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Abstract

The minimal number of triples required to represent all quintuples on an n-element set is
determined for n < 13 and all extremal constructions are found. In particular we estahlish
that there is a unique minimal system on 13 points, namely the 52 collinear triples of the
projective plane of order 3.

1 Introduction.

We say that a set T represents another set F if T is contained in F. A (n.k,7)-
Turan system is a pair (X, B) where B is a collection of r-tuples of the n-element
set X' such every k-element subset of X is represented by some member of B. The
size of a (n, k,r)-Turdn system (.Y, B) is the number of r-tuples in B and T(n,k,r)
is the minimum size required for a (n, k, r)-Turdn system to exist.

*Submitted to ARS Combinatoria on 27 Nov. 1991



The problem of determining T'(n, k, ) was solved by Turén [12] for the case r = 2:

T(n,s+1,2)=mn—ﬂ(mT+l—)-s with m§§§m+1
The general problem also was formulated by Turén and was first published in English
in [13]. For r > 2 the values of the Turdn numbers were found only for the cases

when n is small compared with k. For instance, it is well known that
7

T(n,s+1,7) = n—s  with 1525 :
s —r—1

The next zone was found in (7] (see also [9]) :

|'3rr_—2n'| —3s with 7 = 0mod?2 yrog S

® |3
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T(n,s+1,7) =
3n— [¥=1s] with r = 1mod2 iy < g il

The problem is still open for large n. For any k > r > 2, even the value

T(n,k
k) = b k)
o=} (:)
is not determined. Moreover, there is no reasonable conjecture about values ¢(k,r)
with r > 4. It was conjectured by Turan [14] that

Tigmg-(r~1),m) =q(7) )

but it was disproved for r > 4 (see [6]). However, it is quite possible that (1) holds

for r = 3, and

4

Sidorenko in (7, 8] has proved that
(n—s withls’;‘gg
3n—4s with $ <2 <2

T(n,s+1,3) =4 (2)
dn—6s with 2<2<8 4n—9s# -]

(| 4n —6s+2 with 4n—9s=—1,1,2

The aim of this paper is to determine T'(n,5,3) for small n. The case n < 9 was
solved by Suranyi [11], and » = 10 by Stanton and Bate [10). We will find T'(n, 5, 3)
for n =11,12,13 as well as all extremal constructions, for n < 13

If C is any collection of subsets of X and § C X, we denote by deg.(S) the
number of sets in C that contain S. We will make frequent use of the following
identity for a (n, 5, 3)-Turan system (X, B) :

3|B| = Z degg(z) = Z degg(z,y) (3)

LyeX



The residual system with respect to S C X of a (n,5,3)-Turan system (X, B) is
(¥ —5,B%) where BS = {T € B:SNT =0} Itisa (n —|S|, 5, 3)-Turan system
and thus

IB%] > T(n - 1S],5,3) . @)

The Schonheim bound (see [5] or [3]) follows from (3) and (4) :
n
T(TL,5,3) Z I"n—_—3 . T(TL - 1,5, 3)] .

2 General Constructions of (n,5,3)-Turan systems.

Turdn observed in 1961 that if you divide n elements into two almost equal sized
groups and take all triples contained in either group, then every quintuple must
contain at least one of these triples. Thus,

T(n,5,3) < ( /2] ) + ( In/2] ) = f(n).

In this section we describe some constructions that produce better upper bounds on
T'(n,5,3) for odd n. These constructions were first established by A. Sidorenko in
(8] published in Russian.

Construction 1.

The finite projective plane of order 3 has 13 points and 13 lines, Each line contains
4 points. For any 5 points there is a line containing at least 3 of them. Hence the
system of 13 - 4 = 52 collinear triples is a (13,5,3)-Turan system.

Construction 2.

Divide the n elements into 9 disjoint sets A;, A, ..., Aq which correspond to the
points a3, ay,...,aq of the finite affine plane of order 3. This plane has 4 families
of parallel lines. Color two of the families by red and the other two by blue. Take
triples = € A;, y € A; and z € A satisfying

ISS=SH=Tkor
2. 1,j, k are pairwise distinct and q;, a;, ay are collinear, or
3. i =3, k#1and a;,a; defines a red line.

Then these triples form a (n, 5, 3)-Turan system.

Construction 3.
Denote the 12 lines of the finite affine plane of order 3 as follows:

Ly ={ay,a6,a3}, Lg= {az,a4,a0}, M) =My= {a1,as, a9},
L2 = {a1,02,a3}, Ls={ar,a3,00}, M=M= {a2, a5, as},
L3 = {a3,a4,a8}, L7 ={az,a6,a7}, M;= My = {a3, a5, ar},
L4 = {ay, a4, a7}, L¢ = {a3, ag, a9}, My = Mg = {aq4, a5, ag}.

