A NEW UPPER BOUND FOR THE RAMSEY NUMBER R(5,5)

Brendan D. McKay

Department of Computer Science

Australian National University

GPO Box 4, ACT 2601, Australia

Stanisław P. Radziszowski*

Department of Computer Science

Rochester Institute of Technology

Rochester, NY 14623, USA

Abstract.

We show that, in any colouring of the edges of K_{53} with two colours, there exists a monochromatic K_5 , and hence $R(5,5) \leq 53$. This is accomplished in three stages: a full enumeration of (4,4)-good graphs, a derivation of some upper bounds for the maximum number of edges in (4,5)-good graphs, and a proof of the nonexistence of (5,5)-good graphs on 53 vertices. Only the first stage required extensive help from the computer.

1. Introduction.

The two-colour Ramsey number R(k,l) is the smallest integer n such that, for any graph F on n vertices, either F contains K_k or \bar{F} contains K_l , where \bar{F} denotes the complement of F. A graph F is called (k,l)-good if F does not contain a K_k and \bar{F} does not contain a K_l . The best upper bound known previously, $R(5,5) \leq 55$, is due to Walker (1971 [7]). The best lower bound, $R(5,5) \geq 43$, was obtained by Exoo (1989 [1]), who constructed a (5,5)-good graph on 42 vertices.

Throughout this paper we will also use the following notation:

$N_F(x)$	— the neighbourhood of vertex x in graph F
$\deg_F(x)$	— the degree of vertex x in graph F
n(F), e(F)	— the number of vertices and edges in graph F
t(F)	— the number of triangles in F
$ar{t}(F)$	— the number of independent 3-sets in graph $F;$ i.e. $t(\bar{F})$
V(F)	— the vertex set of graph F
(k, l, n)-good graph	— a (k, l) -good graph on n vertices
e(k,l,n)	— the minimum number of edges in any (k, l, n) -good graph
E(k,l,n)	— the maximum number of edges in any (k, l, n) -good graph
t(k,l,n)	— the minimum number of triangles in any (k, l, n) -good graph

^{*} Supported in part by a grant from the National Science Foundation CCR-8920692

Let n = |V(F)| and let n_i be the number of vertices of degree i in F. The well-known theorem of Goodman [2] says that

$$t(F) + \bar{t}(F) = \binom{n}{3} - \frac{1}{2} \sum_{i=0}^{n-1} i(n-i-1)n_i. \tag{1}$$

In his study of the Ramsey numbers R(k,l), Walker [6] observed that if F is a (k,l,n)-good graph then

$$t(F) + \bar{t}(F) \le \frac{1}{3} \sum_{i=0}^{n-1} \Big(E(k-1, l, i) - e(k, l-1, n-i-1) + \binom{n-i-1}{2} \Big) n_i.$$

Let $x \in V$ be a fixed vertex in a (k,l)-good graph F and consider the two induced subgraphs of F, G_x and H_x , where $V(G_x) = N_F(x)$ and $V(H_x) = V - (\{x\} \cup V(G_x))$. Note that G_x and H_x are (k-1,l)-good and (k,l-1)-good graphs, respectively. We define the *edge-deficiency* $\delta(x)$ of vertex x to be

$$\delta(x) = E(k-1, l, n(G_x)) - e(G_x) + e(H_x) - e(k, l-1, n(H_x)).$$

The edge deficiency $\delta(x)$ measures how close to extremal graphs the subgraphs G_x and H_x are. Clearly, $\delta(x) \geq 0$. One can also easily see that

$$\delta(x) = E(k-1, l, n(G_x)) - e(G_x) + E(l-1, k, n(H_x)) - e(\bar{H}_x). \tag{2}$$

It is convenient to define the edge deficiency $\Delta(F)$ of a (k,l)-good graph F by

$$\Delta(F) = \sum_{x \in V(F)} \delta(x). \tag{3}$$

The first lemma below, similar to (1) in [6], gives a strong condition which permits us to restrict the search space for (k, l)-good graphs.

Lemma 1. If n_i is the number of vertices of degree i in a (k, l, n)-good graph F then

$$0 \le 2\Delta(F) = \sum_{i=0}^{n-1} \left(2E(k-1,l,i) + 2E(l-1,k,n-i-1) + 3i(n-i-1) - (n-1)(n-2) \right) n_i. \tag{4}$$

Proof. Observe that for all $x \in V(F)$ the number of triangles containing x is equal to $e(G_x)$ and the number of independent 3-sets containing x is equal to $e(\bar{H}_x)$. Hence by (2),

$$\begin{split} 3(t(F)+\overline{t}(F)) &= \sum_{x \in V(F)} \left(e(G_x) + e(\bar{H}_x)\right) \\ &= \sum_{x \in V(F)} \left(E(k-1,l,n(G_x)) + E(l-1,k,n(H_x)) - \delta(x)\right), \end{split}$$

and so by (3) we have

$$0 \le \Delta(F) = \sum_{i=0}^{n-1} \left(E(k-1, l, i) + E(l-1, k, n-i-1) \right) n_i - 3 \left(t(F) + \overline{t}(F) \right).$$

Now using (1) and $\sum_{i=0}^{n-1} n_i = n$, we obtain (4).

