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ABSTRACT

We derive an explicit formula for the number of edges in the
minimum (K3,K;2—e,n)-good graphs for n<13k 4—sign (k mod 4)
and obtain the inequality e%K 3, K 2—e,n)>6n —13k for k>6 and all
positive integers n.

1. Introduction

We investigate the minimum number of edges in triangle-free graphs on n ver-
tices, whose complement does not contain K,—e. The obtained results are similar
to those derived in [4] and [5], where the grap?m considered were related to the clas-
sical Ramsey numbers R ( 3,Kp,). The change of the forbidden graph from K, to
K,—e causes considerable changes in the set of minimum graphs and increases the
complexity of the proofs, however the form of general lower bounds for minimum
number of edges in such graphs remain almost identical to the classical case, at
least in the ranges studied in this paper. The method used here has potential appli-
cations in evaluation and/or improvement of bounds for Ramsey numbers
R(K3,K,—e). For the state of the art of the latter problem see 3].

Throughout this paper we adopt the following notation. G denotes the com-
plement of the graph G. A (G,H)-good graph F is defined as the graph F not con-
taining G, nor F containing H, and a (G,H,n)-good graph is a gG,H)—good aph on
n vertices. ¢(G,H,n) is defined as the minimum number of e ges in a.nylfTG,H, n)-
good graph or oo if no such graph exists. I the number of edges in a I(-IG’ ,n)-good
graph is equal to ¢(G, H,n), then such graph is called a minsmum (G, H,n)-graph or
minimum (G,H)-good graph. In this paper we consider (K3,K,—e)-good graphs,
where K3 is a triangle and K,—e is a complete graph on p vertices without one
edge. If G=(V,E) is a grapfl then we call V'CV a quasi-independent set, if
| {{u,v}eE: u,veV'}|<1. As usual, n(G) and ¢(G) denote the number of vertices
and edges in G, respectively. Any vertex of degree s will be called an § —vertez. For
each z €V, Ng(z)={v: {z,v} ¢ E} is a neighborhood of z in G. C, and P, denote a
cycle and a path, respectively, of length n, and 6(G) denotes the minimal degree of
vertices in graph G.

Let G=(V,E) be a fixed (K 3,Kx41—e,n)-good graph and choose some vertex
ve V. Following [2] define Hy(v) to be the graph induced in G by the set of vertices
{ueV:u=v and u s not adjacent to v}. The Z—sum of a vertex vin G is defined as
Z(v)=x {dcgg(u):ueNg(vj}. If G is a (K3, Ki41—e,n)-good graph, then Hy(v) is a

(K3,Ky—e,n—deg(v)—1)-good graph with e(G)—Z(v) edges. Let f(v)=e Hy(v))-
e(K3,Ky—e,n—deg(v)—1), so we have obviously f(v)>0, and if f(v)=0 then ver-
tex v is called full [2|.
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The construction of all (K3,K;—e)-good graphs for all k<6 has been reported
in [3]. To obtain general properties of minimum (K3,K;—e,n)-good graphs, we
need to know some of them for small k, especially for k=8 and k=9. The values and
lower bounds for the minimum number of edges listed in tables I and II were
obtained by the algorithms used in (3].

n 16 17 18 19 20 21 22 23 24
¢e(K3,Ks—e,mn) | 20 25 30 37 44 51 59 70 80

Table 1.

n 18 19 20 21
e(K3,Kg—e,n) | 20 25 30 35

n 22 23 24 25 26 27 28 29 30
e(K3,Ko—e,m)> | 41 46 54 62 71 8 90 100 111

Table II.

In the sequel we will use the following fundamental lemma of Graver and
Yackel.

Lemma 1 (variation of proposition 4 in [1)): In any (K3,K;,—e,n)-good graph G,
if n; denotes the number of s-vertices in G, then

k
A=y f(v)=ne—x ni(e(K3,Ki41—e,n—i—1)+i%)>0 (1)
veV 120

and there are at least n—A full vertices in G.

2. Properties of Minimum (K3,K,—e)-good Graphs

In lemmas 2, 3 and 4 G denotes a minimum (K3, K,—e)-good graph.
Lemma 2: If G has an isolated vertex, then deg(z)<2 for all z¢ V(G).