Note that a; € L; and a;,a5 € M, with i = 1,2,3,4,6,7,8,9. Take the same triples
as in Construction 2 but instead of condition 3 use



3.i=j, k#ianda, € L;UM, .
If we also require that | As| = 1, then the resulting triples form a (n, 5, 3)-Turan system.
Construction 1 gives
T(13,5,3) <52 = f(13) —3.

Construction 2 is good for some small values of n. Let, for definiteness, a7, ag, aq
form a blue line. Choosing

[ A1] = |Ag] = |A3| = |As| = |As| = |As| = 47| =1 and |As| = |Ag| = 2,
a (11,5,3)-Turén system of size 29 is obtained. For n = 12 when
|A1] = |A2] = |As| = |A4| = |As| = [As| =1 and |47 = |As| = || = 2,

is chosen, then non-regular (12,5,3)-system of size 40 is produced. The six elements
in Ay U AU A3 U A4 U A5 U Ag are of degree 9, and the six elements in Az U
Ag U Ag have degree 11. Observe that the same systems for n = 11,12 can also be
obtained from Construction 3. The only situation when Construction 2 is better
than Construction 3 is for n = 15. Choosing

|41] = |As] = |As| = |As| = |As| = |4s] =2, and |A| = |As| = 44| = 1,
a (15,5,3)-Tur4n system of size 89 is obtained. Thus
T(15,5,3) < 89 = f(15) 2.

Construction 3 gives the best known result for any odd n # 13,15 . Namely,
choosing

|41 2 |As| 2 |As| > |A7] > |As| > |As| > |Ag| > |As| > |A4] -1,
|41l + |A2| +|As| + |Ad] + |As| + |A7| + |As| + |Ag| = n — 1,

we get
T(n,5,3) < f(n) — ";1 with 7 = 1 mod 8,
n—3 ]
T(n,5,3) < f(n) — 3 with 7 = 3 mod 8,
n—9 )
T(n,5,3) < f(n) - 1 with n =5 mod 8,
n—7

T(n,5,3) < f(n) — with n = 7 mod 8.

3 T(n,5,3) withn<9.

Proposition 1 T'(6,5,3) = 2, T(7, 5,3) =5 and T(8,5,3) = 8.



Proof: The unique minimal (6, 5, 3)-Turan system is given by two disjoint triples.
The analysis for 7 and 8 points is tedious but straight forward. In Tables I and II
a complete list of all minimal (7,5, 3) and (8, 5, 3)-Turan systems is given. g

Table I: The (7,5, 3)-Turan systems of size 5

No. Turan system
1 | 145 467 567 236 237
2 | 456 457 467 567 123
3 | 127 347 567 234 156
4 | 127 347 567 135 246

Table II: The (8, 5, 3)-Turdn systems of size 8

No. Turan system

1 1123 147 168 258 357 348 456 267
2 | 123 124 134 234 567 568 678 578
3 | 123 124 345 346 567 568 178 278

Proposition 2 Let (X, B) be a (n,5,3)-Turdn system. Then
(i) degg(z) < |B| - T(n - 1,5,3) and
(if) degp(z) + degp(y) — degg(z,y) < |B| ~T(n ~2,5,3) .

Proof: This follows from inclusion exclusion, |B%| = |B| — degy(z) and |Bl=w}| =
|B| — (degp(z) + degg(y) — degg(z,y)). o

Proposition 3 The only (9,5, 3)-Turdn system of size 12 is the unique Steiner sys-
tem S(2,3,9)

Proof: Let (X,B) be a (n,5,3)-Turan system of size 12. Then applying Proposi-
tions 1 and 2(i) we have degg(z) < 4 for all z € X. Also, ¥, degg(z) = 12(:1’) =
4 -9 and therefore degg(x) = 4 for all z € X. Now for z,y € X,z # y we have by
Propositions 1 and 2(ii) that deggz(z,y) > 1. But, Yz yex degg(z,y) = 12(2) = (g)
Consequently degg(z,y) = 1 for all z, € X,z # y and thus (X,B) is an 5(2,3,9)
system as claimed. It is given in Table III. g



Table III: The unique (9, 5, 3)-Turdn system of size 12

123 147 168 258 357 348 456 267 159 789 369 249

Theorem 1 A (9,5, 3)-Turdn system of size 13 contains a superfluous triple.

