The Ramsey Numbers $R(K_3, K_3 - e)$ and $R(K_3, K_9 - e)$

Stanislaw P. Radziszowski
Department of Computer Science
Rochester Institute of Technology
Rochester, New York 14623

Abstract. We give a general construction of a triangle free graph on 4p points whose complement does not contain $K_{p,2} - e$ for $p \geq 4$. This implies that the Ramsey number $R(K_3, K_4 - e) \geq 4k - 7$ for $k \geq 6$. We also present a cyclic triangle free graph on 30 points whose complement does not contain $K_5 - e$. The first construction gives lower bounds equal to the exact values of the corresponding Ramsey numbers for $k = 6, 7$ and 8. The upper bounds are obtained by using computer algorithms. In particular, we obtain two new values of Ramsey numbers $R(K_3, K_4 - e) = 25$ and $R(K_3, K_9 - e) = 31$, the bounds $36 \leq R(K_3, K_{10} - e) \leq 38$, and the uniqueness of extremal graphs for Ramsey numbers $R(K_3, K_6 - e)$ and $R(K_3, K_7 - e)$.

1. Introduction and Notation

The two color Ramsey number $R(G, H)$ is the smallest integer n such that for any graph F on n vertices, either F contains G or the complement \overline{F} contains H.

In this paper we consider the case $G = K_3$ and $H = K_k - e$, the complete graph K_k minus an edge. Table 1 contains the values of some related Ramsey numbers.

The entries of the first two rows are given by easy equalities $R(K_3 - e, K_k - e) = 2k - 5$ and $R(K_3 - e, K_k) = 2k - 1$, which can be derived by straightforward reasoning. The value 21 of $R(K_3, K_k - e)$ for $k = 7$ was obtained by Grenda and Harborth in 1982 [5], where the authors list also all the values for $k \leq 6$. Recently, McKay and Zhang have calculated $R(K_3, K_8) = 28$ [7], other references for the classical case $R(K_3, K_k)$ can be found in [6], [7], [8], [9].

<table>
<thead>
<tr>
<th>k</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td>15</td>
<td>17</td>
<td>$K_3 - e$</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td>15</td>
<td>17</td>
<td>19</td>
<td>$K_3 - e$</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>11</td>
<td>17</td>
<td>21</td>
<td>25</td>
<td>31</td>
<td>36–39</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>14</td>
<td>18</td>
<td>23</td>
<td>28</td>
<td>36</td>
<td>40–43</td>
<td></td>
</tr>
</tbody>
</table>

G H

| $K_3 - e$ | $K_k - e$ |

Table 1. Four related types Ramsey numbers $R(G, H)$

*Supported in part by the National Science Foundation under grant CCR-8711225

JCMCC 8 (1990), pp. 137–145
All the graphs considered here are triangle free. Throughout this paper we adopt the following notation:

- \overline{G} — complement of graph G
- (G, H)-good graph F — graph F does not contain G and \overline{F} does not contain H
- (G, H, n)-good graph — (G, H)-good graph on n vertices
- $K_p - e$ — complete graph on p vertices without one edge
- $G \equiv H$ — graphs G and H are isomorphic
- $e(G, H, n)$ — minimum number of edges in any (G, H, n)-good graph
- $E(G, H, n)$ — maximum number of edges in any (G, H, n)-good graph
- $G[S]$ — subgraphs of graph G induced by the set of vertices S
- C_p — cycle of length p

2. Constructions

Construction 1: For $p \geq 1$, let $G_p = (V_p, E_p)$ be the graph on $4p$ vertices defined by:

$$V_p = \bigcup_{i=1}^{4p} X_i, \text{ where } X_i = \{x_{in} : 1 \leq n \leq p\}, \text{ and}$$

$$E_p = \{\{x_{in}, x_{i+1,m}\} : i = 1, 3, 1 \leq n, m \leq p; \quad n \neq m\} \cup$$

$$\{\{x_{in}, x_{jn}\} : i = 1, 2, j = 3, 4, 1 \leq n \leq p\}.$$

Observe that G_p is a regular graph of degree $p + 1$ and that the induced graphs $G_p[X_1 \cup X_2]$ and $G_p[X_3 \cup X_4]$ are isomorphic to the complete bipartite graph $K_{p,p}$ with a 1-factor deleted. We say that vertex x_{in} is on level n. The set V_p is formed by p levels, each of them inducing a C_4 in G_p, in particular $G_1 \equiv C_4$. We leave for the reader, as an easy but interesting and time consuming exercise, to show that the graph G_4 on 16 vertices is isomorphic to the well known extremal graph related to the Ramsey number $R(5, 3, 3)$, which has vertices in $G[F(16)]$ and edges connecting points whose difference is a cube $[4]$.