Proof: Let v be an isolated vertex, and let z be a vertex of maximum degree in G.
If deg(z)>3, let Ngsz)={zl,...,zm} and Ng(z,)={zy1,..-,01}, m>L If =0 then
we define a triangle-free graph H obtained from G by deleting the edges
{z1,2}, . . . ;{Z;-1,z} and joining vertices z and v by an edge. Obviously H has less
edges than G. If />0 then we define a triangle-free graph H obtained from G by
deleting the edges {z;,z},...,{Zm-1,Z},{Zm,yy} and adding the edges
{y2,v}, - . . ,{w,v},{xv}. Since e(H):e&G)—(m—l)<e(G), H has less edges than
G. In both cases we show that G and H have the same maximal quasi-independent
set sizes. Let M be any quasi-independent set in H. If z,ueM then let

M={z,}\ j(M' —{z}), and if z,z,eM then let M={v} (M —{z}). It is easy to see
that M is a quasi-independent set in G and |M|=|M|. Hence H is also a
(K3,K,—e,n)-good graph contradicting the fact G is a minimum graph. D
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Lemma 3:
1) If Ghasa P; as a component, then deg(z)<2 for all zeV(G).

2) ¥ {wz}, {z,y}, {y,2} are edges of G and deg(w)=1, deg(z)=deg(y)=2, then
W, Z, y, zare on a path component of G and for all veV(G) deg(v)<2.

3) If {z,y}, {w,y} are two edges of G and deg(z)=deg(w)=1, then deg(y)<2.
4) If G has an even cycle component, then G has at most one isolated vertex.

5) If G has an isolated vertex and an even cycle component, then G has no path
components.

6) If G has cycle components and an even path component, then these cycles
have even length.

7) If G has an isolated vertex and a cycle component, then the length of this
cycle is even.

8) If G has a path component P, 1>2, then [ is even and G has no other path
components.

Proof: Suppose that G violates some of the assertions in the lemma. In each case
we define a triangle-free graph H from G with less edges than G and the same maxi-
mal quasi-independent set size, which will contradict the minimality of G.

1) Assume that z, y are the endpoints of a P, component. If G has an r-vertex v,
r23, we define H from G by deleting all the edges adjacent to v and adding the
edges {z,v}, {y,v}.

2) If w, z, y, z are on a path component of G, then w is an endpoint of this path.
Assume that w’ is another endpoint of the same path. If G has a vertex v with
deg(v)>3, we define H from G by deleting all the edges adjacent to v and adding
the edges {w,v}, {w’,v}. If the component which includes w, T, Y, 2 is not a path,
then we can assume that {u;,u;,,}, for 1=0,1,...,m—1, are edges of
G (m23, w=uq, z=u,, y=u,, z=uy), deg(u;)=2 for 1<§ <m and deg(u,)>3. We
define H from G by deleting all the edges adjacent to u,, except the edge
{tm-1,4m} and joining the vertices w and u,,.

3) If deg(y)>3 then define H from G by deleting an edge {z,y}, for which 2¢{z,w}.

4) Assume that C with vertices Z1,Z2,...yZ3m i8 an even cycle component of G. If G
has two isolated vertices u and v, then we define H from G by deleting all the edges
of C and then adding the edges (u,v} and {z;,2;,,}, for i=1,3,....2m—1.

5) Assume that C'is an even cycle as in 4) and v is an isolated vertex of G. If G has
a path component P, let y,,ys,...,y be all the vertices of P. We define H from G
by deleting all the edges of C' and P and then adding the edges {v,y;}, {z;,;,,} and
{¥j:¥j+1} for i=1,3,...,2m—1 and J=13,..,2|1/2]-1.

6) Assume that P is a path component of G and Y1,¥2y..-, Y2141 are all the vertices
of P. If G has an odd cycle component C, assume that Ty, Z2, . . . yTg;4 are all the
vertices of C' (m>2). We define H from G by deleting all the edges of Pand C and
t_he111 ;ddlglg tl e edges {Zymi1,¥an1}s {ZZita}h {Vj,¥j41} for i=1,3,....2m—1 and
J=1,9y00,80—1.

7) Let C be a cycle component of G and w be an isolated vertex of G. If the length

of Cis odd, and v ¢ VLC), we define graph H from G by deleting all the edges adja-
cent to v and joining the vertices v and w by an edge.

8) Assume that G has a path component Py, 122, with vertices zy,z,,...,z;. If lis
odd, then there are even vertices on P;. We define H as a triangle-free graph
obtained from G by deleting all the edges of P; and then adding the edges
{z0,21}, {z2,23}, . . . ,{z—1,7;}. One can easily check that H has less edges than
G but the same maximal quasi-independent set size, which contradicts the minimal-
ity of G. Thus I is even. Assume that G has another path component P,, with ver-
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tices yo,¥1,+--y¥m, then by the previous argument m is even. We define H as a
triangle-free graph obtained from G by deleting all the edges in P, and P,, and

adding the edges {zo,z1},...,{5-2,%-1}, {Vo:¥1} - - s {¥m-2:¥m-1}, {Z¥m}.
This leads to a contradiction similarly as before. O

Lemma 4: If G is a minimum (K3, K}, —e,n)-good graph and n>2k, then G has
no isolated vertices.

