The Ramsey Numbers $R(K_3, K_8 - e)$ and $R(K_3, K_9 - e)$

Stanisław P. Radziszowski¹
Department of Computer Science
Rochester Institute of Technology
Rochester, New York 14623

Abstract. We give a general construction of a triangle free graph on 4p points whose complement does not contain $K_{p+2} - \epsilon$ for $p \ge 4$. This implies that the Ramsey number $R(K_3, K_k - \epsilon) \ge 4k - 7$ for $k \ge 6$. We also present a cyclic triangle free graph on 30 points whose complement does not contain $K_9 - \epsilon$. The first construction gives lower bounds equal to the exact values of the corresponding Ramsey numbers for k = 6, 7 and 8. The upper bounds are obtained by using computer algorithms. In particular, we obtain two new values of Ramsey numbers $R(K_3, K_6 - \epsilon) = 25$ and $R(K_3, K_9 - \epsilon) = 31$, the bounds $36 \le R(K_3, K_{10} - \epsilon) \le 39$, and the uniqueness of extremal graphs for Ramsey numbers $R(K_2, K_6 - \epsilon)$ and $R(K_3, K_7 - \epsilon)$.

1. Introduction and Notation

The two color Ramsey number R(G, H) is the smallest integer n such that for any graph F on n vertices, either F contains G or the complement \overline{F} contains H. In this paper we consider the case $G = K_3$ and $H = K_k - \epsilon$, the complete graph K_k minus an edge. Table I contains the values of some related Ramsey numbers. The entries of the first two rows are given by easy equalities $R(K_3 - \epsilon, K_k - \epsilon) = 2k - 3$ and $R(K_2 - \epsilon, K_k) = 2k - 1$, which can be derived by a straightforward reasoning. The value 21 of $R(K_3, K_k - \epsilon)$ for k = 7 was obtained by Grenda and Harborth in 1982 [5], where the authors list also all the values for $k \le 6$. Recently. McKay and Zhang have calculated $R(K_3, K_8) = 28$ [7], other references for the classical case $R(K_3, K_k)$ can be found in [6], [7], [8], [9].

					k				G	H
	3	4	5	6	7	8	9	10		
1	3	5	7	9	11	13	15	17	$K_2 - \epsilon$	$K_k - \epsilon$
	5	7	9	11	13	15	17	19	$K_3 - e$	K_k
	5	7	11	17	21	25	31	36-39	K ₂	$K_k - e$
	6	9	14	18	23	28	36	40-43		K_k

Table 1. Four related types Ramsey numbers R(G, H)

¹ Supported in part by the National Science Foundation under grant CCR-8711229

All the graphs considered here are triangle free. Throughout this paper we adopt the following notation:

 \overline{G} — complement of graph G (G, H)-good graph F—graph F does not contain G and \overline{F} does not contain H (G, H, n)-good graph — (G, H)-good graph on n vertices $K_p - \epsilon$ —complete graph on p vertices without one edge $G \equiv H$ —graphs G and H are isomorphic e(G, H, n)—minimum number of edges in any (G, H, n)-good graph E(G, H, n)—maximum number of edges in any (G, H, n)-good graph G[S]—subgraphs of graph G induced by the set of vertices G G_p —cycle of length G

2. Constructions

Construction 1: For $p \ge 1$, let $G_p = (V_p, E_p)$ be the graph on 4p vertices defined by:

$$\begin{split} V_p &= \bigcup_{i=1}^4 X_i, & \text{ where } X_i = \{x_{in} : 1 \le n \le p\}, \text{ and } \\ E_p &= \{\{x_{in}, x_{i+1,m}\} : i = 1, 3, \quad 1 \le n, m \le p, \quad n \ne m\} \cup \\ &\{\{x_{in}, x_{jn}\} : i = 1, 2, j = 3, 4, 1 \le n \le p\}. \end{split}$$

Observe that G_p is a regular graph of degree p+1 and that the induced graphs $G_p[X_1 \cup X_2]$ and $G_p[X_3 \cup X_4]$ are isomorphic to the complete bipartite graph $K_{p,p}$ with a 1-factor deleted. We say that vertex x_{in} is on level n. The set V_p is formed by p levels, each of them inducing a G_4 in G_p , in particular $G_1 \equiv G_4$. We leave for the reader, as an easy but interesting and time consuming exercise, to show that the graph G_4 on 16 vertices is isomorphic to the well known extremal graph related to the Ramsey number R(3,3,3), which has vertices in GF(16) and edges connecting points whose difference is a cube [4].