Proof: Let (X,B) be a (9,5,3)-Turan system of size 13. Then Propositions 1
and 2(i) imply that degg(z) < 5 for all z € X. There are at least 3 points of
degree 5 in B, since 39 = ¥, .y degg(z). If a € X is any point of degree 5, then
degp(az) = degg(z) — 3 for all z € X — {a}, since every (8,5,3)-Turan system of
size 8 is regular of degree 3. In particular we have degg(z) > 3 for all z € B.

Suppose £ € & has degg(z) = 3. Then 39 = ¥, degg(z) implies there are
at least 4 points of degree 5 in B. Fix any point a of degree 5 in B. Then since
there are at least 3 other points of degree 5 the derived system Bi{®=} js a (7,5,3)-
Turan system of size 5 that contains at least 3 points of degree 3. The only such
(7,5,3)-Turén system is No. 2 in Table I. It has three points u, v, w of degree 1 and
four points b, c, d, e of degree 3. Further uvw, bed, bee, bde and cde are the triples
in this system. Thus b, ¢, d, and e are also points points of degree 5 in B. This
argument was independent of the initial choice of a point of degree 5. Consequently
B contains all of the ten 3-element subsets of {a,b,c,d, e, } as well as uvw and the
three triples containing z. This accounts for 14 triples in B contrary to |B| = 13.
Therefore B contains no point of degree 3.

Now that we know that there are no points of degree 3 the degree sequence of B
is completely determined. It has 3 points a, b and ¢ of degree 5 and exactly 6 points
T1, T2, T3, T4, T5 and g of degree 4. Again, since the derived system with respect
to a point of degree 5 is an (8, 5, 3)-Turén system of size 8 and they are all regular
of degree 3 , we have:

degg(a, b) = degg(a,c) = degg(b,c) = 2
and
degg(a, z;) = degg(b, z;) = degg(c,z;) =1, i =1,2,...6.
We will show that abc € B. If abc ¢ B, then B = F U M where
F = {abz,, abz,, acz3, acz,, bexs, bezs, azse, brazy, cxizo}

and M is some set of four more triples from {z1,22,...,26}.

Note that H = ((zy, z2), (23, z4), (z5,26)) is an automorphism group of F and
that degy,(z;) = 2 for each i. Thus without loss we may assume that M is one of
the following 5 possibilities:

{3«‘132-”3, T1T5T6, T3T4T5, 3«‘23343«‘6}
{3«‘13«‘2-’03, T1Z2T5, T3T4T6, 3«‘435-'86}
{z12223, 212526, T3T4T6, T2T4T5 }
{931332-’133, T1T2T5, T4T5T6, 51331?43?6}

{3113«‘21’3, T1T5T6, T4T5Tg, 332333934}
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However in each case either az,z3z,4z4 or az)z3r4T5 has not been represented.
Consequently, abe is indeed a triple in B.

If degg(zi, z;) = 0, for some i # j, then the residual system Bz} is a (7,5,3)-
Turédn system of size 5. Furthermore

degg(%zj)(a) = degg(z.'-rj)(b) = degB{’i-‘i)(c) =3

Thus, Bz} is Turan system No. 2 in Table I. Consequently it contains a fourth
point d of degree 3 and degg.;..;)(a,d) = 2. Therefore degg(d) = 5 and this
contradicts B having exactly three points of degree 5. Thus, degg(z;, z;) > 1 for all
i#7.

Let B' = B — {abc}. Then degg (p,q) > 1 for all p,q € X. it follows that B’ is
an 5(2,3,9). Whence abc is a superfluous triple. g

The reader should note that G = (a, ) where a = (1,2,3)(4,5,6)(7,8,9) and
B = (1)(2,8,4,5,3,6,7), is the full automorphism group of the S(2,3,9) given in
Table III. There are precisely two orbits of triples under this group and they are
represented by 123 and 124. Thus by proposition 3 it follows that there is a unique
up to isomorphism (9, 5, 3)-Turdn system of size 13. It is given in table IV.

Table IV: The unique (9, 5, 3)-Turan system of size 13

123 147 168 258 357 348 456 267 159 789 369 249 124

4 T(10,5,3) = 20

A (n,5,3)-Turdn system (X,B) is an eztension of the (n - 1,5, 3)-Turan system
(), A) if there is a point £ € X such that ) = X — {z} and A = B*. Throughout
the remainder of this section X will be the point set {1,2,3,4,5,6,7,8,9, z}and S
will be the S(2,3,9) given in Table III. Also we let & be the the set of all 5-element
subsets of X' containing 1 and z that are not represented by some triple in S. It is
elementary to show that |K| = 24 and a triple containing z represents exactly 3 of
the 5-element subsets in K.

