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Abstract. We enumerate by computer algorithms all simple t—(t+7,t+1, 2)
designs for 1<t <5, i.e. for all possible t, and this enumeration is new for
t >3. The number of nonisomorphic designs is equa to 3, 13, 27, 1 and 1 for
t=1, 2, 3, 4 and 5, respectively. We also present some properties of these
designs including orders of their full automorphism groups and resolvability.

1. Introduction

A t—(v,k,A) design D =(X,B) isafamily B of k-subsets, called blocks, of av-set X of points,
such that every t-subset of X is contained in exactly A blocks of B. If B has no repeated blocks then
the design D is called simple. The family of t—(t+7,t+1, ) designs is perhaps one of the most investi-
gated parameter situations, especially for A=1, in which case they are called Witt designs; their in
depth presentation together with a number of references can be found in [1]. Only two other values of A
are of interest, namely 2 and 3, since for A>4 any such design is the complement of one with A<3. A
t—(v,k,A) design is caled resolvable if a part of its blocks forms a t—(v,k,2,) design for some
1< A, <A Let N(A;t,k,v) denote the number of nonisomorphic simple t—(v,k, ) designs.

t
1 2 3 4 5
1 1 1 1 1
3 13 27 1 1
6 332 2539 =218 =213
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Table I. Values and bounds for N(A;t,t+1,t+7)

The table | summarizes enumeration results of simple t—(t+7,t+1,A) designs by listing known
values and bounds for N(A;t,t+1,t+7). The entries in column t =1 count 1-(8,2,A) designs, which are
just regular graphs of degree A on 8 points. They are usualy not considered in the design theory, but
are included here for completeness. They also form starting points for our extension algorithms. The
uniqueness of the designs with A=1 is discussed in [1], Gibbons calculated N(2;2,3,9)=13 [3] and
Harms, Colbourn and Ivanov obtained the value N(3;2,3,9)=332 in [4]. Both proofs in [3] and [4]
relied on computer algorithms. The remaining entries of table | are obtained in this paper. For A=2 we
were able to enumerate all of them, and for A=3 we have found some such designs including al for
t=2 (asin [4]), and all with an automorphism of order 3 not fixing any block, for all t. We postpone
their description until al such designs are enumerated, i.e. when the case of t—(t+7,t+1,A) designs is
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closed. These special t—(t+7,t+1,3) designs were necessary in the anaysis of possible 4-(12,6,6)
designs [6], whose existence is still in question. The existence of t—(t+7,t+1,A) designs for al parame-
ter situations was known already in 1977 (see Brouwer [2]).

2. Results

A cycle of length 8, two sguares, and a triangle and a pentagon are the only 2-regular graphs on
eight points, which can be treated as 1-(8,2,2) designs. Obviously the first two are resolvable into 1-
(8,2,1) designs. All three of them extend to a 2-(9,3,2) design.

The 13 2-(9,3,2) designs found by Gibbons [3] have the full automorphism groups of orders 80,
18, 8(2), 6(3), 2(3) and 1(3), where the number in parenthesis shows the number of corresponding
designs (if larger than 1). Exactly two of them, with groups of order 18 and 6, are resolvable into two
2-(9,3,1) designs. 11 out of them, including both resolvable ones, extend to a 3-(10,4,2) design. The two
nonextendible 2-(9,3,2) designs have group orders 6 and 2.

We have found that there are exactly 27 nonisomorphic 3-(10,4,2) designs; each of them has 60
blocks and each point appears in 24 blocks. Their full automorphisms groups have orders 400, 40, 20,
16, 8(5), 4(6), 2(11) and 1. The 3-(10,4,2) design with group of order 20 is the only one resolvable into
two 3-(10,4,1) designs, and also it is the only one extendible to a 4-(11,5,2) design. Furthermore, up to
isomorphisms, it extends uniquely to the well known 4-(11,5,2) design. Consequently, by Alltop’'s
extension theorem, there exists a unique 5-(12,6,2) design. We note that one can easily see that any
5-(12,6,A) design must be closed under block complementation.

Theorem 1. There exist unique, up to isomorphism, 4—(11,5,2) and 5-(12,6,2) designs, and both of
them are resolvable.

Kramer and Mesner [5] gave the precise analysis of mutually digoint S(t,t+1,t+7) Steiner sys-
tems, in particular in the case of resolvable 4-(11,5,2) designs. Since the unique 4-(11,5,2) and 5-
(12,6,2) designs (both resolvable) that occur are the ones studied in [5], we refer the reader to this paper
for more information, as well as to [1]. We remark that their automorphism groups have orders 110 and
1320, respectively, and recall that the orders of groups for the Witt design t—(t+7,t+1, 1) are 384, 432,
1440, 7920 and 95040, for t =1, 2, 3, 4 and 5, respectively. We also observe that our enumeration
implies the uniqueness of 4-(11,5,5) and 5-(12,6,5) designs (the complements of unique designs), which
permits an answer to a question posed by Kramer and Mesner [5] formulated in the next theorem.

Theorem 2. The 4-(11,5,A) and 5-(12,6, ) designs are not resolvable for A=3 and A=5.

Proof: Assume that a 4-(11,5,5) design D can be partitioned into a 4-(11,5,2,) design D, and a
4—(11,5,1,) design D, , for some 1<A,<A,, A;+A,=5. If A, =1 then resolved D and D, form three
mutually disjoint S(4,5,11)'s. If A, =2 then both D and D, can be resolved to a total of four mutually
digoint S(4,5,11)'s. Similarly, the uniqueness and resolvabillity of the 4-(11,5,2) design imply that any
resolvable 4-(11,5,3) design is formed by three mutually digoint S(4,5,11)’s. This contradicts a theorem

of Kramer and Mesner [5] stating that there can be at most two mutually disoint Steiner systems
S(4,5,11). The same reasoning is valid for the cases of 5-(12,6,5) and 5-(12,6,3) designs. O

After a moment of thought one can easily see that theorems 1 and 2 leave open only one non-
trivial resolvability question concerning these designs. We formulate this question in three equivalent
forms as follows.

Does there exist a resolvable 4—(11,5,4) design ?
Do there exist a Seiner system S(4,5,11) and a 4-(11,5,3) design which are digoint ?
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Do there exist two disoint 4—(11,5,3) designs ?

In order to obtain the above enumeration we used natural algorithms starting from graphs (t =1)

and then performing consecutive extensions to (t+1)-designs. Each specific design extension and resol-
vability step was completed by solving appropriate systems of 0-1 integer linear equations. For auto-
morphism groups and design isomorphism we did the calculations twice: with the software developed
by the author, and independently with the program nauty written by B.D. McKay [7]. The completion
of enumeration of al t—(t+7,t+1,3) designs with our current approach would require an extreme
man/machine effort, unless a more efficient method is deviced or some strong properties of such designs
are discovered.
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