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80-952 Gdańsk, Poland Rochester, NY 14623, USA

coni@pg.gda.pl spr@cs.rit.edu

Abstract

With the help of computer algorithms, we improve the lower bound
on the Ramsey multiplicity of K4, and thus show that the exact value of
it is equal to 9.

The Ramsey multiplicity M(G) of a graph G is defined as the smallest number of
monochromatic copies ofG in any two-coloring of edges of KR(G), whereR(G) is the
Ramsey number of G, i.e. the smallest integer n such that any two-coloring of edges of
Kn contains monochromatic copy of G.

The study of Ramsey multiplicity was initiated in 1974 by Harary and Prins [3] who
determinedM(G) for all graphsG of order four or less, except forK4 andK4−e. The
value of M(K4 − e) was later determined by Schwenk (cited in [2]). The upper bound
M(K4) ≤ 12 was given in 1980 by Jacobson [4], and in 1988 Exoo [1] improved it by
3. The only nontrivial lower boundM(K4) ≥ 4 was recently presented by Olpp [7]. In
this paper we improve this lower bound and thus show that M(K4) = 9.

In the sequel, any two-coloring of the edges of Kn containing k monochromatic
copies of K4 is called an (n, k)-coloring. We say that two colorings are isomorphic
if the graphs induced by the edges in the first color are isomorphic. Define M(n, k)
to be set of all (n, k)-colorings. For a given (n, k)-coloring C let H(C) denote the
hypergraph formed by monochromatic copies of K4 in C. Let us defineMd(n, k) to
be the subset of all colorings C ∈ M(n, k) such that the maximal vertex degree in
H(C) is equal to d.

Our computational approach was to generate all nonisomorphic (18, k)-colorings
for 4 ≤ k ≤ 8, by iterating an exhaustive enumeration of all possible one vertex
extensions of (n − 1, k −m)-colorings to (n, k)-colorings, for m ≥ 0. Let us define
E(n−1, k−m,m) to be the subset of all colorings fromM(n, k) which are one vertex
extensions of some coloring fromM(n− 1, k −m).
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Let V (C) denote the set of vertices of coloring C. For each subset W ⊆ V (C)
let N3(W ) denote the sum of the number of triangles in the first color induced by
W in C and the number of triangles in the second color induced by V (C)\ W in C.
The following algorithm was used to perform the exhaustive search for all one vertex
extensions E(n− 1, k −m,m):

Algorithm 1

Step 1: Initialize output set Out = ∅.
Step 2: For each coloring C fromM(n− 1, k −m) execute steps 3, 4, 5.
Step 3: For each subset W ⊆ V (C) such that N3(W ) = m execute steps 4, 5.
Step 4: Create copy D of coloring C.
Step 5: Add a new vertex v to coloring D. For each w in V (C), assign color 1
to edge {v, w}, if w ∈ W , and assign color 2 to edge {v, w}, if w ∈ V (C)\W .
Add this coloring to Out.
Step 6: Remove isomorphic copies from Out.

The following lemmas describe computational steps we followed in order to gen-
erate colorings of higher orders. As the initial step, we generated the setM(11, 0) by
filtering out (11, 0) colorings from all nonisomorphic graphs of order 11 (which were
treated as two-colorings of K11). The proofs of the lemmas are straightforward by
considering degree sequences of all possible hypergraphsH(C) in each case.

Lemma 1

M(n, 0) = E(n− 1, 0, 0), for n ≥ 2,

M(n, k) =

k−1⋃

j=0

E(n− 1, j, k − j), for k ≥ 1, and n ≥ 2,

M(16, 4) \M1(16, 4) =
2⋃

j=0

E(15, j, 4− j).

All the setsM(n, k), for 12 ≤ n ≤ 16, and 0 ≤ k ≤ 3 such that there is a nonempty
entry for n, k in Table 1, were obtained by running Algorithm 1 for the terms on the
right hand side of the first two rules in Lemma 1. For example,M(16, 3) was obtained
by extending colorings fromM(15, 0),M(15, 1) andM(15, 2).

The last identity in Lemma 1 describes the way of enumerating all (16, 4)-colorings
except those whose monochromatic copies of K4 are vertex disjoint (denoted by
M1(16, 4)). Unfortunately, there is a frightfully large number of (13, 1) and (14, 2)
colorings, and we were not able to complete the sequence of extensionsM(12, 0) →
M(13, 1) → M(14, 2) → M(15, 3) → M1(16, 4). Instead, in order to generate
M1(16, 4), we used the following approach:
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Algorithm 2

Step 1: Generate the set of all 2-colorings of order 8 and extract from itM1(8, 2).
Step 2: GenerateM1(12, 3) by exhaustively extending by 4 vertices all color-
ings inM1(8, 2).
Step 3: GenerateM1(16, 4) by exhaustively extending by 4 vertices all color-
ings inM1(12, 3).

In steps 2 and 3 exactly one new monochromatic K4 is induced by 4 new vertices.
As a result of the above algorithm we obtained 468 nonisomorphic (16, 4) colorings.

The following lemma, together with Lemma 1, describes the remaining computa-
tional steps.

Lemma 2

M(n, k) =
k−2⋃

j=0

E(n− 1, j, k − j), for k ≥ 5, and n ≤ 19.

Using Algorithm 1 and Lemma 1 for k ≤ 4, and Lemma 2 for k ≥ 5, we were able
to generateM(17, 0), ...,M(17, 6) andM(18, 0), ...,M(18, 8).

Table 1. The number of nonisomorphic (n, k)-colorings.

n \ k 0 1 2 3 4 5 6 7 8
11 546356
12 1449166
13 1184231
14 130816 6144820
15 640 50726 2491136
16 2 28 382 19806 888440
17 1 0 0 2 18 202 5757
18 0 0 0 0 0 0 0 0 0

Table 1 presents the number of nonisomorphic (n, k)-colorings for all n and k,
which were enumerated during our computations. The emptiness of the setsM(18, 0), ...,
M(18, 8) implies the main theorem:

Theorem 1 M(K4) = 9.

It is a natural goal to enumerate the setM(18, 9). Continuing our approach would
require obtaining the whole set of coloringsM(17, 7). The latter was unfeasible, and
we were able to enumerate only the setM(17, 6).
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Figure 1. The new (18,9)-coloring

Since, similar to the previous lemmas, we easily have

M(18, 9) \M2(18, 9) =
6⋃

j=0

E(17, j, 9− j),

we enumerated all (18, 9)-colorings such that not every vertex belongs to exactly two
monochromatic copies of K4. There are 4 such colorings, where two of them come
from the other two by exchanging the colors. Of the two essentially different col-
orings, one was presented in [1] and the other is presented in Figure 1, where only
the edges in one color are shown. There are seven K4 in the first color induced by
vertex sets: {A,B,D,E}, {B,C,E, F}, {D,E,G,H}, {E,F,H, I}, {J,C,G,M},
{K,A, I, L}, {J,K,L,M} and two K4 in the second color induced by {B,O, P,H}
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and {N,D, F,Q}. Notice that the labels Q and R in the Figure 2 in [1] are mistakenly
switched. It results in serious complications with decoding the (18, 9)-coloring by the
reader.

The question about contents of the setM2(18, 9) remains open; however we con-
jecture that it is empty.

Three powerful programs, nauty, makeg, and autoson, implemented by Brendan
McKay [5] were used in our work. All the algorithms specific for this project were
written independently by both authors, and then a very large number of intermediate
and final graphs were tested for isomorphism between the two implementations. More-
over, the cardinalities of all setsM(n, 0), for n = 11, ..., 18 agreed with the previous
enumeration described in [6].
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