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Abstract

De Caen, D., D.L. Kreher, S.P. Radziszowski and W.H. Mills, On the covering of t-sets with
(¢ + 1)-sets: C(9, 5, 4) and C(10, 6, 5). Discrete Mathematics 92 (1991) 65-77.

A (v, k, 1) covering system is a pair (X, %) where X is a v-set of points and & is a family of
k-subsets, called blocks, of X such that every r-subset of X is contained in at least one block.
The minimum possible number of blocks in a (v, , 1) covering system is denoted by C(v, k, 1).
It is proven that there are exactly three non-isomorphic systems giving C(9, 5, 4) = 30, and a
unique system giving C(10, 6, 5) = 50.

1. Introduction

In this paper we determine the exact value of two set-covering numbers,
C(9,5,4) and C(10, 6, 5). For more information on the classical set-covering
problem, see for instance [4]. We recall that a (v, k, ) covering system is a pair
(X, B) where X is a v-set of points and 9 is a family of k-subsets, called blocks,
of X such that every t-subset of X is contained in at least one block. C(v, k, f)
denotes the smallest possible number of blocks in a (v, k, ) covering system. A
Steiner system S(t, k, v) is a (v, k, 1) covering system such that each t-set is
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covered exactly once. Thus, an S(1, k, v) exists if and only if C(v, k, t) = (})/(%).
For example, it is well known that the Steiner systems S(2, 3, 7) and S(3, 4, 8)
exist and are unique; thus there are unique covering systems giving C(7, 3, 2)=17
and C(8,4,3)=14.

If (X, B) is a (v, k, f) covering system and I c X, |I|=i, then the derived
system with respect to 1 is B,={B—1:1cBe€ B} and we denote by deg(l) =
deg(%; 1) the number of blocks in % that contain . We also use R[1] for
{B:1c B € B} the system of blocks containing 1. Thus deg(I) = |98, = |B[I]| and
X-1,B)isa(w—ik—it- i) covering system. We will frequently use the
following easy identity:

(k=i)-deg)=_3, deg(lu{a)). §)

2. The minimum-sized (9, 5, 4) covering systems

Lemma 1. Let (X, B) be a (7, 3, 2) covering system with |B| =1. Then there is a
bijection of X onto the Galois field GF(7) that maps B onto the set of seven triples
of the form {i, i +1, i +3}).

Lemma 1 is simply the well-known result that the projective plane of order 2 is
unique, together with known facts about its structure. It can be verified directly
without difficulty. Also Lemma 1 follows from the proof of our next lemma.

Lemma 2. Let (X, B) be a (7, 3, 2) covering system with |B|=8. Then one of

these eight triples is superfluous, i.e. the other seven blocks form a (7,3, 2)
covering system.

Proof. We have T,y deg(a) = 24. Since deg(a) = C(6, 2, 1) =3 for all a € X, we
have deg(a) =3 for at least four different elements a. Let x and y be two points of
degree 3. Then & contains triples B, = {x,y, 2}, By={x,a,b}, By={x, ¢, d},
where X ={x,y, 2,4, b, c, d}. Without loss we can assume that deg(a) = 3. The
three pairs that form blocks with a are pairwise disjoint, and thus {y, a, b} ¢ B,
similarly {y, a, z} ¢ B, since deg(y)=3. Thus {y, a} can only be covered by
{», a, c} or {y, a, d}. Without loss we suppose that {y, a, ¢} = B, € B. This now
forces {y, b, d} = Bse B and {z,a,d}=B4eB.