Theorem 1. The graph G_p is a $(K_3, K_{p,2} - \epsilon, 4p)$-good graph for $p \geq 4$.

Proof: One can easily verify that G_p has no triangles. Let S be any set of vertices $S \subseteq V_p, |S| = p + 2$. We will show that for $p \geq 4$ the induced graph $G_p[S]$ has at least two edges. If S has at least three vertices on the same level, then $G_p[S]$ has clearly at least two edges; otherwise S has at least two levels n and m with two vertices, say a and b on level n and c and d on level m. Since $p \geq 4$, S has at least two more vertices, u and v, on other levels. Suppose that $G_p[S]$ has at most one edge. Then without loss of generality we can assume that u is not connected to any vertex in $\{a, b, c, d\}$ and $v \in X_3$. Hence $\{a, b, c, d\} \subseteq X_1 \cup X_2 \cup X_3$.

one can easily check that $G_p[\{a, b, c, d\}]$ has at least two edges.
Corollary 1. \(R(K_3, K_k - e) \geq 4k - 7 \) for \(k \geq 6 \).

Proof: Using Theorem 1, the lower bound is established by the graph \(G_{k-2} \).

Construction 2: Define graph \(H = (Z_{20}, E) \) by

\[
E = \{(i, j) : i, j \in Z_{20}, \ i - j = \pm 1, \pm 3, \pm 9, \pm 14\}.
\]

It is not very difficult, but again tedious, to check that the graph \(H \) is triangle free, has exactly 30 independent sets of size 8, namely the neighborhoods of vertices, and finally two different neighborhoods intersect in less than 7 points. Consequently the graph \(\overline{H} \) does not contain \(K_9 - e \), since the opposite would imply the existence of two independent sets of size 8 intersecting in seven points. Thus we can formulate the next Corollary.

Corollary 2. \(R(K_3, K_9 - e) \geq 31 \).

3. Enumerating small Graphs

In [8] the construction of a data base of all triangle free graphs with maximal independent set of size not larger than 5 was reported. This data base contains all \((K_3, K_k - e)\)-good graphs for \(k \leq 6 \). These were extracted and the number of them is shown in the following tables for \(k = 3, 4, 5 \) and 6. A blank entry in a table denotes 0. Note that the values of \(e(K_3, K_k - e, n) \) and \(E(K_3, K_k - e, n) \) can be easily read by finding the location of the first and last nonzero entries in column \(n \) of the corresponding table. Observe also that \(G_4 \) is the unique \((K_3, K_6 - e, 16)\)-good graph.

<table>
<thead>
<tr>
<th>edges (e)</th>
<th>number of vertices (n)</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>1a</td>
</tr>
<tr>
<td>total</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table II. Number of \((K_3, K_7 - e)\)-good graphs

The graphs contributing to the entries of Table II were constructed independently by hand. The correctness of the data in Tables III, IV and V was double checked by running extension algorithm used in the next section, i.e. the set of graphs obtained by extraction from the data base of \((K_3, K_k)\)-good graphs was identical to the set of \((K_3, K_4 - e)\)-good graphs obtained by consecutive extensions followed by elimination of isomorphic copies of graphs. We also observe
that column 10 of Table IV corresponds to Lemma 2 in [1], likewise the graph G_4 was also identified as a $(K_3, K_6 - e)$-good graph by Faudree, Rousseau and Schelp in [2] and it is represented by a 1 in column 16 of Table V. Finally, we note a "curiosity" in column 10 of Table IV, namely the nonexistence of $(K_3, K_5 - e, 10)$-good graphs for $16 \leq e \leq 19$ edges. This is the first such hole known to the author (for additional data see [8], [9]).