2. Generation of all (4,4)-good graphs.

This section describes how we generated the set of all (4,4)-good graphs. Let us denote by R(4,4,n) the set of all (4,4,n)-good graphs and let R'(4,4,n) be the subset of those $F \in R(4,4,n)$ with maximum degree D at most (n-1)/2. The result of applying the permutation α to the labels of any labelled object X will be denoted by X^{α} , and also Aut(F) is the automorphism group of the graph F, as a group of permutations of V(F).

Suppose that θ is a function defined on $\bigcup_{n\geq 2} R'(4,4,n)$ which satisfies these properties:

- (i) $\theta(F)$ is an orbit of Aut(F),
- (ii) the vertices in $\theta(F)$ have maximum degree in F, and
- (iii) for any F, and any permutation α of V(F), $\theta(F^{\alpha}) = \theta(F)^{\alpha}$.

It is easy to implement a function satisfying the requirements for θ by using the program nauty [3]. Given θ , and $F \in R'(4,4,n)$ for some $n \geq 2$, the parent of F is the graph par(F) formed from F by removing the first vertex in $\theta(F)$ and its incident edges. The properties of θ imply that isomorphic graphs have isomorphic parents. It is also easily seen that $par(F) \in R'(4,4,n-1)$. Since $R'(4,4,1) = \{K_1\}$, we find that the relationship "par" defines a rooted directed tree T whose vertices are the isomorphism classes of $\bigcup_{n\geq 1} R'(4,4,n)$, with the graph K_1 at the root. If ν is a node of T, then the children of ν are those nodes ν' of T such that for some $F \in \nu'$ we have $par(F) \in \nu$. The set of children of ν can be found by the following algorithm, whose correctness follows easily from the definitions:

- (a) Let F be any representative of the isomorphism class ν . Suppose that F has n vertices and maximum degree D.
- (b) Let L = L(F) be a list of all subsets X of V(F) such that
 - (b.1) either |X| > D, or |X| = D and X does not include any vertex of degree D,
 - (b.2) X intersects every independent set of size 3 in F,
 - (b.3) X does not include any triangle of F, and
 - (b.4) if F(X) is the graph of order n+1 formed by joining a new vertex x to X, then $x \in \theta(F(X))$.
- (c) Remove isomorphs from amongst the set $\{F(X) \mid X \in L\}$. The remaining graphs form a set of distinct representatives for the children of ν .

The primary advantage of this method is that isomorph rejection need only be performed within very restricted sets of graphs. For example, even though |R'(4,4,12)| = 909767, no isomorphism class of R'(4,4,11) has more than 58 children.

The full set $\bigcup_{n\geq 1} R'(4,4,n)$ was found by this method. Altogether, 5623547 sets X passed conditions (b.1)-(b.3), and 2165034 passed condition (b.4) as well. The total size of R'(4,4,n) for all n is 2065740, which is only slightly less because most (4,4)-good graphs have no nontrivial automorphisms. There are altogether 3432184 nonisomorphic (4,4)-good

graphs. The total execution time on a 12-mip computer was 9.4 hours, or 6 milliseconds per invocation of the program nauty. In particular, we obtained the information gathered in Table I.

n	4	5	6	7	8	9	10
R(4,4,n)	9	24	84	362	2079	14701	103706
E(4,4,n)	5	8	12	16	21	27	31
t(4,4,n)	0	0	0	0	0	1	4
n	11	12	13	14	15	16	17
R(4,4,n)	546356	1449166	1184231	130816	640	2	1
E(4, 4, n)	36	40	45	50	55	60	68
t(4,4,n)	7	10	17	25	38	56	68

Table I. Some data on (4,4)-good graphs

3. Upper bounds for E(4,5,n).

Walker [7] established the best upper bound so far of 28 for R(4,5), so we know that any (4,5)-good graph has at most 27 vertices. No (4,5,n)-good graph is known for $n \geq 25$. The goal of this section is to derive some upper bounds for E(4,5,n) for $24 \leq n \leq 27$, provided such graphs exist.

Let F be a (4,5,n)-good graph and let a_i denote the number of edges in F contained in i triangles. Note that $a_i=0$ for $i\geq 5$ since F is (4,5)-good. For each $x\in V(F)$ consider induced subgraphs G_x and H_x as in Section 1, which in this case are (3,5)-good and (4,4)-good graphs, respectively.