The remaining two blocks must cover the three remaining pairs, {z, b}, {z, c}
and {b, c}. Therefore, one of the last two blocks must cover at least two of these
three pairs, and so must be B, = {z, b, c}. But now the triples B;, i =1 to 7, form
an §(2, 3, 7) and the remaining block Bj is superfluous. O

We remark that if the eight triples are distinct, then the superfluous triple is the
only one that contains more than one repeated pair (i.e. a pair having degree
greater than one).
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Lemma 3. C(8,4,3)=14 and the unique minimal (8, 4,3) covering system
(X, B) is the Steiner system S(3, 4, 8). Furthermore, for any x € X there are seven
blocks containing x and (X — {x}, B,) is an S(2,3,7) Steiner system. The
remaining seven blocks of the S(3, 4, 8) Steiner system (X, B) are the complements
of the above blocks.

Lemma 3 is well known, and also follows from the proof of our next lemma.

Lemma 4. Let (X, B) be an (8, 4, 3) covering system with |B| < 16. Then some 14
of these quadruples form an (8, 4, 3) covering system.

Proof. Without loss we may suppose that no proper subset of & is an (8, 4, 3)
covering system. For each x in X,

deg(x)=C(7,3,2)=7 2
Also, putting g = |3| then, by (1) we have
64=4g = > deg(x) 3)
xeX

Now suppose that deg(a) = 8 for some a € X. Deleting a from the 8 quadruples
containing it, we obtain a (7, 3,2) covering system on X — {a} with eight triples.
By Lemma 2, we see that one quadruple is of the form {a, b, ¢, d} where
{a, b, ¢}, {a, b, d) and {a, c, d} are repeated triples. Since no proper subset of B
covers all triples, it follows that {b, c, d} is not a repeated triple. If 7<deg(b) <8
then, (X — {b}, %,) contains an S(2, 3, 7) which has the triple {aq, c, d}. Since
{a, b, c} and {a, b, d} are repeated triples there are triples {a, ¢, x} and {a, d, y)
in %, and they cannot possibly be part of this $(2, 3, 7). This contradicts
deg(b) = 8. We conclude that b and similarly ¢, and d each have degree at least 9.
By (2) and (3) we must have at least three points of degree 7.

On the other hand if deg(a) # 8 for all a in X, then by (2) and (3) at least four
points have degree 7. Thus, in either case we have at least three distinct elements,
say x, y, and z, of degree 7. By the uniqueness of $(2, 3, 7), we can take the
quadruples of & that contain x to be {x,y,z,a}, {x,y,b,¢c}, {x,y,d, ¢},
{x,2,b,d}, {x,2,c,¢e}, {x,a,b, e}, {x,a,c, d}. It is elementary to check that
this forces the remaining quadruples containing y or z to be {y,z, b, e},
{y,z,¢c,d}, {y,a,b,d}, {y,a,c,e}, {z,a,b,c} and {z,a,d,e}. These 13
quadruples cover all triples of X except for {b,c, d}, {b,c, e}, {b,d, e} and
{c, d, e}. There are at most three quadruples left to cover these four triples, so
there is a quadruple in & that covers at least two of them. 1t must be {b, c, d, ¢).
We now have a set of 14 quadruples of % that cover all triples of X. [0

We remark that if the quadruples in 9 are distinct, then the set of 14
quadruples of Lemma 4 that form an (8,4,3) covering system is uniquely
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determined by the fact that none of these 14 quadruples contains more than two
repeated triples.

Lemma S Let (X, B) be a minimal (9, 5, 4) covering system. If there are two
points x and y of degree at most 16, then, relabeling points if necessary, B contains
a set B of 21 quintuples of the form:

(A) {x,y,i,i+1,i+3},

B) {x,i+2,i+4,i+5,i+6)},

© {y,i+2,i+4,i+5,i+6},
where i € GF(7). Furthermore, deg(x, y) =17 in %.