Proof: If G has isolated vertices, then by lemma 2 deg(z)<2 for any z ¢V(G). If G
has cycle components, then each cycle of G is even by lemma 3.7 and G has only
one isolated vertex by lemma 3.4. By lemma 3.5 k=(n—1)/2+1, i.e. n=2k—1 con-
tradicting the fact n>2k. If G has no cycle components, then G has only isolated
vertices and path components. Assume G has r isolated vertices. If there is a path
component P;, />2, by lemma 3.8 this is the only path of G. Hence
k=(n—r+1)/2+r, i.e. n=2k—r—1<2k—2, which is a contradiction. If G has only
isolated vertices and (n-—r)/2 isolated edges, then k=(n-r)/2+r+1, ie.
n=2k—r —2<2k—3, which contradicts the fact n>2k again. O

3. Main Theorems

t(_)onstru)ction 1: For k+1<n<2k-2 and k>2, define the graph G=<V,E> by (see
igure 1

V={31,33,...,Zn } and E={{zi’zl'+l} : i=1,3v--'s2(n_k)+1}'
n—k+1

2k—-n-2

Figure 1. Construction 1.

Construction 2: For 2k—1<n<(5k—5)/2 and k>4, define the graph G=<V,E>
by (see figure 2)

V=X1yX2U * " UXn-2k43y Y, where
Xt={z!,j:j eZS} for t=1,2,...,n—2k+2; Y={Vlnyh"'vVIOk—{n-lO}’
E=E\yE3y * ' " UEn-ak+ayUFE, where
Ey={{zyjs21j+1}:7 €Zg} for t=1,2,..,n—2k+2,
E={{yi,¥i+1}:i=1,3,..,10k—4n—11}.
It is easy to check that in both constructions 1 and 2 G is a (K3,K).;—e,n)-

Sk—2n—6 n-2k+2

Figure 2. Construction 2.
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good graph. Thus we have:

Lemma 5:
n—k if k<n<2k and k>1,
¢(K3Ksa—en)< £ o) if 2k<n<5k/2 and k>3.
Theorem 1:
0 if n<k+1,
¢(K3,Kxi3—e,n) = {n—k if k+2<n<2k and k>1, (2)

3n—5k if 2k<n<5k/2 and k>3.

Proof: The statement is obvious for n<k+1. For k+2<n<2klet Hbe a minimum
(K3,Kk43—¢,n)-good graph. i H has no isolated vertices, then ¢ (H)>n—k and by
lemma 5 ¢(H)=n—*k. If H has isolated vertices then, by lemma 2, deg(z)<2 for any
z eV (H). has no cycle components and H has a path component Pj, I>2, then
by lemma 3.8 ¢(H)=! and k=n—(1+12+l/2. By lemma 5 I<n—Fk, and it is easy to
see that /=2, hence ¢(H)=2=n—k. If H has no cycle components and H has no
paths components P; with [>1, then H has to be as in construction 1 and the
theorem holds. If H has cycle components, then by lemma 3.7 they are even cycles,
By lemma 3.4 H has only one isolated vertex and by lemma 3.5 H has no isolated
edges. Hence ¢(H)=n—1>n—k and by lemma 5 ¢e(H)=n—k

In the case 2k<n<5k/2 and k>3 we use induction on k. The equality (2)
holds for k=3, since the only relevant parameter situation is k=3, n=7, and it is
known that ¢(K;,K5—e, 7)=6 (3]. Assume that H is a minimum (K3,Kg43—e,n)-
good graph for some k>4 and 2k<n<5k/2. Then either H has a 2-vertex or it
doesn’t.

If H has a 2-vertex v, then H,(v) is a (K3,Ky41—e,n~3)-good graph and
eéHz(v) =e(H)—Z(v). Because n—3<b(k—1)/2, so by induction the number of
edges e H)—Zf(v) in Hy(v) is at least 3(n—3)—5 k—1) for n>2k+1 or at least
(n—3)—(k—1) for n=2k+1. In both cases, since ¢(H)<3n —5k by lemma 5, we have
2<Z(v)<4. If Z(v)=4, then Hj(v) is a minimum Ka,KHl—e,n—%)-good graph.
For n>2k+1, e(H)—Z(v)=3(n-3)-5 k-1), ie. e(H)=3n—5k For n=2k+1,
e(H)-Z(v)=(n—3)—(k—1), i.e. e(H)=k+3=3n—5k. I Z(v)<3, then by lemmas
3.1 and 3.2 the component of H containing v is a path and deg(z)<2 for any
z ¢V(H). By lemma 3.8 the length of this path is even and H has no other path
components. Hence by lemma 3.6 H is composed of a path and some even cycles.
For n>2k+1 assume that the path has s vertices, then H has a quasi-independent
set of size (n—s)/2+(s+1)/2>k+2, which is a contradiction. If n=2k+1, then for
k=3 we have ¢(H)=n-1=3n—5k so the theorem holds, and for k>3 we have
e(H)=n—1>3n—5k, which contradicts lemma 5.