Theorem 2 There is a unique extension of 5(2,3,9) to a (10,5, 3)-Turdn system
of size 20.

Proof: Let (X,B) bea (10, 5, 3)-Turan system of size 20 and suppose ¢ € X has
degree 8. Then without loss B = S. Let I be the graph on {1,2,...,9} with edges
€={T -z:2 €T € B}. Then by 2(i) we have 0 < deg,(i) < 4.

Case 1: deg.(¢) = 4 or 3 for some i.

Without loss we may assume i = 1. Then By Proposition 3 or Theorem 1 £ is
forced to contain the edges {23,47, 59,68}. Observe that 8 = ((2,8, 4,5, 3, 6, 7,9))
is an automorphism of B and the forced edges. Thus up to permutation by G the
neighborhood of 1 in T is



{9.2,3,5}, {9.2,3,4}, {9,2,5,6}, {9,2,4,5}, {9,3,4,6},
{9,2,5,7}, {9,2,3,7}, {9,2,5,8}, {9,2,4,8} or {9,5,6,8}, if deg,(1) = 4

and it is
{025}, {0,2,3}, {0,34}, {0,2,4}, {0,2,6}, {0,2,7} or {0,5,6}, if deg,(1) = 3.

When considering representing 5-element sets the only possibility that survives for
the neighborhood of z is {9, 5, 6,8} and the resulting (10, 5, 3)-Turan system of size
20 is given in table V.

Case 2: deg.(i) < 2 for all <.

If Ng is the number of vertices of T' of degree d, then Ny + N; + N, = 9 and
N; + 2N, = 16. Thus either Ny = 1 and Ny=8or Ny=2and N, =17.

If Ny = 1, then without loss we may assume that deg.(1) = 0. Thus the 24
subsets in X must be represented by exactly 8 triples, 7, of the form zuv, u,v €
{2,3,...,9}. It is easy to determine that if degy(z,u,v) # 0, then degy(z, u,v) =
3. Oalsohascardinality24.Thusdegy(z, u, v) = 3 for every triple zuv € 7 and in
particular no two triples in 7 can represent the same triple in K. This implies that
if zuv and zuw are in T, then zluvw ¢ K. Hence some 3-element subset of luvw
is a triple of S. Consider any edge {a, b} of . There are triples zau, zab, zbv, € T
since, N2 = 8. If u # v, then the 3-element subsets in 1abu and labv that are triples
S must both contain 1 for otherwise they would cover a pair twice. Neither lau, 1bv
nor lab can be a triples in S, since degy(z, a,u) = degy(z,b,v) = degy(z, a,b) = 3.
Consequently, 1bu and lav must be triples in S. The above argument implies I is
the union of two 4-cycles a;b,azb, and c1dyced, for otherwise we force 1 to appear
in more than 4 triples of S. An obvious contradiction. Furthermore 1a;a;, 1b,b,,
lcicr and 1d,d; are the triples in S containing 1. Unfortunately the five element set
Taiazcc) has not been represented and so N, # 1.

If instead N; = 2 and N, = 7, then we may assume degs(1) = 1 and that
To = 212 is a chosen triple. Thus {1,2} is an edge of I and there a 6 more edges
in I left to choose. Note that Tj represents exactly 9 of the 24 5-sets in K. The
remaining 15 are:

h z1345, 1346, 21349, 21356, 1358,
K =4 z1367, 1378, z1379, 1389, 1458,
c1469, 1489, z1567, 1578, <z1679

Let A be the graph whose edges are {B\ {z,1,3}: B € K}. Then A is
6

7

5 , 8




The edges of A must be represented by {£ \ {3} : E is an edge of I'}. This set
contains at most two singletons since degy(3) is 1 or 2. When these singleton
vertices are deleted form A the edges of the resulting graph must be edges of I
Thus the resulting graph can have almost 6 — 2 = 4 edges. Consequently, there are
exactly two vertices u and v that are adjacent to vertex 3 in I', and furthermore
they are not adjacent in I". Without loss, u € {4,5,6} and v € {7,8,9}. Then either
luw, 2uv, or 3uw is a triple in S.
Let 123, 1uw, 1aja; and 16,6, be the triples in S that contain 4, = 1,2 or 2.

If ¢ = 1 or 3, then the above argument shows that I' contains the six edges
12, 3u, 3v, a1by, b1az and a2b,. The two remaining edges must in particular
represent x2jajag, £25b1bs, wiuaiby and wivaiby: where j=1if 7 =3 and
J = 3if, i = 1. This is clearly impossible without violating N; =2 and N, = 9.