Proof. By Lemma 4 &, contains an S(3, 4, 8) system (X — {x}, B)). Thus by the
uniqueness of S(3, 4, 8), we may assume that B contains the 14 quintuples of
types (A) and (B) listed above. Similarly, %, also contains an S(3, 4, 8) system
X -{»}, %y')

We claim that deg(x, y) =7 in ®. For, suppose that O = {aq, b, c, d}e B, — B..
Then {x,a,b,c}, {x,a,b,d)}, {x,a,cd} and {x, b, c, d} are repeated quad-
ruples in 98, but since B is a minimal (9, 5, 4) covering system, the quadruple
{a, b, c, d} is not repeated. This is possible only if a, b, ¢, d each have degree at
least 17, using again Lemma 4 and the remark following it. In particular y is not
in Q; thus deg(x, y) =7 as claimed.

It now follows that in %, the quadruples through x are {x,i,i+1,i+3)},
i€ GF(7). Since an $(3, 4, 8) contains the complement of any block in it, it
follows that the quintuples of type C are also in 3. [

Lemma 6. Let (X, B) be a minimal (9, 5, 4) covering system with two points x and
Y of degree at most 16. Then deg(a, b) =9 for alla, be X — {x, y}.

Proof. We may assume that X = {x, y} UGF(7) and that ® contains the 21
blocks 9B of Lemma 5. For any pair {a, b} of distinct elements of GF(7), there
are four elements c,, c,, c3, ¢4 50 that {a, b, ¢;} is not of the form {i,i+1,i+3).
For each i there must be a d; such that the quintuples {x, a, b, ¢;, d;} and
{», a, b, ¢;, d;} are both in B. This implies that for each i, deg(a, b, ;) =4, since
deg(a, b, ;)= C(6,2,1)=3 but the unique minimal (6,2,1) covering system
consists of disjoint pairs. Thus, given two distinct @ and b in GF(7), we have
deg(a, b, c) =4 for at least four values of ¢ in GF(7), and deg(a, b, c) = 3 for the
remaining c in X. Thus by (1) 3 deg(a, b) = ..., , deg(a, b, c)=4-4+3-3=25
and so deg(a, b)=9. D

Propeosition 7. C(9, 5, 4) = 30.

Proof. Let (X, $) be a minimal (9, 5, 4) covering system, with 1B =m=<29. We
have by (1)

145=5m = Y, deg(a).

aeX
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Since deg(a) = 14 for all a it follows that at least 3 points x, y and z have degree
at most 16. However, by Lemma 6 we have 4deg(z)=1X,.,deg(a, z)=6-9 +
2-7=068 and so deg(z) =17, a contradiction. O

We will shortly exhibit some (9, 5, 4) covering systems with 30 quintuples, so
that indeed C(9, 5, 4) = 30. We now mention another consequence of Lemma 6.

Proposition 8. Let (X, B) be any (9, 5, 4) covering system with at most 31 blocks.
Then there are at most two points of degree at most 16.

Proof. We may assume without loss that % is minimal (in the sense that there is
no superfluous block), so that Lemma 6 applies. Suppose that x, y and z have
degree at most 16. Then by Lemma 6, every pair except perhaps {x, y}, {x, z}
and {y, z} has degree at least 9. Also the exceptional pairs have degrees at least
7. Therefore, 310= |B|(3) = L, , deg(a, b) =9 - {(3) — 3} + 3. 7 =318 which is a
contradiction. O

Proposition 9. Let (X, B) be a (9, 5, 4) covering system with 30 blocks. Then it
either has:

(i) one point of degree 14 and 8 points of degree 17, or

(ii) 2 points of degree 14, 4 of degree 17, and 3 of degree 18.

Proof. We have

Y. deg(a) = 150. 4
aeX
It follows easily from (4) and Proposition 8 that there are at least four points of
degree precisely 17. Also, (4) implies that if there is a unique point of degree at
most 16, then it has degree 14 and the remaining points each have degree 17. It
turns out in this case that there is precisely one such system, up to isomorphism.
This will be presented shortly.