Lemma 2.

$$\sum_{x \in V(F)} t(H_x) = 4a_4 - 2a_2 - 2a_1 + \sum_{x \in V(F)} (n/3 + 3 - \deg_F(x)) e(G_x). \tag{5}$$

Proof. For an arbitrary triangle T = ABC in F let $b_i(T)$ denote the number of vertices in V(F) - T adjacent to exactly i vertices in T, and let $\deg_F(T) = \deg_F(A) + \deg_F(B) + \deg_F(C)$. Note that $b_i(T) = 0$ for $i \geq 3$, since F has no K_4 . By counting the 4-sets of vertices formed by any triangle T and any vertex x not adjacent to T in two different ways we have

$$\sum_{x \in V(F)} t(H_x) = \sum_{T - \text{triangle}} b_0(T), \tag{6}$$

and one also easily notes that for each triangle T

$$b_0(T) = n - 3 - b_1(T) - b_2(T) \tag{7}$$

and

$$b_1(T) + 2b_2(T) + 6 = \deg_F(T).$$
 (8)

Now (7) and (8) give

$$b_0(T) = n + 3 + b_2(T) - \deg_F(T). \tag{9}$$

Using (9) in (6) we obtain

$$\sum_{x \in V(F)} t(H_x) = (n+3)t(F) + \sum_{T-\text{triangle}} (b_2(T) - \deg_F(T)). \tag{10}$$

Counting edges adjacent to points in triangles by two methods gives

$$\sum_{T-\text{triangle}} \deg_F(T) = \sum_{x \in V(F)} \deg_F(x) e(G_x), \tag{11}$$

and one can also easily see that

$$3t(F) = \sum_{x \in V(F)} e(G_x) = \sum_{i=1}^{4} ia_i.$$
 (12)

By recalling the definitions of $b_2(T)$ and a_i we conclude that

$$\sum_{T-\text{triangle}} b_2(T) = \sum_{i=2}^4 i(i-1)a_i = 4a_4 - 2a_2 - 2a_1 + 2\sum_{i=1}^4 ia_i. \tag{13}$$

Now applying (11), (12) and (13) in (10) we obtain

$$\sum_{x \in V(F)} t(H_x) = \frac{1}{3}(n+3) \sum_{x \in V(F)} e(G_x) + 4a_4 - 2a_2 - 2a_1 + 2 \sum_{x \in V(F)} e(G_x) - \sum_{x \in V(F)} \deg_F(x) e(G_x),$$

which can be easily converted to (5).

We know that for each vertex x the number of triangles in H_x is at least $t(4,4,n(H_x))$, where $n(H_x) = n - 1 - \deg_F(x)$. Define the triangle deficiencies $\gamma(x)$ of a vertex x and $\Gamma(F)$ of a graph F as

$$\gamma(x) = t(H_x) - t(4, 4, n(H_x)), \quad \Gamma(F) = \sum_{x \in V(F)} \gamma(x). \tag{14}$$

For any vertex x we obviously have $\gamma(x) \geq 0$.

Lemma 3. If F is any (4,5,n)-good graph on at least 24 vertices and F has n_i vertices of degree i for each i, then

$$0 \le 3\Gamma(F) \le \sum_{i=6}^{13} \left((n+9-3i)E(3,5,i) + 6i - 3t(4,4,n-i-1) \right) n_i. \tag{15}$$

Proof. Since R(3,5) = 14 and R(4,4) = 18, by (5) we have

$$3\sum_{x\in V(F)}t(H_x)=12a_4-6a_2-6a_1+\sum_{i=6}^{13}\sum_{\deg_F(x)=i}(n+9-3i)e(G_x).$$

Note that for $n \ge 24$ the coefficient n+9-3i is negative only for i=13 or for i=12 and n=24,25,26, hence we can use E(3,5,i) in place of $e(G_x)$ in the following inequality except in those cases.

$$3\sum_{x \in V(F)} t(H_x) \le 12a_4 + \sum_{i=6}^{13} (n+9-3i)E(3,5,i)n_i + \sum_{\deg_F(x) \ge 12} (E(3,5,\deg_F(x)) - e(G_x))(3\deg_F(x) - n - 9).$$
 (16)

All (3,5)-good graphs are known ([5] and independently [4]). In particular, there exists a unique (3,5,13)-good graph, which implies that the terms in the last summation for $\deg_F(x) \geq 13$ are equal to zero. It is also known that E(3,5,12)=24 is achieved only by 4-regular graphs, and furthermore any (3,5,12)-good graph has only vertices of degree 3 and/or 4. Thus if for some vertex x of degree 12 in F the graph G_x is not maximal, i.e. $e(G_x) < 24$, then for each vertex y of degree 3 in G_x the edge $\{x,y\}$ contributes to a_3 , and each edge appearing in three triangles can be accounted at most twice this way. Thus the second summation in the right hand side of (16) is at most $3a_3$ for $n \geq 24$. Hence by $e(F) \geq a_4 + a_3$ and (16) we find

$$3\sum_{x\in V(F)}t(H_x)\leq 12e(F)+\sum_{i=6}^{13}(n+9-3i)E(3,5,i)n_i. \tag{17}$$

Finally, we can easily obtain (15) by using (14), (17) and $12e(F) = \sum_{i=6}^{13} 6in_i$.