If ¢ = 2, then the above argument shows that I' contains the seven edges 12, 3u,
3v, ayay, azby, b1b; and bya;. The remaining edge must in particular represent
z23cd, where lcd € S and is disjoint from uv. Thisis clearly impossible without
violating Ny =2 and N, = 9.

Table V
The unique extension of 5(2,3,9) to a (10,5, 3)-Turén system of size 20.

123 456 789 147 258 369 159 267 348 168
249 357 x23 x47 x59 x68 x19 x15 x16 x18

Theorem 3 T(10,5,3) = 20 (Note that Stanton and Bates proved this by computer
in 1980, see [10] )

Proof: Let (X, B) be a (10,5,3)-Tur4n system. Then the Schénheim bound gives
us |B| > 18.
Case 1:

|B| = 18. By Proposition 2(i), deg(¢) < 6 and since ¥, deg(i) = 3- 18 = 54,
there is at least one point with deg(z) = 6. Hence the residual system, B* is a
(9,5,3)-Turén system of size 12. So the triples in BB are S and the six triples through
z. These six triples must in particular represent K, but they can only represent at
most 18 of the 24 quintuples of K. Therefore |B| # 18.

Case 2:

|B| = 19. By Proposition 2(i), deg(i) < 7 and since ¥, deg(i) = 3(19) = 57,
there is at least one point with deg(zx) > 6.

If deg(z) = 7, the residual system, B* is a (9,5,3)-Turdn system of size 12. So
the triples in B are S and the seven triples through z. These seven triples must in



particular represent X, but they can only represent at most 21 of the 24 quintuple
of K.

If deg(z) = 6, the residual system B? is a (9,5,3)-Turan system of size 13. So the
triples in B are S, the superfluous triple abc of Theorem 2 and the six triples through
z. The triple abc can represent at most 1 quintuple in the set X. The greatest
number of quintuples in X which can be represented by the 6 triples through z is
18.

The (10,5,3)-Turan system of the Table V is of size 20. 1

Lemma 1 There is no extension of a (9,5,3)-Turdn system of size 13 to a (10,5,3)-
Turdn system of size 20.

Proof:  Suppose that (X, B) is a (10,5,3)-Tur4n system of size 20 extending a
(9,5,3)-Turan system of size 13 by the point z. According to Theorem 1, B® contains
a superfluous triple yzu. Any 5-element subset of X , represented only by this triple,
must contain x. Thus, replacing yzu by zzu, we obtain an (10,5,3)-Turan system
(X, B') (B cannot already contain zzu since [B/| > 20 by Theorem 3). The degree of
z in B’ is equal to 8, and (X, B') is an extension of the unique (9,5,3)-Turan system
of size 12. Such extension is also unique, and one was described in Theorem 2. It
is easy to check that we could not replace z by another vertex y in one triple of B'
without destroying the Turan condition. 4

5 T(11,5,3) = 29

Through out this section X will be the point set {1,2,3,4,5,6,7,8,9,z,y} and
(&, B) will be a (11,5,3)-Turan system. The Schénheim bound gives T'(11,5,3) >
28, since by Theorem 3, T(10, 5,3) = 20.

Corollary 1 There is no extension of the Turdn system in Table V to a (11,5, 3)-
Turdn system of size 28.

Proof: Suppose there is such an extension. Then there is a point y € X such that
BY is the (10, 5, 3)-Turan system of size 20 given in Table V. Note that Proposition
2(i) implies that deg(a) < 8 for all a € X. Thus in particular deg(y,1) = 0. But
B* is also a (10, 5, 3)-Tur4n system of size 20 that extends an S(2,3,9). It is there-
fore, by Theorem 2, isomorphic to the Turin system in Table V and this contradicts
deg(y,1) = 0. 4

Proposition 4 Ifz is a point of degree 8 in a (11,5,8)-Turdn system (X, B) of size
28, then degg(zy) = deggz(y) — 6 for all other powntsy € X. In particular the degree
of every point in (X, B) is at least 6.