In Tables II-VI some particular graphs of special interest have been marked as follows: a — square $K_{2,2}, b$ — $K_{3,3}, c$ — $K_{4,4}, d$ — graphs from Lemma 2 in [1], e — Petersen graph, f — $K_{5,5}, g$ — graph on $GF(16), \{i, j\} \in E$ iff $i - j = x^2$, isomorphic to G_4, and h — unique $(K_3, K_7 - e, 20)$-good graph found by Grenda and Harborth in [5], isomorphic to G_5.

<table>
<thead>
<tr>
<th>edges e</th>
<th>number of vertices n</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1 1 1</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1 1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1 2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>1 2</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>1 1</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>total</td>
<td>1 2 3 5 5 4</td>
<td>20</td>
</tr>
</tbody>
</table>

Table III. Number of $(K_3, K_4 - e)$-good graphs

4. Extensions

The system of algorithms with their implementations to construct all (K_3, K_k, n)-good graphs with e edges was described in [8] and used extensively in [9]. This technique requires the previous knowledge of all (K_3, K_{k-1}, π)-good graphs with π edges, for $\pi < n$ and π ranging over the set of values, which can be determined by the method of Graver and Yackel [3]. The key to this method in our case is contained in the following Lemma.

Lemma 1 (variation of proposition 4 in Graver and Yackel 3 - 1968). For any $(K_3, K_k - e, n)$-good graph G with e edges

$$
\Delta = ne - \sum_{i=0}^{k-1} \pi_i(e(K_3, K_{k-1} - e, n - i - 1) + i^2) \geq 0;
$$

140
<table>
<thead>
<tr>
<th>edges</th>
<th>number of vertices n</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Table IV. Number of $(K_3, K_5 - e)$-good graphs

where n_i is the number of vertices of degree i in G, $n = \sum_{i=0}^{k-1} n_i$ and $2 e = \sum_{i=0}^{k-1} i \cdot n_i$.

Lemma 1 gives reasonable lower bounds for $e(K_3, K_k - e, n)$ provided good lower bounds for $e(K_3, K_{k-1} - e, n - i - 1)$ are given. Furthermore, it permits the design of extension algorithms based on the ones used by Grinstead and Roberts in 1982 [6] to evaluate $R(3, 9)$. Similarly as in [8], [9] we have implemented these algorithms for the case of $(K_3, K_k - e)$-good graphs and they have produced the results gathered in Tables VI and VII.

Let $e_k(n) = e(K_3, K_k - e, n)$ and let $N_k(n, e)$ be the number of nonisomorphic $(K_3, K_k - e, n)$-good graphs with e edges. Table VI presents all nonzero values of $e_3(n)$, and $N_3(n, e)$ for some values of n and e. Table VII contains similar data for $(K_3, K_k - e, n)$-good graphs. In the case of $(K_3, K_7 - e, n)$-good graphs we have found all of them for $n \geq 18$: there are 225 such graphs for
<table>
<thead>
<tr>
<th>edges</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>7</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>4</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>37</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>60</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>81</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>108</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>165</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>217</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>287</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>363</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>485</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>512</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>495</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>486</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>491</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>390</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>283</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>182</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>131</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>70</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>44</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>29</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>21</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>33</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>34</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>35</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>36</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>37</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>38</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>total</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>1</td>
</tr>
</tbody>
</table>

Table V. Number of $(K_5, K_\epsilon - \epsilon)$-good graphs
\(n = 18 \) with the number of edges ranging from 43 to 51, and unique graphs for \(n = 19 \) and 20. The graph \(G_5 \) is the unique \((K_3, K_7 - e, 20)\)-good graph and obviously it is isomorphic to the graph defined by Grenda and Harborth in [S]. Also, there exist a unique \((K_3, K_7 - e, 19)\)-good graph, which can be obtained from \(G_5 \) by the deletion of one vertex. The nonexistence of a \((K_3, K_8 - e, 25)\)-good graphs implies, by Corollary 1, that \(R(K_3, K_8 - e) = 25 \). We note that \(G_6 \) has 84 edges, thus it is not a minimum graph. For further calculation of \(R(K_3, K_9 - e) \) we need only the graphs in column \(n = 22 \) in Table VII and the values of \(e_8(n) \) for \(22 \leq n \leq 24 \).

