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Abstract. The graph with vertices in GF(16), whose edges connect points having
difference equal to a cube, which was known to be extremal for the Ramsey
numbers R(3,3,3) and R(K3,K6-e), is shown to be extremal for R(Ks-¢,K6-€). The
roof is obtained by using computer algorithms to analyze the properties of the
amily of graghs having no K4-e and having no Ks5-e in the complement. It is also
shown that there is a unique graph, up to graph isomorphism, which is extremal
for R(Ks-¢,K7-€), viz., the strongly regular Schiafli graph on 27 vertices, which has
an automorphism group of size 51840. This follows easily from the result that
R(K4-¢,K6-€) is 17.

1. Introduction.

The two color Ramsey number R(G,H) is the smallest integer n such that for
any graph F on n vertices, either F contains G or the complement of F contains H.
This paper considers G and H of the form Ku-¢, the complete graph on n vertices
minus an edge. The techniques used are similar to those in [2]. A graph F is called
a (Ki-¢,Kj-e)-good graph if there is no Ki- in F and no Kj-e in the complement of F.
Appendix A shows all the (K4-¢,K6-¢)-good graphs computed by the authors, using
the program "fillJ4J6". The complete list has not been generated, due to the large
number of graphs at some sizes. Appendix B contains descriptions of all the
computer algorithms cited in this paper.

e following notation is used throughout the paper.

G = arbitrary (K4-¢,K6-¢)-good graph on 17 vertices
H = arbitrary (K4-¢,K5-€)-good graph

x = any vertex in G
Gx = subgraph of G induced by all vertices adjacent to x
Hy = subgraph of G induced by all vertices not x and not in G;.

support set = subset S of vertices of H satisfying:
S1) no triangle in H has 2 vertices in S;
S2) S induces in H a subgraglh with maximum degree at most 1;
S3) no independent 4-set in H is disjoint from S.
OKN = binary relation on the family of support sets
defined as those pairs S, T with the properties:
(O1) no subgraph of H which is induced by 4 vertices and has only 1 edge is
disjoint from (S v 7T);
(02) no 7i‘n;'iepcndent 4-set in H has 3 vertices outside (SvT) and 1 vertex in S-T
or T-S.

The process of decomposing G into the triple (x,Gx,Hx) is called preferring the
vertex x in G. Note that the vertices in Hy adjacent to a vertex y in Gx form a support
set, called the support set rooted at y. Note further that every Gx is a
(K3-¢,K6-¢)-good graph and every Hy is a (Ks-¢,K5-¢)-good graph.

It is clear that the graph on GF(16) referred to above is a §K4-e,K6-e -good
graph. One of the main results of this paper is that there is no (Ks-¢,Ké-e ;-good
graph on 17 vertices, establishing 17 as the Ramsey number R(Ks-¢,K¢-€).

2. Properties of (Ki,e,K6-¢)-good graphs.
Many of the results below rely on the properties of support sets. Since H is

K4-e,K5-e;-good, no support set can have more than 6 vertices. Since Gy is
K3-¢,K¢-€ )-good, and has maximum degree at most 1, Gy has at most 8 vertices.
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Moreover, if Gx has more than § vertices, at most 1 vertex does not bel_o_ng to an
edge. It is clear that support sets rooted at adjacent vertices of Gx are disjoint and
support sets rooted at non-adjacent vertices of Gx are OKN-related. )

An edge in H is called a support edge if its vertices from a support set. The first
proposition characterizes squort edges and shows that A has relatively few edges
which can occur as subsets of support sets.

Proposition 1. If an edge in H has both vertices in the same support set, then it is
a support edge.

Proof. Let {x,y} be an edge in Hwithx and y in a support set S. It suffices to show
that {xy} is incident with every independent 4-set /in H. Assume neither x nory
liesin/. Since the complement of H has no Ks-e, both x and y must be adjacent to
at least 2 vertices in /. Since {x,y} is not in a triangle, by (S1), there must be exactly
2 vertices in I adjacent to x and the remaining 2 vertices in / must be adjacent to y.
One of the vertices of I lies in S, however, by (S3), causing 2 edges in S to be
incident, which is a contradiction. .

The second proposition relates to vertices in G of degree 4, 5, or 6.