Hence, we may assume for the remainder of this proof that the points x and y
both have degree at most 16. By Lemma 5, & contains the system 9 of 21
quintuples. Let # be the remaining 9 blocks. We know that four points, say a,,
a;, a; and a, have degree 17. Thus deg(%®B,a,)=6 for i=1 to 4, since
deg(®;a;)=11. Note that deg(®B;u,v)=5 for any u#v in GF(7). Since
deg(u, v) =9, it follows that deg(%; u, v) = 4. Suppose next that deg(b) =19 for
some b. Then we have deg(%;b)=8, and so by the pigeonhole principle
deg(%; b, a,) =5 for all i. Hence,

ddeg(B; a,)= D, deg(¥;a,, u)=0+0+5+5-4=25,

usta,

This contradicts deg(%; a,) = 6, and so deg(b) < 18 for every b. If it happens, for
example, that y has degree 15 or 16 then, there is a superfluous quadruple
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containing y and a point u of degree 17. But then, we have
68 = 4 deg(u) = 2, deg(u, p) = deg(u, x) + deg(u, y) + O deg(y, p)
14

peGF(7)

27+8+6-9=69,

a contradiction. This clearly implies that x and y have degree 14, a, has degree 17
for i =1 to 4 and the remaining three points have degree 18. O

It is not too difficult to determine, up to isomorphism, all (9, 5, 4) covering
systems (X, %) having degree distribution of Proposition 9(ii). Indeed, let x and y
be the two points of degree 14. By Lemma 5, 21 of the 30 blocks are determined
and are given in the statement of that lemma. We need only determine how nine
additional 5-subsets of GF(7) may be added to obtain a (9, 5, 4) covering system.

We continue with the notation above: our point-set is {x, ¥} UGF(7), the set 3
of 21 blocks containing x or y is listed in the statement of Lemma 5. Now there
are three elements of GF(7), say a, b and ¢, that have degree 18 in @&, and hence
degree 7 in 8 =B — B. So each of a, b and c appear in 7 of the 9 blocks of .
The other four points of GF(7) say d, e, f and g, appear in 6 of the 9 blocks of %.

Lemma 10. If i, j € GF(7) and deg(i, j) = 10, then deg(i) = deg( =18
Proof. We set F = GF(7). Then we have
4deg(i) = 2, deg(i, z) = deg(i, x) + deg(i, y) +deg(i, /) + 3, deg(i, k)
X

keF-{ij)

=27+7+10+5-9=69.
Thus deg(i)=18. O

It follows from Lemma 10 that each pair of elements of GF(7), except perhaps
for the pairs {a, b}, {a, c} and {b, c}, has degree 9. (Recall that each such pair
has degree at least 9 by Lemma 6.) It then follows from (1) that

72 = 4deg(a) = >, deg(a, u) = deg(a, b) + deg(a, c) + 50,

usa

72 =4deg(b) = X deg(b, u) = deg(b, c) + deg(b, a) + 50,
ustb

72 = 4deg(c) = 2, deg(c, u) = deg(c, a) + deg(c, b) + 50.

ustc

Thus the exceptional pairs each have degree 11. Hence each of {a, b}, {a, c} and
{b, c} appears in 6 of the 9 blocks of 9. In fact, elementary manipulation now
forces the blocks of % to be

{a,b,c, d, e} {a, b, c,d, f} {a,b,c, d, g}

{a,b,c,e,f}  {a,b,c,e,g}  {a,b,cf g}
{a’d’eif’g} {b’d’e’f'g} {C’d’e’f’g}'
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The only freedom left to us is in the choice of {a, b, c}. If we choose {a, b, ¢} to
be a block of the S(2, 3, 7) attached to {x, y}, i.e. {a,b,c}={i,i+1,i+3)} for
some i e GF(7), we get a certain system %’'. If we choose {a, b, c} to be a
nonblock of the S(2, 3, 7) we get a system %". We note that the last nine blocks
form the unique system giving C(7, 5, 4) = 9.

Proposition 11. These are the only two possibilities that realize Proposition 9(ii);
that is to say, B' and R" are non-isomorphic, and any (9, 5, 4) covering system
with this degree distribution is isomorphic to either B’ or RB".