If H has no 2-vertices, then H must have an r-vertex v, r >3, since otherwise H
would have only 0- and l-vertices and in this case n<2k+1. Because
n—r—1<5(k—1)/2, by the inductive assumption H,(vl)_ is a (Ka,Kkﬂ—e,n—r—l)-
good graph with e(H, v))23(n—r—1)-5(k-1) for n—r—1>2(k+1)-4 or
e(Hg(v%Zmaz((n—r—l —(k—-1),0) for n—r—1<2(k+1)~4. In either case it can
be easily derived that e Hz(v))ze(lil—(& —2), implying that 3<Z(v)<3r-2. By
. lemma 3.3, it is sufficient to consider the case (v)=3r—2. In this case, assume that
{v,z}, (a=1,2,...,r}, {zi, 9}, (1=2,3,...,r; J=1,2) are the edges of G. Hence
deg(z,)=1, deg(z;)=3, for & =2,3,..,r, and similarly as before, 3<Z(z)<7 for
1=2,3,...,r, and thus we have r=deg(v)=3. Therefore at least one of Ya21,¥22 I8 a

157



1-vertex, and at least one of ya), ya3 is a l-vertex, so we may assume that
deg(y31)=deg(ya1)=1. We define a triangle-free graph H' from H by deleting the
edge Zzg,ygﬂ. Assume E’ is a quasi-independent set in H' and z3,yn¢E. If uis
one of z;,ys and u does not belong to E, then we define E={u}(E'—{z3}). ¥
z),yn€F and ya ¢ E, then we define E={ys }\J(E'—{z3}). ¥ z1,y21,ya1¢E’, then
both v and z3 do not belong to E’ and we define E={v}|j(E —{z;}). In both cases,
E is a quasi-independent set in H. Hence H' has the same maximal quasi-
independent set size as H but less edges than H, which contradicts the minimality
of G.O

Note that (K3,K,—e,5)=4<3-5-5:3+5 [3], hence the condition k>3 for
2k<n <5k /2 in theorem 1 is necessary.

Lemma 6: Let G be a minimum (K3,K}2—¢,n)-good graph. If G has a cycle com-
ponent, then the length of this cycle is equal to 4, 5, 6, 8 or 10.

Proof: Assume that G has a cycle component C;. We first show that if  is odd,
then this C; is a minimum (K3,K(_1)/24+1,))-graph. Let H be a minimum
(K3,K(1-1)/241,1)-graph and observe [4] that the size of maximal quasi-endependent
set in H is equal to (I—1)/2+1. Define the graph G’ from G by changing cycle G
to graph H, then G’ has the same size of maximal quasi-independent set as G, but
less edges. This contradicts the minimality of G. Thus in the case of odd [/ by
lemma 2 in g] we have [=5. If | is even, then Cj is a minimum (K3,Kj/243—¢,l)-
good graph. If k<3, then as found in [3] / is one of 4,6,8. If k>4, we have ﬁ2+5=l
by theorem 1. Hence /=10. O

Theorem 2: If G is a minimum (K3, K}43—e,n)-good graph and k>6 then
e(G)2>5n—10k. (3)

Proof: By theorem 1 we have e(K3,Kj3—e,n)>5n—10k for n<5k/2 and k2>6.
For 5k/2<n we use induction on k. Inequality (3) holds for k=6 and k=7 by
theorem 1 and tables I and II. Sup G is a minimum (K 3,Ks+z—c,n)—good

graph for some k>8, 5k/2<n and e(G)<5n—10k. By applying (1) and induction
to G we obtain

k+1
0<A = ne(G)-g‘ ni(i2+e (K3, Kx41—€,n—i—1))
1=0

k+1
<ne(G)-y ny(s2—5i+5n—10(k+1)+15).

i=0

k+1
Note that 3 n;=n, hence
i=0
k+1
0<A<n(e—(5n—10k—1))— 3 n;(i—2)(1 -3). (4)
i=0

The coefficient (i—2)(i —3) is nonnegative for all integers i. Hence, inequality (4)
and e(G)<5n—10k imply that e G)=5n—10k—1, A=0 and consequently G has
only 2- and/or 3- vertices. Thus all the vertices of G are full, and we conclude that
for any vertex vin V(G), Z(v)=4 if deg(v)=2 and Z(v)=9 if deg(v)=3. Therefore
every component of G is a cycle or a cubic graph.