10



Proof: Let (X, B) be a (11,5,3)-Turan system of size 28. Then the average degree
of a point is

1 3-28 7
i1 2, dees(®) = 7~ =77

Thus there is at least one point z of degree 8 in (X, B). Observe that (X —{z}, B®) is
a (10,5,3)-Turan system of size 20. Theorems 1 and 2 give us that the only (10,5,3)-
Turan system of size 20 with a point of degree greater than or equal to 7 is the
unique system given in Table 2. Corollary 1 insures us that this system can not be
extended to a (11,5,3)-Turan system of size 28. Moreover in a (10,5,3)-Turén system
of size 20, if there are no points with degree > 7, then all points y have degree 6.
The truth of the proposition now follows. 1

Lemma 2 If there is (1 1,5,3)-Turdn system of size 28, it has 7 points with degree
8 and 4 points with degree 7,

Proof: Let (X,B) bea (11,5,3)-Turén system of size 28. By Proposition 2(i), for
any point z, degg(z) < 8.
Let Ny be the number of points of degree d in B, then the equations

8 8

D.Ng=11 and Y dN,=3.28

d=1 d=1
hold. Observe that N, = 0 for d < 6 by Proposition 4. Moreover if there is a point
y of degree 6 in B, then, also by Proposition 4, degg(xy) = 0 for all points z with
degg(z) = 8. Thus in order to construct the 6 distinct triples containing y, there
must be at least 4 points of degree less than 8.

Hence the only possible solution to the equations is Ng = 7 and N; = 4,

Lemma 3 T(11,5,3) > 28

Proof:  Suppose that (X,B) be a (11,5,3)-Turan system of size 28. Then by
Lemma 2, there is a set P = {1,2,...,7} C X of 7 points all of degree 8 in B and
the remaining 4 points Q = {a, b, c, d} = X — P all have degree 7. It is useful to
note that by proposition 4, degg(pp') = 2 and degg(pg) = 1 for all p,p’ € P and
qge Q.

A subset A C X will be said to be of type 1 if |ANP| =1. Let N; be the number
of triples in B of type i. Then counting the number of triples in two ways gives:

N()+N1+N2+N3=28;

counting pairs of type 2 in two ways we get:

. 7
N2*°‘-3=2<2);

11



and counting pairs of type 1 in two ways we get:
2N1+2N2=4-7.

There are exactly 5 solutions to these equations and they are given in Table VI.

Table VI
No Ni N; N
Al 0 14 0 14
B{1 11 3 13
Cl2 8 6 12
D3 5 9 1
El 4 2= 1 124410

We eliminate each of solutions A, B, C, D, and E in turn.
Elimination of solution A.

Suppose (X, B) satisfies the distribution given by solution A and let D be the 14
triples of type 3. All of these triples come from the point set P and degp(ij) = 2,
for all 4,5 € P, since N, = 0. Thus D is a 2-(7,3,2) design and the complement
D= {uwww C P : wow ¢ D} is a 2-(7,3,3) design. For each pair z,y € Q the
5-element subsets {zyuvw : vvw € D} must be represented by triples of the form
zyi, where i € P. Thus degg(zy) > 3, since degs(i) = 9 and deg;(4,5) = 3. This
accounts for at least 3- 6 = 18 type 1 triples in B, which contradicts N; = 14.

Elimination of solution B.

Let (X, B) satisfies solution B. Then we may assume that abc € B.

If degg(zd) = 0 for some z € {a,b,c}, then there are 7 type 1 triples in B
containing d and 5 other type 1 triples in B containing x. This accounts for 12 type
1 triples in B contrary to N; = 11.

If degp(zd) = 1 for some z € {a, b, ¢}, then since degg(z) = 7 and degg(zp) = 1
for all p € P there is exactly one type 2 triple in B containing z. Thus we may
assume without loss that zdl and z23 are triples in B. The only possibility to
represent the quintuples 2d245, zd246 and zd247 is to include the triples 245, 246
and 247, but this contradicts degg(12) = 2.

Therefore degg(zd) > 2 for all z € {a,b, c} and consequently we may assume
without loss that degg(ad) = 3, degg(bd) = 2. and degg(cd) = 2, since degg(d) = 7
Also, since degg(a) = degg(b) = degg(c) = 7 and degg(zp) = 1 for all p € P and
z € {a,b,c} it follows that we may assume that the 7 triples containing a are abc,
adl, ad2, ad3, ab4, ac5 and a67. Furthermore there it is easy to see that there is a
unique type 2 triple containing b. It is now impossible to represent the 5-element
subsets ab123, ab125, ab126, ab127, ab235, ab236, ab237, ab135, ab136 and abl137
without forcing the degree of some pair in P to exceed 2.

Elimination of solution C.