Proof. Since x and y are the only two points of degree 14, then any isomorphism
@ between two systems € and 9 of this type will fix x and y or interchange them.
Therefore, @ restricts to an automorphism of the S(2, 3, 7) attached to {x, y}. If
a, B, y are the points of € of degree 18 and a’, B’, y' are the points of @ of
degree 18, then ®({a, B, v})={a’, B’, v’} However, the action of the auto-
morphism group of S(2, 3, 7) (which is PSL,(7)) on the 3-subsets of GF(7) has
two orbits, namely the blocks and nonblocks of S(2,3,7). This is sufficient
information to complete the proof. O

It turns out that there is a unique (9, 5, 4) covering system (X, $B) with one
point of degree 14 and eight points of degree. 17. In order to show this, we will
first of all prove that the distribution of degrees of pairs is uniquely determined:
If x is the point of degree 14, then deg(x, a)=7 for all a+#x, deg(a, b)=7
for a certain set of four disjoint pairs not including x, and the remaining pairs
have degree 9 each. In what follows, the point-set will be X=
{x, a,, a3, a3, a4, as, ag, a,, ag}, where deg(x) =14 and deg(a;) =17 for each i.
Since x has degree 14, the set 98, of fourteen blocks through x form, after deletion
of x, a Steiner S(3, 4, 8) system on the remaining eight points. It is therefore clear
that deg(x, a;) = 7 for all i, since each point in S(3, 4, 8) lies on seven quadruples.
Following the notation of this paragraph we state and prove our next lemma.

Lemma 12. deg(a;, a;) <9 for all i and j.

Proof. It is sufficient to show that deg(a,, as) <9. We set 6 =deg(a,, ag) and
1= {a,, a,, a,, a,, as, as}. For any subset J of {x, a,, ag} let B{j} be the set of all
blocks B in % such that B N {x, a,, ag} =J. We let 1{J} be the set of all subsets of
the form B N1, with B € B{J}. The structure of B[x] gives us

|B{x, a7, ag}| = |B{x}| =3 and |B{x, a;}| =|B{x, ag}j=4.
Since & =deg(a,, ag) and deg(a,) = deg(ag) = 17 we have
|B{a;, ag}i=6—3 and |B{a,}|=|B{as}| =13~ 4.




72 D. de Caen et al.

We set & = |I{a;} N I{x}| and B = |I{ag} N I{x}|. Without loss of generality we
suppose a = f. The set I contains 15 quadruples. Three of these are the ones in
I{x}. These three quadruples do not cover any of the triples in I{x, a,} or any of
the triples in /{x, ag}). By a counting argument we see that each of the other 12
quadruples contained in I cover exactly one of the triples in I{x, a,} and exactly
one of the triples in /{x, ag}.

Consider the four quadruples obtained by adjoining a, to each of the four
triples in I{x, ag}. None of these are covered by any block in B[x]. At most
13~ 6 — a are covered by the blocks in %B{a,}. Therefore at least o + & — 9 of
these four quadruples must be covered by the blocks in %B{a,, ag}. Therefore

H{x, ag} N1{a,, ag}|=a + 6 - 9.

Let O be the set of 20 quadruples that contain ag and the three elements of /.
Of these, four are covered by the blocks of B{x, ag}. At most 6 -3 —(a+6—
9) = 6 — a additional ones can be covered by the blocks of %B{a,, as}. There are
13— 6 quadruples in I{ag}. Of these B are contained in I{x}. Each of the
remaining 13 — 6 — B of these quadruples cover a triple in /{x, ag}, so that the
corresponding block can cover at most three additional quadruples in Q. Hence

at most 48 +3(13— 6~ B)=39+ B —36 additional quadruples in Q can be
covered by the blocks of B{ay). Therefore