We first show that n,=0. If ny>0 then G has a cycle component C. Assume
that a vertex v is on C, so Hj(v) is a EK ,Ki+1—€,n—3)—good graph with
5n—10k—5 edges. By the induction e(H; v%')’z (n—3)-10(k—1) =5n-10k-5,
which implies that Hj(v) is a minimum graph. By lemma 6 the length of C; is equal
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to 4, 5, 6, 8 or 10. It is easy to check that if /=8 then the graph H, obtained from G
by changing C; to two C4’s, is a minimum (K3,K; g—e,ng-good graph with the
same properties as G described before. If =10 then the graph H, obtained from G
by changing C; to two pentagons, is also a minimum (K3,Ky42~e,n)-good graph.
If I=4, i.e. C is a square, then H, }v) has an isolated vertex, and n—3>5k [2—-3>2k
for k>7 contradicts lemma 4. If =5, then G is a disjoint union of a pentagon and
some (Kj3,K;—e,n—>5)-graph G, with 5n—10(k+1)+4 edges. By the induction
e(G,)>5 n—5)—10(k—2)=5n—10(k+1)+5>5n—10( +1)+4, which is impossible.
If 1=6, then let v be a vertex on Cs. Note that Hz(tg is a minimum
(K3,Ky4+1—e,n—3)-good graph and Hj(v) has a P, component. y lemmas 3.7 and
3.8 G is a disjoint union of a P; and some even cycles. Hence k=(n-6)/2+2, i.e.
n=2(k+1)<5k/2, which is a contradiction, and consequently n,=0.

Now we can assume that G is a cubic minimum (K3,K; 5—e, n)—good graph
with 3n /2 edges, and thus 3n /2=5n—10k—1, which implies that 7n=20(k+1)—18.
Note that since e(G)=5n—10k—1<5n—10kSe(K3 Ky 41,n), where the last ine-
quality uses theorem 2 in [4], G is not a minimum 3,Kj+1,n)-graph. To complete
the proof of theorem 2 it is now sufficient to show that no such graph G can exist.

For any vertex v in V(Q), Hy(v) is a (K3,K; 1—&n—4)-good graph with
5n—-10(k+1 edges. On  the other han ». by the induction
c(Hzg) )25(73—4)—10(k—1)=5n—10(k+1). Hence H,(v) is a minimum graph. We
now show that Hj(v) satisfies the following properties P1-P3.

(P1) The graph H. 2(v) has vertices of degree 2 and 3 only.

We obviously have deg S‘z)$3 for any ze V(H, &:f:) . Since n—4>5k/2-4>2k for
k>8, by lemma 4 H,(t? as no isolated vertices. 2(v) has some 1-vertex u, then
Hy(u) in Hy(v) is a K3,K;—e,n—6)-good graph with at most 5n—10(k+1)-1
edges, which contradicts the inductive assumption for Hj(u), namely
e (K;,,Kk-e,n—6)25(n—6)—10(k-2)=5n-10(lc+1). Now by counting edges we
conclude that

(P2) Hj(v) has 6 2-vertices and n—10 3-vertices.

If zis a 2-vertex in H,(v) then Z z)<5 with respect to the graph H,(v), since by
the induction e (K3, Kz—e,n—7)>5 n—T)-10(k—2)=e(H,(v))-5. Thus

(P3) Any 2-vertex in H,(v) has at least one 2-vertex as a neighbor.

Let F(v) be the subgraph of Hy(v) induced by it’s 2-vertices. F(t}) cannot have
isolated vertices since this would imply Z(z)=6 in H, (1:?’ nor can ¥ (v) contain a
pentagon, since F(t;z has 6 vertices and a pentagon wou imply the existence of an
isolated vertex. If (v) contains a Pg, then by using properties P1-P3 we can con-
clude that G has a component as in figure 3. But in this graph F(z) has an isolated
vertex y, which is impossible. If F (v) is a disjoint union of P3 and P, then by
applying properties P1-P3 to F («) and F(w) G has a component as in figure 4.
But in this graph F(z) has an isolated vertex ¥, which again is impossible. Hence
one of the three cases must occur: i) F (v) is a hexagon or ii) F (:Soif formed by
three isolated edges or iii) F (v) is formed by two path components P,.

z

Figure 3.
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Figure 4.
Casei): f F ‘(v% is a hexagon, then F(v) is a subgraph of H, F'i]gure 5), which is a
: 3.

component of G. H; is a minimum (K3, K5—e, 10)-good graph

Figure 5. Graph H;.

Case 13‘ ¥F (t;) has three isolated edges, then by using properties P1-P3 we can
conclude that ‘3‘ is a subgraph of the dodecahedron Hj (fi 6), which is a
component of G. The dodecahedron is a minimum (K3,Ko—e¢, 20)- ood graph (3.

Figure 6. Graph Hj.

Case iii): If F(v) consists of two P;’s, then by using properties P1-P3 we can con-
clude that F(v) is a subgraph of the graph Hj (figure 7), which is a component of
G. H; is a minimum (K3,Kg—é, 12)-good graph with 18 edges.