Proposition 2.
a) If H has 12 vertices, then H has no support sets.
éb If H has 11 vertices, then
1) H has at most 4 support edges;
2) H has at most 3 support sets which are pairwise OKN:;
(c) If H has 10 vertices, then
1) H has at most 9 mg;mt edges;
2) H has no pairwise collection of 4 support sets S, T,U,V satisfying:
i) S and T have size at least 5;
ii) U and V have size at least 4;
iif) U and V contain at least 1 edge each.
Proof. Four computer JJrograms, described in Appendix A, have been written to
do the counting required to establish this result. All 4 programs examine all graphs
in an input file consisting of all (K4-¢,K5-¢)-good graphs, which were found in [3].
The programs are: "countS”, which counts all support sets; "countE", which counts
all support edges; "hxOKN", which counts all pairwise OKN collections of support
sets; and "OKN4ES", which counts those pairwise OKN collections of support sets
satisfying the conditions in (c2).

3. Proofs.

Theorem 1. If G exists, then G has minimum degree at least 5. _

Proof. The Ramsey number R(K4-e,K5-¢) is 13, see [1], so each Hy has size at most
12. Proposition 2(va) shows that no Hx has size 12, Thus the maximum size of Hy
is at most 11 and the minimum degree in G is at least 5.

Theorem 2. If G exists, then G has minimum degree at least 6.

Proof. Assume that some vertex x has degree 5. Then Hy has 11 vertices. If x
belongs to fewer than 2 triangles, then Gy has an independent set of size 4 and Hy
has 4 pairwise OKN supérort sets, which is not allowed by Proposition 2(b2).
Therefore each vertex of degree S belongs to exactly 2 triangles. The properties of
Gx mentioned above then imply that all vertices of é belong to at least 2 triangles.
Now lety be a vertex of degree 5. Consider the 5 support sets in Hy rooted at the
vertices adjacent to y. These vertices must each belong to a triangle not containing
¥, so the 5 support sets they generate must each contain one or more edges. This
causes Hy to have at least 5 support edges, contradicting Proposition 2(b1). Thus
no vertex in G has degree 5.
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Theorem 3. If G exists, then G has minimum degree equal to 6.
Proof. If the minimum degree is grcater than 6 then the only degrees are 7 and 8,
since no Gy has size greater than 8. If every degree is 8, then every vertex belongs
to 4 triangles, and in every Hy the 8 support sets break up into 4 gairs of support
sets, with each pair consisting of disjoint support sets containing 3 support edges
each. This requires 12 vertices in an Hy with 8 vertices and cannot happen.
Therefore some vertex y has degree 7. Its Hy has 3 pairs of support sets with
each pair consisting of disi;)int sugport sets having at least 5 vertices each. This
requires 10 vertices in an Hy with 9 vertices, again impossible. Thus the minimum
degree is neither 8 nor 7.

Theorem 4. If G exists, then every vertex of G belongs to at least 3 triangles.
Proof. The only vertices which can belong to fewer than 3 triangles are the vertices
of degree 6. Assume x is such a vertex and y,z are the 2 vertices in Gy which do
not lie in any triangle with x. The support sets in Hy rooted at y and z have size at
least 5. Choose 2 nonadjacent vertices u,v in Gx distinct fromy and z. The 2 support
sets rooted at 4 and v each have size at least 4 and at least 1 edge. The 4 support
sets rooted at y,2,u,v satisfy the conditions of Proposition 2(¢2) and hence cannot
exist. Therefore all degree 6 vertices belong to 3 triangles, implying the theorem.

Theorem 5. The Ramsey number R(K4-¢,K6-¢) is equal to 17.

Proof. It was noted above that there is a R(K4-¢,K¢-¢)-good graph on 16 vertices,

establishing 17 as a lower bound for R(Ks-¢,K6-¢). Therefore it remains to show

that no graph G exists. Assume that G exists and that x is a vertex in G of degree

6. Theorem 4 implies that the 6 support sets in Hx have at least 2 edges each,

;‘equiring (1)2 support edges. Proposition 2(c1) shows this is impossible, since Hy
as size 10.

Theorem 6. The Ramsey number R(Ks-¢,K7-¢) is equal to 28. Furthermore, there

is on{y ‘one R(Ks-e,K7-€)-good graph on 27 vertices.

Proof. If y is a vertex in a (K4-¢,K7-¢)-good graph F and F is decomposed into
,Gy,Hy) by preferring y, then Gy is a (K3-¢,K7-e)-good graph and Hj is a
K4-e,l(§-e )-good graph. Therefore Gy has at most 10 vertices and Hy has at most
6 vertices, implying F has at most 27 vertices. Thus 28 is an upper g

Ramsey number R(Ks-e,K7-e).