Suppose that (X, B) has the distribution given by solution C. The without loss
we may assume that the 2 type 0 triples in B are abc and abd. Since degg(pg) =1
for all p € P and ¢ € Q it follows that of the 6 type 2 triples two contain a, two
contain b, one has c and one has d. Without loss we may assume that al12,a34 € B.
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Claim: B contains no triple of the form zij, z € {c,d}, i,7 € {5,6,7}

Suppose for example that B contained the triple c56, then in order to represent
the 5-element set acijk where i € {1,2}, j € {3,4} and k € {5,6}. The triple ijk is
required. Thus B contains 135, 136, 145, 146, 235, 236, 245, 256. Note that among
the triples choose so far the degree of 13 and 24 is 2. Consequently in order to
represent c1234 either c12 or ¢34 must be chosen. It is now impossible to represent
adcl5, adc35, adcl6 and adc36 and have degg(di) = 1 for all i € {1,2,...,3}.
Therefore the claim holds.

It is now impossible to represent the 5-element sets of the form acijk and adijk
where 4, j € {5,6,7} and k € {1,2, 3,4} without contradicting the claim.

Elimination of solution D.
Let (X, B) have the distribution given by solution D. Then without loss the type

0 triples in B are
abe, acd, and abd.

Also since degg(ap) = 1 for all p € P and since (b, ¢, d) is an automorphism of the
type 0 triples we may assume without loss that

abl, a23, a45 and a67

are triples in B. Thus all triples in B containing a are accounted for. Now since
¢ must appear with each p € P exactly once and degg(c) = 7, there are exactly 2
type 2 triples in B that contain c. Say these triples are chi, cjk where h, i, j and k
are distinct elements of P. Without loss of generality 2 € P — {h,1, j, k}. Consider
the four 5-element subsets acl24, acl125, acl26 and acl127. At most one of them is
represented by chi and cjk and none are represented by a triple containing a. This
implies that at least three of the triples 124, 125, 126 and 127 are in B contrary to
degg(12) = 2.

Elimination of solution E.
If (X, B) satisfies solution E then the 4 triples of type 0 in B are
abc, abd, acd, and bed.

Also, since degg(pg) = 1 for all p € P and g € Q, we may assume without loss of
generality that
abl and ed2

are the two triples of type 1 in B. Since there is a unique triple containing a and 2
and a unique triple containing d and 1 we also have in B without loss of generality

a23 and d14.

Now the only way to represent adl125, ad126 and adl127 is to include 125, 126 and
127 in B. This contradicts degg(12) = 1. 4

Lemma 4 There is a unique way to doubly ertend 5(2,3,9) to a
(11,5,3)-Turdn system of size 29.

13



Proof: Let X ={1,2,3,...,9,z,y} and suppose (X, B) is a (11,5,3)-Turan system
of size 29 such that B*¥} = S the S(2,3, 9) in Table III. Then without loss we may
assume that degg(y) = 9, deg(z,y) < 1 and degy(z) = 8 if degg(z,y) = 0; or
degg(z) = 9 if degg(z,y) = 1; since the maximum degree is 9 and 12 + degg(z) +
degp(y) — degg(z,y) = 29. Thus by Theorem 2 we may assume that BY is the
(10,5,3)-Turan system of size 20 in Table V.

Suppose degg(yx) = 0 and degg(yl) = 0. Then in order to represent the 5-
element sets { yzlij : i,7 € {2,3,4, 7} } the triples y24, 427, y34 and y37
must be included in B. There are only 5 more triples that are as yet unspecified.
But, then to represent with fewer than 5 triples the 5-element sets { yzijk
i € {2,3,4,7} and j, k € {5,6,7, 8} } the triples y56, y58, y69 and y¥89 must be
included, leaving only one more triple in B to be chosen. Unfortunately y2359 and
y4768 have not been represented and contain no common triple. Consequently since
the permutation (1,z) is an automorphism of the the system in Table V we may
assume that degg(z,y) = 1.

Thus B is a (10,5,3)-Turan system of size 20 on the point set {1,2,3,...,9,y}
that is an extension of S. Applying Theorem 2 again it is not to difficult to show
that up to isomorphism there is a unique way to specify the triples containing y in
B so that B is a (11,5,3)-Turan system as was required. It is given in Table VII. 4

Theorem 4 T(11,5,3) = 29
Proof: The above two Lemmas establish that T(11,5,3) = 29. 4

Table VII: A (9,5, 3)-Turan system of size 29

123 147 168 258 357 348 456 267 159 789 369 249
x23 x47 x68 x59 y57 y48 12y y69 x2y
x16 x18 x15 x19 y34 y38 y35 y37

The (11,5,3)-Turan system of size 29 in Table VII can also be obtained using
construction 3 in section 2.