Theorem 1. The graph G_p is a $(K_3, K_{p+2} - \epsilon, 4p)$ -good graph for $p \ge 4$.

Proof: One can easily verify that G_p has no triangles. Let S be any set of vertices. $S \subseteq V_p$, |S| = p + 2. We will show that for $p \ge 4$ the induced graph $G_p[S]$ has at least two edges. If S has at least three vertices on the same level, then $G_p[S]$ has clearly at least two edges; otherwise S has at least two levels n and m with two vertices, say a and b on level n and c and d on level m. Since $p \ge 4$, S has at least two more vertices, u and v, on other levels. Suppose that $G_p[S]$ has at most one edge. Then without loss of generality we can assume that u is not connected to any vertex in $\{a, b, c, d\}$ and $u \in X_3$. Hence $\{a, b, c, d\} \subseteq X_1 \cup X_2 \cup X_3$ and one can easily check that $G_p[\{a, b, c, d\}]$ has at least two edges.

Corollary 1. $R(K_3, K_k - e) \ge 4k - 7$ for $k \ge 6$.

Proof: Using Theorem 1, the lower bound is established by the graph G_{k-2} .

Construction 2: Define graph $H = (\mathbf{Z}_{30}, E)$ by

$$E = \{\{i,j\} : i,j \in \mathbb{Z}_{30}, i-j = \pm 1, \pm 3, \pm 9, \pm 14\}.$$

It is not very difficult, but again tedious, to check that the graph H is triangle free, has exactly 30 independent sets of size 8, namely the neighborhoods of vertices, and finally two different neighborhoods intersect in less than 7 points. Consequently the graph \overline{H} does not contain $K_9 - \varepsilon$, since the opposite would imply the existence of two independent sets of size 8 intersecting in seven points. Thus we can formulate the next Corollary.

Corollary 2. $R(K_3, K_9 - e) \ge 31$.

3. Enumerating small Graphs

In [8] the construction of a data base of all triangle free graphs with maximal independent set of size not larger than 5 was reported. This data base contains all $(K_3, K_k - e)$ -good graphs for $k \le 6$. These were extracted and the number of them is shown in the following tables for k = 3, 4, 5 and 6. A blank entry in a table denotes 0. Note that the values of $e(K_3, K_k - e, n)$ and $E(K_3, K_k - e, n)$ can be easily read by finding the location of the first and last nonzero entries in column n of the corresponding table. Observe also that G_4 is the unique $(K_3, K_6 - e, 16)$ -good graph.

edges	num	ber of	vert	ices n	total
ϵ	1	2	3	4	
0	1	1			2
1]			1
2			1		1
3					0
4				1a	1
total	1	2]	i	- 5

Table II. Number of $(K_3, K_3 - \epsilon)$ -good graphs

The graphs contributing to the entries of Table II were constructed independently by hand. The correctness of the data in Tables III, IV and V was double checked by running extension algorithm used in the next section, i.e. the set of graphs obtained by extraction from the data base of (K_3, K_k) -good graphs was identical to the set of $(K_3, K_k - \epsilon)$ -good graphs obtained by consecutive extensions followed by elimination of isomorphic copies of graphs. We also observe

that column 10 of Table IV corresponds to Lemma 2 in [1], likewise the graph G_4 was also identified as a $(K_3, K_6 - e)$ -good graph by Faudree, Rousseau and Schelp in [2] and it is represented by a 1 in column 16 of Table V. Finally we note a "curiosity" in column 10 of Table IV, namely the nonexistence of $(K_3, K_5 - e, 10)$ -good graphs for $16 \le e \le 19$ edges. This is the first such hole known to the author (for additional data see [8], [9]).