<table>
<thead>
<tr>
<th>(n)</th>
<th>(n_7(n, e))</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(e_7(n))</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>8</td>
<td>11</td>
<td>15</td>
<td>19</td>
<td>24</td>
<td>30</td>
<td>37</td>
<td>43</td>
<td>54</td>
<td>60</td>
</tr>
<tr>
<td>2</td>
<td>(n_7(n, e))</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>(e_7(n) + 1)</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>16</td>
<td>20</td>
<td>25</td>
<td>31</td>
<td>38</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(n_7(n, e))</td>
<td>...</td>
<td>1</td>
<td>3</td>
<td>8</td>
<td>16</td>
<td>13</td>
<td>14</td>
<td>22</td>
<td>54</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>(e_7(n) + 2)</td>
<td></td>
<td>26</td>
<td>32</td>
<td>39</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>(n_7(n, e))</td>
<td></td>
<td>305</td>
<td>361</td>
<td>349</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>(e_7(n) + 3)</td>
<td></td>
<td></td>
<td>33</td>
<td>40</td>
<td>46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>(n_7(n, e))</td>
<td></td>
<td></td>
<td>3251</td>
<td>1070</td>
<td>61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table VI. Number of \((K_3, K_7 - e, n)\)-good graphs

Theorem 2. \(R(K_3, K_8 - e) = 25 \) and \(R(K_3, K_9 - e) = 31 \).

Proof: Corollaries 1 and 2 establish that 25 and 31 are lower bounds for \(R(K_3, K_8 - e) \) and \(R(K_3, K_9 - e) \), respectively. The fact that these values are also upper bounds follows from the calculations described above. For example, to prove \(R(K_3, K_9 - e) \leq 31 \) assume that \(G \) is a \((K_3, K_9 - e, 31)\)-good graph with \(e \) edges. Then \(G \) can have vertices of degree 6, 7 and 8, and by Lemma 1 we have:

\[
\Delta = 31e - (n_6(36+80) + n_7(49+70) + n_8(64+59)) = 31(e - 116) - 3n_7 - 7n_8 \geq 0
\]
There are three solutions in nonnegative integers for the latter, which are listed in Table VIII. One can easily conclude that G must be an extension of a $(K_3, K_8 - e, 22)$-good graph with 59 or 60 edges. There are 15 such graphs (see column 22 in Table VII). Running extension algorithm on these graphs did not produce G. Thus $R(K_3, K_9 - e) \leq 31$.

<table>
<thead>
<tr>
<th>e</th>
<th>$N_8(n, e)$</th>
<th>number of vertices n</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$e_8(n)$</td>
<td>19 20 21 22 23 24</td>
</tr>
<tr>
<td>$N_8(n, e)$</td>
<td>≥ 20</td>
<td>≥ 169 7 2 1 1</td>
</tr>
<tr>
<td>$e_8(n) + 1$</td>
<td>52</td>
<td>60 71 81</td>
</tr>
<tr>
<td>$N_8(n, e)$</td>
<td>≥ 375</td>
<td>13 2 0</td>
</tr>
</tbody>
</table>

Table VII. Number of $(K_3, K_8 - e, n)$-good graphs

<table>
<thead>
<tr>
<th>n_0</th>
<th>n_1</th>
<th>n_2</th>
<th>n_3</th>
<th>e</th>
<th>Δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>31</td>
<td>124</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>30</td>
<td>123</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>29</td>
<td>123</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

Table VIII. Theorem 2

Using only Lemma 1 and Table VII we obtain:

$$e(K_3, K_9 - e, 30) \geq 111,$$
$$e(K_3, K_9 - e, 29) \geq 100,$$ and
$$e(K_3, K_9 - e, 28) \geq 90.$$

The latter inequalities and Lemma 1 imply the nonexistence of a $(K_3, K_{10} - e, 39)$-good graph, hence $R(K_3, K_{10} - e) \leq 39$. If we could prove $e(K_3, K_9 - e, 28) > 90$ then $R(K_3, K_{10} - e) \leq 38$. We have $36 = R(K_3, K_9) \leq R(K_3, K_{10} - e)$, so the lower bound also seems to be weak. There exists a good chance to calculate the exact value of $R(K_3, K_{10} - e)$. We conclude by stating the following Theorem.

Theorem 3. $36 \leq R(K_3, K_{10} - e) \leq 39$.

References