The Schlifli graph, see [4], has 27 vertices, each of degree 10 and each in 5
edge-disjoint triangles, implying there are no Ks4-e subgraphs. In the complement of
the Schldfli graph each vertex has degree 16 and belongs to 16 Kg's. The largest
intersection between 2 Kg's is a K3, so there are no K7-e subgraphs in the
complement. Thus the Schliifli graph is (Ks-¢,K7-¢ )-good, establishing 28 as a lower
bound for the Ramsey number R(Ks-¢,K7-¢).

The computer program "fillJ4J6", modified to construct (Ks-¢,K7-€ )-good graphs,
was used to extend all 4 of the (K4-¢,K6-¢ )-good graphs on 16 vertices to all possible
(K4-¢,K71-€)-good graphs on 27 vertices. Only the Schlifli graph was produced,
proving its uniqueness as an extremal graph for the Ramsey number R(Ks-¢,K7-¢).

ound for the
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APPENDICES. Appendix A contains a listing of the number of non-isomorphic
(K4-e,K6-€)-good graphs, broken down by the number of vertices, n, and the
number of edges, e. These graphs were (%cnerated by the program "fillJ4J6", which
uses the graph isomorphism program described in [2]) and [3). The letter "x"
denotes an uncomputed number.

Appendix B contains outlines of the computer programs used to prove
Proposition 2 and the program "fillJ4J6".,
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APPENDIX B

program:

arguments:

purpose:
code:

program:

arguments:

purpose:
code:

program:

arguments:

purpose:

code:

program:

arguments:

purpose:
code:

brogram:

arguments:

purpose:

code:

countSﬁH)
H = R(Ks-¢,Ks5-¢)-good graph

compute the number of support sets in H
1. call support(U, H);

2. return number of nonzero entries in U.

countE(H)
H = R(Ks.¢,Ks5-e)-good graph
compute the number of support edges in H
1. call support(U, H),
2. for each edge Ein H:
2a. if E belongs to some set in U increment NUM
3. return NUM.

OKN4ES(H)
H = R(Ks-e,Ks-e)-good graph
compute the maximum size of a family of
support sets in H satisfying
afz sets have size 5
b) all sets have size 4 or S and at least 1 edge
c) all sets are pairwise OKN
1. call support(U, H),
2. remove from U support sets of size less than 4 or greater than 5;
3. remove from U sgp ort sets without an edge;
4. for each pair (S1, 2?
4a. form the array C of all support sets from U of size 4 which are
OKN with S1 and S2
4b. define length(S1,52) = hxOKN(C)
5. return the maximum value of length(S1,52)

support(U, H) ;

U = array to hold all support sets in /{

H = R(K4-¢,K5-e)-good graph

compute the family of support sets in /1

1. build array A of all adjoining edges in /£,

2. build array T of all triangles in H,

3. build array / of all independent 4-sets in H,

4. for each set S of vertices of H:

4a. if S contains no A[i] and S meets each 7[i] in fewer

than 2 vertices and § meets each [[i] in at least 1 vertex
then adjoin S to the array U

hxOKN(C)

C = array of support sets

compute MAXOKN = the maximum number of support sets in C which

are pairwise OKN

1. define MAX = current value of the maximum number of support sets
in C which are pairwise OKN

2. build array flag of 0’s of same length as C

3. call cluster(&MAX, flug,C 1);

4, return MAX

94

from U with $1 OKN S2 and size (S1) = size(S2)= 5:



program:

arguments:

purpose:.

code:

program:

arguments:

purpose:

code:

cluster (ptr,flag,C,index)

[)ll'
flag

c

pointer to integer variable MAX

array of (s and 1’s showing families of support sets
which are pairwise OKN

array of support sets

index = index in array C

recursively construct all families of support sets which
are pairwise OKN and record the maximum

size of such families

1. if index > length(C) { update MAX;return; }

2. if Clindex ] is OKN with all preceding flagged

surport sets { Clindex]= 1;

call cluster(ptr,flag,C,index+1); }
3. Clindex = 0;

4. call cluster(ptr,flag,C,index +1);
fillJ4J6(min,H)

min = integer

H = (K+-¢,Ks5-¢)-good graph

construct all (K4-¢,K6-¢)-good graphs with

preferred triple (y,Gy,Hy) using Gy with size

min, H as Hy, and minimum degree min

1. call support(U,H)

2. for each number of c(lijgcs in Gy and each assignment

of support sets from

to the vertices of Gy:

2a. test if the support sets for adjacent vertices
are disjoint and the support sets for
independent vertices are OKN

2b. test if the resulting graph is (K4-¢,K¢-¢)-
good with minimum degree min

\
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