20=|Q|s4+6—a+39+/3—36<49—36,
sothat 3d<29and 6<9. O

Since 68=4-17=1%,., deg(z, ag) =7, T<deg(z, ag) <9, it is easy to see that
among the seven numbers deg(z, ag), z #x, ag, either one is equal to 7 and the
others 9 or two are equal to 8 and the others 9. We now proceed to show that this
latter possibility cannot occur. For convenience we change the labeling of the
points: let {x, y} UGF(7) be the point set. We assume that x has degree 14, so
without loss the blocks through x are {x,y,i,i+1,i+3) and {x,i+2,i+ 4,i+
5, i +6} for i €e GF(7). Assume that deg(y, 0) =deg(y, 1) = 8; we will show that
this leads to a contradiction. Observe that among the above 14 blocks there is a
block disjoint from {y, 0, 1}, whence by inclusion-exclusion we have

29=|{blocks B: BN {y, 0, 1} is non-empty}|
= deg(y) + deg(0) + deg(1) — deg(y, 0)
—deg(y, 1) — deg(0, 1) + deg(y, 0, 1)
=17+17+17 - 8 — 8 — deg(0, 1) + deg(y, 0, 1)
=35 —deg(0, 1) + deg(y, 0, 1)
and thus deg(0,1)=6+deg(y,0,1). It then follows by Lemma 12 that

deg(0, 1) =9 and deg(y, 0, 1) = 3, since trivially deg(y, 0, 1)=3. By Lemma 2,
the set of eight triples that form blocks with {», 0} contain seven triples that form
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an S(2, 3, 7). Already the triples {x, 1,3}, {x,2, 6} and {x, 4, 5} form blocks
with {y, 0}. The only ways to complete these three triples to an S(2, 3, 7) is
either by adding the triples

@,={{1, 2,5}, {1, 4,6}, {2, 3,4}, {3,5, 6}}
or by adding the triples
D, ={{1, 2,4}, {1, 5, 6}, {2, 3, 5}, {3, 4, 6}}.

Similarly, {y, 1} already forms blocks with {x, 0, 3}, {x, 2, 4}, {x, 5, 6}. The only
ways to complete these triples to an S(2, 3, 7) are by adding the triples

q’l = {{0» 2’ 5}! {0’ 4’ 6}’ {2’ 3! 6}’ {3: 4: 5}}
or by adding
v, ={{0, 2, 6), {0, 4, 5}, {2, 3, 5}, {3, 4,6)).

Only by using @, U ¥, do we satisfy the condition that deg(y, 0, 1) = 3. Thus, in
addition to the 14 blocks through x already given, we have forced six new blocks:
{»,0,1,2,5}, {y,0,1,4,6}), {y.0,2,3,4}, {»0,3,56}, {y1,23,6),
{y. 1, 3, 4, 5}. This makes a total of twenty forced blocks.

The assumption that deg(y, 0) = deg(y, 1) =8 also implies that there is some
ue{2,3,4,5,6} with deg(0, u) = 8. Thus some set of seven triples in B, , must
form an S(2, 3, 7). Examination of the twenty forced blocks shows that this is
impossible for any u. We have now proved our claim about the distribution of
degrees of pairs and summarize this as a lemma.

Lemma 13. Let (X, ®B) be a (9,5,4) covering system on the point-set
{x,1,2,3,4, A, B, C, D} such that deg(x) = 17, deg(z) =14 for z +x. Then:
(i) deg(x, z) =17 for z #x;
(ii) there are four other disjoint pairs of degree 1, say without loss of generality
the pairs {1, A}, {2, B}, {3, C}, {4, D}, (let us call these the special pairs);
(iii) all other pairs have degree 9.

It is not to difficult to deduce from this lemma that such a covering system is

unique; however, this partly rests on knowledge of the automorphisms of
53, 4, 8).