Figure 7. Graph Hj.
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Finally, each component of G must be isomorphic to one of the graphs H; for
1<s<3, which have maximal independent sets of sizes 4, 8 and 5, respectively.
Assume that G contains 8; copies of the graph H;. Hence we have
k+1=45,+885+5s; and n=10s,+208,+12s,. Note also that Tn=20(k+1)-18, so
105, +2083+1683=18. The latter equalities have no solutions in nonnegative
integers s;, which completes the proof of theorem 2. O

Observe that e(K;,K7—e¢,14)=19<5-14—10-5 3], thus the condition k>6 in
theorem 2 is necessary.

Theorem 83: :
e(K3,Ki13—e,n)=5n—10k for 5k/2<n <3k, k>6. (5)

Proof: Since e(Kj,K; —e,n)<e(Kj,Ki,1,n), by theorem 2 of this paper and by
theorems 2 and 4 in [4] we have 5n—10k<e(K3,K; ,—e,n) < e(K3,Ki41,n)
= 5n—10k for 5k /2<n <3k and k>6, Hence the equality (53 follows. O

By using computer algorithms described in [3] and theorems 1 and 3 above,
we have obtained the following lemmas 7 and 8.

Lemma 7: If G is a minimum K3,Kg3—e, 18)-good graph, then all the vertices in G
have degree at least 3 and G is- either the graph Gg defined in [4] or the graph
H=(V,E), where

V=XyYyZ and X={z;:ieZ}, Y={y;: ieZg} , Z={2: ieZ¢},
E={{z"’z"+l}’{v'.’y"""l}’{z"’z"*'l} : iczﬁ} U {{!li,zzi},{!lwa,zzi}: '.GZG}
U #2241} {2 43,22i41} : ieZg} (see figure 8).

Figure 8. Graph H from lemma 7.

Lemma 8: ¢(K3,Kq—e,23)>46 and if G is a (K3,Kq—e, 23)-good graph with 46
edges, then G is a 4-regular graph.

Lemma 9: ¢(K 3, Kg—e, 23)>47.
Proof: If Gis a (K3,Kq—e, 23 -good graph with 46 edges, then by lemma 8 Gis a
4-regular graph. For any ve V(G), Hy(v) is a (K3,Kg—e, 18)-good graph with 30
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edges, and by table I H,(v) is a minimum graph. Since by lemma 7 6(H;(v))23, G
doesn’t contain C, as a subgraph. Thus H,(v) is isomorphic to H from lemma 7,
because G¢ contains C4. Let J(v)={ueV(G): for some wENg(? {w,w}eE(G)}. It
is easy to see that J(v)={y;,2: 1€Zg} (see figure 8). By the definition of H, the
subgraph induced by J(v) is composed of two hexagons. For some two vertices in
distance 3 on one of the hexagons, there is a vertex zeNg(v) adjacent to both of
them. But by the definition of H, for any such two vertices in Y (or in Z) thereis a

vertex in X adjacent to them. Hence G contains a Cy, which is a contradiction. O
Lemma 10: e(K3,K0—e, 26)>52.

Proof: Using the algorithms from [3!, table I and lemma 9, we obtain
(K3,K10—¢,26)>51, furthermore the only two possible solutions for the degree
sequence of a (K3,K0—e,26)-good graph with 51 edges are n,=24, n3=2 or
n,=25, ny=1.

In the first case, let v be a 3-vertex. Then H,(v) is a (K3,Ko—e,22)-good
graph with at most 40 edges, which contradicts e(K3,Kq—¢, 22)>41 (table II). In
the second case, let u be a 2-vertex. Then Hg(ll? is a (K3,Kq—e,23)-good graph
with 43 edges, which contradicts e(Kj,Ko—e¢,23)>46 (table 1), thus

C(K3,K10—¢, 26)252. a

Using the algorithms from (3], table II and lemmas 3 and 4, we have obtained
the following lower bounds listed in table III.

n 24 25 2 27 28 29 30
e(K3,Kpo—en)> | 40 46 52 58 65 72 81

n 31 32 33 34 35 36 37 38
e(K3,Kio—en)> | 90 99 110 121 133 144 158 171

Table III.

Lemma 11: If G is a (K3, K,~e¢)-good graph and §(G)>2, then
1) Z(v)>4 for any ve V(G),

2) If uis a 2-vertex in G, Z(u)<5 and ny<4, then G has a Cy component or
there is a 2-vertex vsuch that Z(v)=5.

Proof: 1) The assertion holds since 6(G)>2.

22 Assume that G has no C4 components. If Z(u)=5, then the assertion holds. If
(u)=4, let z,y be the two neighbors of u. Since Z(z), Z(y)<5 and G has no C,
components, there are =z, y,eV(G), z;#u, y;#u such that deg(z,)<3 and
deg(y,)<3. By the assumption n,<4, one of deg(z,) or deg(y,) is equal to 3.
Hence one of Z(z) or Z(y) is equal to 5. O

Lemma 12: If G is a (K3, K 13—ée,n)-good graph with 6n —13k edges for k=6,7 or 8,
then §(G)>3.