6 Computational Results.

Independently from the results presented in the previous sections, we have performed
extensive machine computations with (n, 5, 3)-Turan systems. This section sketches
most important algorithms used and presents the results of our computations. The
software used consisted of:

(1) Turezp. An algorithm for extending (n, k,[) systems to (n + 1, k, l) systems.
(2) Nauty. A very efficient set of procedures written by B.D. McKay [1] for de-
termining the automorphism group of a graph, and optionally for canonically
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labeling it. Two graphs are isomorphic iff they have identical canonical label-
ings, thus nauty can be used as a powerful tool to detect isomorphs in large
families of graphs, and indirectly via graphs in families of any reasonable finite
objects, in particular Turan systems.

(3) A variety of set system manipulation programs for basic operations, changes of
representation, checking the Turan condition, and others.

Most of the algorithms mentioned above are modifications of the algorithms de-
scribed in [2]. In this paper the first classical Ramsey number for hypergraphs
R(4,4;3) = 13 was computed and a strong relationship between Turan systems
(n,5,4) and the Ramsey number R(4, 4; 3) was exploited.

A simple counting of how many times each k-element set is represented by a
chosen I-element sets permits a fairly efficient implementation of turezp. For any
(n, k,1)-Turan system (X, B) of size b let g¢; denote the number of k-sets containing

exactly < members of B, for 1 < i < (’I‘) Define Q = Q(X, B) by

(i)
Q = Z(z _— I)Qi,

1=2

the number of multiple representations of k-element subsets of X" there are in S. It

is easy to see that
n—1+1 n
2= ("))

Hence @ depends only on the size and the parameters of (X, B). and so we can write
Q(X,B) = Q(n, k,1,b). When extending a (n, k,!)-Turén system (X, B) to a (n +
1,k,l)-Turdn system we use a variable gsum which is initialized to the Q(n, k,1,b).
For each new l-element set, if it appears in a k-element set already represented by
previously chosen l-element sets, we increment gsum by one for each such k-set.
When for a partial extension of (X, B) the variable gsum exceeds Q(n + 1,k,1,p)
then we know that this extension cannot be completed to any (n + 1,k,[) system
with at most p blocks.

Turezp is a recursive backtracking algorithm organized as follows. Let (X,B)
be a (n, k,!)-Turin system of size b and let Yy € X be a new point. Consider the

(121) (0,1)-variables corresponding to possible new blocks passing through point

y, and the m < (kfl) — b conditions corresponding to k-sets passing through point
Y, which have to be represented by new blocks. T'urezp assigns recursively 0 or 1 to
these variables, and at each level of recursion maintains: the current list of not yet
satisfied conditions, the current number of blocks, the current degrees of all points,
and gsum. This enables the algorithm to return to a higher level of recursion before
a full assignment to the variables has been done in the following situations:

(a) The number of blocks exceeds the desired value .
(b) The degree of some point exceeds the maximal degree permitted.

(c) The value of gsum exceeds the maximal possible value Q(n + 1, k,1, p).
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Similar, but weaker situations, enforce new assignments to variables, solutions or
contradiction as follows:

(d) The number of blocks reaches p. We have a solution or contradiction.

(e) The degree of some point reaches the maximal possible degree. Set to 0 all
variables containing a point which reached maximal degree.

(g) If some condition contains exactly one variable with a not yet assigned value,
then either we can force this variable to be 1 or we have a contradiction.

The bottleneck of computations was the time consumed by the algorithm turezp.
The results of the above algorithms are summarized in the table VIII showing the

number of nonisomorphic (n, 5, 3) systems on b blocks for different values of n and
b.

Table VIII: Number of nonisomorphic (n,5,3) systems of size b

n | b number of systems
9 112 1
9 (13 1
9|14 29
10 | 19 0
10| 20 5
10 {21 95
11 | 28 0
11 { 29 1
11 { 30 166
12 | 39 0
12 1 40 16
13 | 52 1
14 | 67 0

The unique (13,5, 3)-Turdn system on 52 blocks has 5616 automorphisms, and
it can be obtained by taking all triplets of collinear points in the well known pro-
jective plane of order 3. It seems that further progress in the study of (n, 5, 3)-
Turan systems could be achieved by a careful analysis of the 16 (12, 5,3) systems
on 40 blocks. 15 of them are regular of degree 10, and one has 6 points of degree 9
and 6 points of degree 11. These systems have automorphism groups of surprisingly
large size, namely: 48, 64 (2 systems), 96, 128, 144, 256 (3 systems), 288, 384, 432,
768, 4608, 5184, and 1036800.
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