the
side containing points p, ¢, r, s, w, z, y, z). Then the Lovasz crossing lemma says that ¢ must have degree 3,
which contradicts the fact that ¢ has degree 5, implied by the degree sequence of H(S). This completes the
proof of Lemma 4.7. O

Theorem 4.8 h(14) = 22

Proof. Recall that h(14) = 23 if and only if there exists a (14, 23)-set S such that H(S) is planar. By Euler’s
formula, the number f of faces of H(S) is

F=|H(S) —n+2=1L

We can also count the faces of H(S) according to their number of sides. Let a k-face be a face bounded by
k edges, where edges that border the same face on both sides are counted twice. Let fj be the number of
k-faces. We have ), i f; = 2|H(S)| = 46, and ), f; = f = 11. According to Lemma 4.7, the unbounded face
is an (n + 3)-face. Hence

n+2
> i fi <2/H(S)| - (n+3) = 29.
=3
One the other hand, since each of the remaining f — 1 bounded faces must have at least 3 sides each, we have

n+42

> ifi 2 3(f—1) =30,

=3

a desired contradiction. O
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5 Enumeration and Computations

Using Knuth’s notations [Knu92], let C,, denote the number of nonisomorphic CC-systems on n points, and
let D,, denote the number of topologically distinct, simple arrangements of n pseudolines with a marked cell
(as discussed by Goodman and Pollack [GP84]). Equivalently, D,, is the number of nonisomorphic uniform
acyclic oriented matroids of rank 3 on n elements [Knu92].

We obtain an enumeration of isomorphism classes of marked arrangements of 10 pseudolines, which gives
the value of Dyg. In particular, D1¢ = 14,320, 182. This is an additional value for the table of Knuth ([Knu92,
page 35], see also [GO97, page 102]). Having completed D1q, we easily obtained Ci9 = 2D19 — R19, where Rjq
is the number of non-isomorphic achiral CC-systems on 10 points. By achiral we mean isomorphic to their
mirror image, that is isomorphic to the system obtained by inverting the orientation of all triples. We have
R10 = 13, 103, hence Cl() = 28,627, 261.

It should also be mentioned that Felsner [Fel97] showed that the number of topologically different simple
arrangements of 10 pseudolines is Bjg = 18,410, 581, 880.

Acknowledgments. The authors are infinitely grateful to an anonymous referee for suggestions that sig-
nificantly improved the style and the presentation of this paper. We would also like to thank James Craig
for kindly providing system resources and support. Isomorph rejection was done by a program written by
B. McKay and developed on top of nauty! [McK90].
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