If every B e %[x] contains an even number of special pairs we may assume
without loss that the 14 quintuples through x are

{x,1,2,3,4},{x,A,B,C, D}, {x,1,2,A, B}, {x,1,2,C, D},

Blx] = {x,3,4,C, D}, {x,1,3,A,C}, {x,1,3, B, D}, {x,2,4, A, C},
{x,1,4,A,D}, {x,1,4,B, C}, {x,2,3,A, D}, {x,2,3, B, C},
{x, 3,4, A, B}, {x,2,4, B, D},
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Now since {1, A} has degree 7, the triples that form blocks with {1, A} are an
$(2,3,7). The triples {x,2, B}, {x,3,C} and {x, 4, D} are present; the two
ways to complete this to an §(2, 3, 7) are by adjoining the four triples

QIA: {2, 3: 4}7 {2’ C: D}r {Br 3» D}; {B; C: 4}

or the four triples

R {2,3,D}, {2,C, 4}, {B, 3, 4}, {B, C, D}.
Similarly for {2, B}:

Q25:1{1,4,3},{1, D, C}, {A,4,C}, {A, D, 3)
or

Rys:{1,4,C}, {1, D, 3}, {A, 4,3}, {A, D, C);
and for {3, C}:

QOsc:{1,2, 4}, {A, B, 4}, {1, B, D}, {A, 2, D}
or

R3C:{1, B, 4}, {2, A, 4}, {1,2, D}, {A, B, D});
and for {4, D}:

Q4p:{1,2,3}, {3,A, B}, {2, A, C}, {1, B, C}
or

Rup: {2,3,A},{1,3, B}, {1,2, C}, {4, B, C).

It is straightforward to check that the only ways to get a covering system is by
adding, to B[x], an even number of Q’s and thus an even number of R’s.
(Example: Q,,, Rzz, Rsc, Ryp does not work since the quadruple {1, B, C, D} is
left uncovered.) These eight ways (1 way for 4 Q’s 1 way for 4 R’s, 6 ways for 2
Q’s and 2 R’s) are all isomorphic. Example: The permutation x = (2B)(3C) gives
an isomorphism between %B[x] U {four Q’s} and Bx]U Q14 UR5 UR3c U Q.
Again, the inherent symmetry makes the isomorphisms obvious (after a bit of
practice anyway!). Let us call the blocks of this system %", for use in Section 3.

If on the other hand there is a B in ®B[x] containing exactly one special pair,
then we may assume without loss it is {x, 1, 2, 3, C}. There are six labelled ways
to complete {1, 2, 3, C} to an S(3, 4, 8). But we note that there are precisely four
permutations, namely those generated by (4, D) and (3, C), that fix the special
pairs and {1,2,3, C}. Using these it is easy to see that there are up to

isomorphism two ways to complete {1, 2, 3, C} to an $(3, 4, 8). There are thus
two cases to consider for B[x].

{x,1,2,A, B}, {x,1,2,4, D}, {x,1,3,A,4)}, {x,1,3, B, D},

Case 1: Blx] = {x,1,C, B, 4}, {x,3,4, C, D}, {x,3,A,B,C},{x,2,B,C, D},
{x,2,3,4,B},{x,2,3,A,D}, {x,1,2,3, C},{x,4, A, B, D},
{x,1,C,A, D}, {x,2,4,A, C)
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and

{x,1,2,A,4}, {x,1,2,B,D}, {x,1,3,A, B}, {x,1,3,4, D},
{x,1,C, B,4},{x,3,B,C, D}, {x,3,A,4,C}, {x,2,4,C, D},
{x,2,3,4,B},{x,2,3,A,D}, {x,1,2,3,C}, {x,4, A, B, D},
{x,1,C, A, D}, {x,2,B,A, C}

In Case 1 note that {1, A} forms blocks with {x, 2, B}, {x, 3, 4} and {x, C, D}.
The only way to complete this to an S(2, 3, 7) is to take triplets of the form
{i, j, k} where i € {2, B}, je {3, 4} and k € {C, D}. In particular each new block
will have either a 2-3 or 3-2 distribution with respect to the sets {1, 2, 3,4} and
{A, B, C, D). The same is true for {2, B}, {3, C} and {4, D}. The 16 new blocks
obtained this way are all distinct and this accounts for all 30 blocks. However, the
above observation on the distribution of points in the new blocks shows that the
quadruples {1,2,3,4} and {A, B, C, D} are left uncovered. Case 2 can also be
disposed of in a similar fashion.