Theorem 1. If we interpret e(k, l, n) as ∞ and E(k, l, n) as 0 for $n \ge R(k, l)$ then $153 \le e(4, 5, 27)$ and $E(4, 5, 27) \le 160$, $130 \le e(4, 5, 26)$ and $E(4, 5, 26) \le 154$, $116 \le e(4, 5, 25)$ and $E(4, 5, 25) \le 148$, $101 \le e(4, 5, 24)$ and $E(4, 5, 24) \le 139$.

Proof. Let F be any (4,5,n)-good graph for some $24 \le n \le 27$ with e edges and n_i vertices of degree i. Consider the set of constraints formed by $\sum_{i=6}^{13} n_i = n$ and the conditions for $\Delta(F)$ and $\Gamma(F)$ given by Lemmas 1 and 3, respectively. This gives a simple instance

(for a computer) of a non-negative integer linear programming optimization problem with variables n_i and objective function $2e = \sum_{i=6}^{13} i n_i$. For n = 27 we have to minimize or maximize

$$9n_9 + 10n_{10} + 11n_{11} + 12n_{12} + 13n_{13}$$

subject to

$$27 = n_9 + n_{10} + n_{11} + n_{12} + n_{13},$$

$$0 \le -21n_9 - 10n_{10} - n_{11} + 2n_{12} - n_{13},$$
(18)

and

$$0 \le n_9 + 4n_{10} + 6n_{11} - n_{12} - 17n_{13}, \tag{19}$$

where constraint (18) is obtained from (4) and constraint (19) is obtained from (15), using the numerical data from Table I for t(4,4,j), E(4,4,i), and some of the results listed in [5], namely E(3,5,i)=2i for $10 \le i \le 13$ and E(3,5,9)=17. Also in [5] we find the values E(3,5,8)=16, E(3,5,7)=12 and E(3,5,6)=9, which are needed for the calculations in the cases of $24 \le n \le 26$. For n=27 the maximal number of edges e is 160 with the unique possible degree sequence $n_{12}=23$ and $n_{11}=4$. The other bounds are obtained similarly. We used a simple computer program to perform these calculations, and another to check them.

The numbers of edges in the known (4,5,24)-good graphs range from 118 to 132 (personal communication from G. Exoo). The lower bounds for e(4,5,n) are not needed for the proof of $R(5,5) \leq 53$; they are included in Theorem 1 for completeness.

4. An upper bound for R(5,5).

We are now in a position to prove our major result.

Theorem 2. $R(5,5) \leq 53$.

Proof. Assume that F is a (5,5)-good graph on 53 vertices and let n_i be the number of vertices of degree i in F. Since $R(4,5) \leq 28$ we have in this case $n_{25} + n_{26} + n_{27} = 53$. The calculation of bounds for $2\Delta(F)$ from Lemma 1, using Theorem 1, gives

$$\begin{split} 0 & \leq (2 \cdot 308 + 3 \cdot 25 \cdot 27 - 52 \cdot 51)(n_{25} + n_{27}) + (2 \cdot 308 + 3 \cdot 26 \cdot 26 - 52 \cdot 51)n_{26} \\ & = -11(n_{25} + n_{27}) - 8n_{26}, \end{split}$$

which is a contradiction.

The same method does not disprove the existence of a (5,5,52)-good graph, but such a result would be possible if we could sufficiently improve the bounds of Theorem 1.

References.

- [1] G. Exoo, A Lower Bound for R(5,5), Journal of Graph Theory, 13 (1989) 97–98.
- [2] A. W. Goodman, On sets of acquaintances and strangers at any party, Amer. Math. Monthly, 66 (1959) 778–783.
- [3] B. D. McKay, Nauty User's Guide (version 1.5), Technical Report TR-CS-90-02, Computer Science Department, Australian National University (1990).
- [4] B. D. McKay and Zhang Ke Min, The value of the Ramsey number R(3,8), submitted.
- [5] S. P. Radziszowski and D. L. Kreher, On (3, k) Ramsey Graphs: Theoretical and Computational Results, J. Combinatorial Math. and Combinatorial Comput., 4 (1988) 37–52.
- [6] K. Walker, Dichromatic Graphs and Ramsey Numbers, J. Combinatorial Theory, 5 (1968) 238–243.
- [7] K. Walker, An Upper Bound for the Ramsey Number M(5,4), J. of Combinatorial Theory, 11 (1971) 1–10.