In Tables II-VI some particular graphs of special interest have been marked as follows: a — square $K_{2,2}$, b — $K_{3,3}$, c — $K_{4,4}$, d — graphs from Lemma 2 in [1], ϵ — Petersen graph, f — $K_{5,5}$, ϱ — graph on GF(16), $\{i,j\} \in E$ iff $i-j=x^2$, isomorphic to G_4 , and h — unique $(K_2,K_7-\epsilon,20)$ -good graph found by Grenda and Harborth in [5], isomorphic to G_5 .

edges		num	ber of	verti	ces n		total
ϵ	1	2	3	4	5	6	
0	1	1	1				3
1		1	1				2
2	12]	2			3
3				2			2
4				1	2		3
5					2		2
6					1	1	2
7						1	1
8						1	1
9						1 b	1
total	1	2	3	5	5	4	20

Table III. Number of $(K_3, K_4 - e)$ -good graphs

4. Extensions

The system of algorithms with their implementations to construct all (K_3, K_k, n) -good graphs with e edges was described in [8] and used extensively in [9]. This technique requires the previous knowledge of all $(K_3, K_{k-1}, \overline{n})$ -good graphs with \overline{e} edges, for $\overline{n} < n$ and \overline{e} ranging over the set of values, which can be determined by the method of Graver and Yackel [3]. The key to this method in our case is contained in the following Lemma.

Lemma 1 (variation of proposition 4 in Graver and Yackel [3] – 1968). For any $(K_3, K_k - \epsilon, n)$ -good graph G with ϵ edges

$$\Delta = ne - \sum_{i=0}^{k-1} n_i (e(K_3, K_{k-1} - e, n-i-1) + i^2) \ge 0.$$

edges				num	ber of	verti	ces n		· · · · · · · · · · · · · · · · · · ·		total
e	1	2	3	4	5	6	7	8	9	10	
0	1	1	1	1							4
1		1	1	1							3
2			1	2	2						5
1 2 3 4				2	3	1					6
				1	4	4					9
5					2	7					9
6					1	1	5				13
7						4	8				12
8 9						2	12	2			16
9						1	8	5			14
10							1	14			16
11							1	12			13
12							1	10	1		12
13	ň.							4	1		5
14								2	3		5
15								1	1	1 de	3
16								10	1		2
17											0
18											0
19											0
20										1 d	1
total	1	2	3	7	12	26	39	49	7	2	148

Table IV. Number of $(K_3, K_5 - \epsilon)$ -good graphs

where n_i is the number of vertices of degree i in G, $n = \sum_{i=0}^{k-1} n_i$ and $2e = \sum_{i=0}^{k-1} i \cdot n_i$.

Lemma 1 gives reas onable lower bounds for $e(K_3, K_k - e, n)$ provided good lower bounds for $e(K_3, K_{k-1} - e, n-i-1)$ are given. Furthermore, it permits the design of extension algorithms based on the ones used by Grinstead and Roberts in 1982 [6] to evaluate R(3,9). Similarly as in [8], [9] we have implemented these algorithms for the case of $(K_3, K_k - e)$ -good graphs and they have produced the results gathered in Tables VI and VII.