Proof: By checking tables I, II and III, we find that the relevant parameter situa-
tions are k=6, n=18; k=7, 21<n<23; and k=8, 24<n<27. The lemma holds for
k=6 by lemma 7. By using lemma 4 any minimum (K3, K}42—e€,n)-good graph has
no isolated vertices in the remaining parameter situations.  Since
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e(Ks,Kk+2—e,n)>e(K3,K,,+1,n—2) for k=7, 21<n<23 and k=8, 24<n<27, G
has no 1-vertices. Using lemmas 1, 4, 7, 11 and data in table I, I and I, in each
case one can derive that G cannot have vertices of degree 2. The tedious details are
omitted. O

Theorem 4: For all k>6
e(K3,Kp42—e,n)>6n—-13k. ()

The proof of theorem 4 is broken into few lemmas. We start with a technical
definition used in these lemmas.

Definition: Let ko be the largest integer (or o) such that (6) is true for 6<k<k,
and n>0. Define ¥ to be the class of minimum ¢(K3,K;.3—e,n)-good graph with
6n—13k edges such that 0<k<k,. A smallest counterexample to (6) is a minimum
(K3,Kg,+3—¢€,n)-good graph with less than 6n—13k, edges. Define A to be the set
of smallest counterexamples to (6).

Note that A=¢ if ky=00, in which case theorem 4 is true. By checking tables
I, I and III we observe that ky>9.

Lemma 13: If GeY A is a minimum (K 3,Kk3—e,n)-good graph, then
(a) n>3k,
b) For any veV(G) e(H,(v))>6n (H3(v))—13(k—1), furthermore the equality
e e only if Hz(vse‘},
(c) if GeWthen for all veV(G) Z(v)<6deg(v)-7,
(d) if GeA then G is connected.

Proof: The proofs of (a), (b) and (c) are the same as the proof of proposition 5.1.4.
in (5], and the proof of (d) is the same as the proof of proposition 5.1.3.(b) in [5]. O

Lemma 14: If G €W A then §(G)>3.

Proof: Assume that G is a minimum (K3,Ki 3—e,n)-good graph. If Ge¥ then G
has 6n —13k edges, and we use induction on k. The lemma holds for k=6,7,8 by pre-
vious lemmas, so we may assume that k>9. If G has some 1-vertex v, then H,(v) is
a (K3,K; . —e,n—2)-good aph with at most 6n—13k—1 edges. By the induction
e(Hz(v))26(n-2)—13(k—1§1=l-6n—13k+1, which is a contradiction, thus we have
6(G)>2. If G has some 2-vertex u, then
e(Hz(u))26(n—3)—3(k—1)=6n-—13k-—5=c(G‘)-—5, so Z(u)<5. If Z(u)=5 then
there is a 2-vertex z adjacent to u. Let veV(G), y adjacent to z an y+u, then
deg(y)<3. Note that H,(u) is a minimum K3,K;,1—e,n—3)-good graph with
6n—13k—5=6(n—3)—-13(k—1) edges, i.e. Hy(u)e¥ and degp,(v)(¥)<2, which con-
tradicts the inductive assumption. Thus we can suppose that each 2-vertex u has
Z(u)=4, and consequently if u is a 2-vertex, then u is on some cycle component C
in G. By lemma 6 and the proof of theorem 2 we can assume that 4</<6. If I=4
then G has a component H,, which is a minimum $K 3,Ki—e,n—4)-good graph with
6n—13(k+1)+9 edges. Now by the definition o Vv, e(H,)>6(n—4)—13 k—-2)=
6n—13(k+1)+15>6n~13(k+1)+9. If I=5 then G has a component 2, which is a
minimum (K3, K} _,,n—5)-graph with 6n—13(k+1)+8 edges. But by theorem 5.1.1
in 1[15], e(H,) > 6(n—5)-—13(k—2)=6n—13(k+1)+9>6n—13(k+1 +8. If I=6 then
G has a component Hj, which is a minimum (K3,Ky_1—e,n—6)-good graph with
6n—13(k+1)+9 edges. Now by the definition  of v, e(H;) >
6(n ~6)—13(k~3)=6n~13(k+1)+16>6n —13(k+1)+9. Hence §(G)>3.
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If GeA then G has 6n—13(k+1)+12 edges, and by theorems 1 and 3 n>3k
Since k>9 then by lemma 5 it is easy to see that G has no isolated vertices. If G
has a 1-vertex v, then Hy(v) is a (K3,Ky41—e,n—2)-good graph with at most
6n—13(k+1)+11 edges. By the induction, e(Hz(v)) >
6(n—2)—13(k—1)=6n—13(k+1)+14, which is a contradiction. If G has a 2-vertex u,
then Hj(u) is a (K3,Ki4+;—e¢,n—3)-good graph with 6n—13(k+1)+12—2Z(u) edges.
By the induction e?Hz’Zus) > 6(n—3)—13(k—1)=¢(G)—4, hence Z(u)<4. Since G

has no 1-vertices, u is on a cycle component of G. As in the proof of theorem 2, we
can see that G has no 2-vertices. Hence deg(z)>3 for every ze V(G). O

Lemma 15: If GeA then G is a connected 4-regular graph.