Let $e_k(n) = e(K_3, K_k - e, n)$ and let $N_k(n, e)$ be the number of nonisomorphic $(K_3, K_k - e, n)$ -good graphs with e edges. Table VI presents all nonzero values of $e_7(n)$, and $N_7(n, e)$ for some values of n and e. Table VII contains similar data for $(K_3, K_8 - e, n)$ -good graphs. In the case of $(K_3, K_7 - e, n)$ -good graphs we have found all of them for $n \ge 18$: there are 225 such graphs for

fes										er of ver			10	19	14	15	16	total
•	1	2	3	4		5	6	7	8	9	10	11	12	13	14	10	10	-
0	1	1	- 1	1		1												
1		1	1	1		1												
2			1	2		2	2											10
3				2		3	4	1										
4				1		4	7	5	1									11 2:
8						2	9	11	1									3
6						1	7	19	10									4
7					*		4	20	25	1								5
							2	18	51	10								8
9							1	11	64	33								10
10								5	60	97	8							16
11								1	38	167	11							21
12								1	21	19₹	70						_	28
									9	150	204							36
13									3	92	388	2						48
14	1								2	42	445	28						51
15									1	20	364	110						45
16									1	8	217	261						4
17	1									3	111	374	8					4
18	1												<u>\$</u>					3
19	1									1	50	330						2
20										1	22	21€	44					1
21											10	101	71					1
22	1										4	41	8€ 5€					١.
23	1										2	12	37					
24											1	4						_+-
25	1										1 <i>f</i>	1	22		E			1
26													18		E			- 1
27													€		ŧ			1
28													2		2			
29													1					- 1
30																2		
31	+-															2		Ì
32																		1
33																		
34																	1	-
35	1																	
36	4-																	
37	1																	ļ
38																		- 1
39																		19
40																		1 1
total		1	2	3	7	14	36	92	286	820	1903	1478	350		22	4	1	1 1

Table V. Number of $(K_3, K_6 - e)$ -good graphs

n=18 with the number of edges ranging from 43 to 51, and unique graphs for n=19 and 20. The graph G_5 is the unique $(K_3, K_7 - e, 20)$ -good graph and obviously it is isomorphic to the graph defined by Grenda and Harborth in [5]. Also, there exist a unique $(K_3, K_7 - e, 19)$ -good graph, which can be obtained from G_5 by the deletion of one vertex. The nonexistence of a $(K_3, K_8 - e, 25)$ -good graphs implies, by Corollary 1, that $R(K_3, K_8 - e) = 25$. We note that G_6 has 84 edges, thus it is not a minimum graph. For further calculation of $R(K_3, K_9 - e)$ we need only the graphs in column n=22 in Table VII and the values of $e_8(n)$ for $22 \le n \le 24$.

e						טמ	mber	of v	егисе	s n				
$N_7(n,e)$	7	8	9	10	11	12	13	14	15	16	17	18	19	20
$e_7(n)$	2	3	4	5	8	11	15	19	24	30	37	43	54	60
$N_7(n,e)$	2	1	1	1	1	1	1	1	2	3	1	2	1	1h
$e_7(n)+1$				6	9	12	16	20	25	31	38	44		
$N_7(n,e)$				1	3	8	16	13	14	22	54	8		
$e_7(n)+2$									26	32	39	45		
$N_7(n,e)$	i								305	361	349	38		
$e_7(n)+3$										33	40	46		
$N_7(n,\epsilon)$										3251	1070	61		
$e_7(n)+4$												47		
$N_7(n,e)$												58		
$e_7(n)+5$												48		
$N_7(n,e)$												36		
$e_7(n)+6$												49		
$N_7(n,e)$												17		
$e_7(n)+7$												50		
$N_7(n,e)$												4		
$e_7(n)+8$												51		
$N_7(n,e)$												1		

Table VI. Number of $(K_3, K_7 - \epsilon, n)$ -good graphs

Theorem 2. $R(K_3, K_8 - \epsilon) = 25$ and $R(K_3, K_9 - \epsilon) = 31$.

Proof: Corollaries 1 and 2 establish that 25 and 31 are lower bounds for $R(K_3, K_8 - \epsilon)$ and $R(K_3, K_9 - \epsilon)$, respectively. The fact that these values are also upper bounds follows from the calculations described above. For example, to prove $R(K_3, K_9 - \epsilon) \leq 31$ assume that G is a $(K_3, K_9 - \epsilon, 31)$ -good graph with ϵ edges. Then G can have vertices of degree 6,7 and 8, and by Lemma 1 we have:

$$\Delta = 31e - (n_6(36+80) + n_7(49+70) + n_8(64+59)) = 31(e-116) - 3n_7 - 7n_6 \ge 0$$

There are three solutions in nonnegative integers for the latter, which are listed in Table VIII. One can easily conclude that G must be an extension of a $(K_3, K_8 - e, 22)$ -good graph with 59 or 60 edges. There are 15 such graphs (see column 22 in Table VII). Running extension algorithm on these graphs did not produce G. Thus $R(K_3, K_9 - e) \leq 31$.

ϵ		nur	nber of	vertice	s n	
$N_8(n,e)$	19	20	21	22	23	24
$e_8(n)$	37	44	51	59	70	80
$N_8(n,e)$	>20	>169	7	2	1	1
$e_8(n)+1$	=		52	60	71	81
$N_8(n,e)$	F L-		≥375	13	2	0

Table VII. Number of $(K_3, K_8 - \epsilon, n)$ -good graphs

TIG	n 7	ne	E	Δ
0	0	31	124	31
1	0	30	123	7
0	2	29	123	8

Table VIII. Theorem 2

Using only Lemma 1 and Table VII we obtain:

$$e(K_3, K_9 - \epsilon, 30) \ge 111,$$

 $e(K_3, K_9 - \epsilon, 29) \ge 100,$ and
 $e(K_3, K_9 - \epsilon, 28) \ge 90.$

The latter inequalities and Lemma 1 imply the nonexistence of a $(K_3, K_{10} - \epsilon, 39)$ -good graph, hence $R(K_3, K_{10} - \epsilon) \le 39$. If we could prove $e(K_3, K_9 - \epsilon, 28) > 90$ then $R(K_3, K_{10} - \epsilon) \le 38$. We have $36 = R(K_3, K_9) \le R(K_3, K_{10} - \epsilon)$, so the lower bound also seems to be weak. There exists a good chance to calculate the exact value of $R(K_3, K_{10} - \epsilon)$! We conclude by stating the following Theorem.

Theorem 3. $36 \le R(K_3, K_{10} - e) \le 39$.

References

1. G. Exoo, H. Harborth and I. Mengersen, The Ramsey Number of K₄ versus K₅ - e, Ars Combinatoria Vol. 25A (1988), 277-286.

- 2. R. J. Faudree, C. C. Rousseau and R. H. Schelp, All Triangle-Graph Ramsey Numbers for Connected Graphs of Order Six, Journal of Graph Theory 4 (1980), 293-300.
- 3. J. E. Graver and J. Yackel, Some Graph Theoretic Results Associated with Ramsey's Theorem, Journal of Combinatorial Theory 4 (1968), 125-175.
- 4. R. E. Greenwood and A. M. Gleason, Combinatorial Relations and Chromatic Graphs, Canad. J. Math. 7 (1955), 1-7.
- 5. U. Grenda and H. Harborth, The Ramsey Number $r(K_3, K_7 e)$, Journal of Combinatorics, Information & System Sciences Vol. 7, No. 2 (1982), 166–169.
- 6. C. Grinstead and S. Roberts, On the Ramsey Numbers R(3,8) and R(3,9), Journal of Combinatorial Theory B 33 (1982), 27-51.
- 7. B. D. McKay and Zhang Ke Min, The Value of the Ramsey Number R(3,8), (to appear).
- 8. S. P. Radziszowski and D. L. Kreher, On (3, k) Ramsey Graphs: Theoretical and Computational Results, Journal of Combinatorial Mathematics and Combinatorial Computing Vol. 4 (1988), 37–52.
- 9. S. P. Radziszowski and D. L. Kreher, *Upper Bounds for Some Ramsey Numbers R*(3, k), Journal of Combinatorial Mathematics and Combinatorial Computing Vol. 4 (1988), 207–212.