Proof: Suppose that GeA, i.e. G is a minimum (K3, Kiy+2—¢,n)-good graph for
some ko>9 and e(G)<6n—13k, furthermore by theorems 1 and 3, n>3ky. Using
the definition of A, and applying (1) and induction to G we obtain

ko+1
0<A=ne(G)— ¥ n(i*+e(K3,Kipp1—e,n—i-1))
=0
k'o+l
<ne(G)— n ni(i2—6i+6n —13(ko+1)+20).
i=0

ko+1
Note that ) n;=n, hence
=0
ko+1
0<A<n(e(G)—(6n—13(ko+1)+12))— ¥ ni(§ —2)(f —4). (M
i=0

We consider three possible cases of solutions to (7) using e=e¢(G)<6n—13ky: case
i) e=6n—13(ko+1)+11 and n=ny, case ii) e=6n—13(ko+1)+12 and G has some
3-vertices, and case iii) e=6n—13(ko+l)+12, n;=0 and G has only 2- and/or 4-
vertices. By lemmas 14 and 13(d), to complete the proof of lemma 15 it is sufficient
to show that the cases i) and ii) are impossible.

case i) Since ¢(G)=3n/2 and e=6n-13(ko+1)+11, we have 9n =26(ko+1)—22.
Note that k>9 and n >3k, thus 9n >27ko>26(ko+1)—22, which is a contradiction.
case i) In this case Ge¥. For any 3-vertex veV(G), Hy(v) is a
(K3,Kiy+1—€n—3)-good graph and e(Hz(v))=¢(G)—2Z(v). Since
e(Kg,Ky,+1—¢,n—3)>6(n—3)—13(kp—1) = ¢(G)—-10, we have Z(v)<10. If
Z(v)=10, then by lemma 14, there is a vertex ue V(G) such that u is adjacent to v
and deg(u)=3. Since Hj(v) is a minimum (K3, ko+1,7—3)-good graph with
6(n —3)—13(kg—1) edges, hence Hggl ¢¥,and by lemma 14 §(H(v))>3. Therefore
Z(u)>10, which contradicts that Z(v)<10 for any 3-vertex v. Hence Z(v)=10,
which by lemma 14 implies Z(v)=9 and by lemma 13(d) G is connected, hence G is
a cubic graph. Now ¢(G)=3n/2=6n—13(ko+1)+12, so we have 9n=26(ko+1)—24.
Note finally that k>9 and n>3ky, hence we have 9n>27ky>26(ko+1)—24, which
completes the proof of the lemma. O

Corollary 1: If G is a minimum (Kj,Kjp43—¢,n)-good graph and GeA, then
n>3k+2.

Proof: Using the statement and the proof of lemma 15, we see that
¢(G)=6n—13(k+2)+12=2n, which implies that for k>9, n=13(k+1)/4—323k+2.
O
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Proof of theorem 4: To prove theorem 4, it is now sufficient to show that no 4
regular graph in A can exist. By lemmas 13,14,15 and corollary. 1, one can prove t?us
theorem by the same sequence of steps as in section 5 of [5], if one replaces k with
k+1 and ko with ky+1. O

Note that (K3,K;—e,15)=24<6-15—13-5 (3], hence the condition k>6 in
theorem 4 is necessary.

Theorem 5:
¢(K3,Kp43—e€,n)=6n—13k for k>6 and 3k<n <13k /4—sign (k mod 4).

Proof: Since ¢(K3,Kp 3—e,n)<e(K,,K; 1,n), by theorem 4 here and corollary
534 in [5], we have 6n-—13k<e K3,Kp19—e,n)< €(3,Kx41,n)=6n—13k for
3k<n<13k /4—sign(k mod 4) and k>6. O

Finally we note that e(Ka,K,,.,.,-—e,z?::e (K3,Kx1,n) for
n<13k/4—sign (k mod 4), except 7 nontrivial pairs of values n and k, which are
listed in Table IV.

kn 25 | 38 [ 411 [ 412 | 4.13 5,14 | 5,15

€(K3,Kpya—en) | 4 [ 8 | 14 | 18 | 24 | 19 | 24
e(K3, K} ,1,n) 5 10| 15 | 20 | 26 | 20 | 25

Table IV.
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