Thus $", in which every block contains an even number of special pairs, is the
unique (9, 5, 4) covering system satisfying Lemma 13.

Case2: Blx]) =

3. €(10,6,5)=50

We are now in a position to determine C(10, 6, 5) and show that there is a
unique covering system giving equality. Let (X, %) be any (10, 6,5) covering
system. We have

6B = D, deg(a)=10- C(9, 5, 4) =300 5

and so || = 50. We now exhibit a system with 50 blocks. Let S = {a, b, ¢, d, ¢}
and §'={a’, b’, c’, d’, e'} be disjoint five-element sets. Let X =S U S’ and let

B,={SU{x'}:x'€eS'}U{S'U{x}:xeS)
U{{a, B, v, u', v, w'}: {a, B, v} N {u, v, w}|is odd}.

It is easy to check that (X, 9,) has 50 blocks and is a (10, 6, 5) covering system.
Thus we have the following.

Propesition 14. C(10, 6, 5) = 50.

We now show that @&, is, up to isomorphism, the only (10, 6,5) covering
system with 50 blocks. According to (5), any such system (X, %) has the property
that for every point x, there are 30 blocks containing x and after deleting x from
these blocks we have a (9,5, 4) covering system. Denoting by 9%, this derived
system, we thus have that each %, must be isomorphic to one of the three (9, 5, 4)
covering systems ®’, 8" and ®", given in Section 2. We now show that the first
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two systems (the ones with two points of degree 14) do not occur. We remark
that for the above system %, each derived system is indeed isomorphic to the
third (9, 5, 4) covering system %®".

Lemma 15. The derived system with respect to any point of a minimal (10, 6, 5) is
isomorphic to B".

Proof. Let (Y, o) be a (10, 6, 5) covering system with 50 blocks. Fix any point
@ € Y and suppose that &, is isomorphic to B’ or B”. Then there are two points x
and y in Y of degree 14 in of... It is easy to see that there are 30 blocks through o,
30 through x, 14 through {x, ®} and thus, precisely 50 —30 —30+ 14 = 4 blocks
missing {x, ©} entirely. On the other hand, consider the point y. It appears in 14
blocks with e, and at most 11 additional blocks with x, since deg(ex, x, y) =7 and
deg(x, y) <18. Hence y appears in at most 25 of the 46 blocks meeting {co, x}.
Thus, y appears in at least 5 of the 4 blocks missing {x, ©}, a contradiction. O

Proposition 16. The minimum-sized (10, 6, 5) covering system is unique, up to
isomorphism.

Proof. Let (X, ®) be such a system. Then by Lemma 15, for each x the derived
system 3, is a (9, 5, 4)-covering system isomorphic to %", having one point £ of
degree 14 and the others of degree 17. Symmetrically, x has degree 14 in B,.
Thus, we may put X = {1, 1, 2,2, 3,3, 4,4, 5, 5} with deg(i, ))=14fori=1to 5.

Now put D = B — (B[5] U B[5]). We note that D has 50 — (30+30-14)=4
blocks. Further, each pair {i, 1}, i=1 to 4, is contained in 14—(7+7 - 3) =3 of
the blocks of 9. This means that the four blocks of 9 are uniquely determined:
(1,1,2,3,3,3), 1,1,2,3,4,3), {1,1,3,3,4,3), {2,2,3,3,4,3). 1t is easy to
see that B[5] determines B[3]. This is sufficient to complete the proof, since
RB=RB5]UB5lUD. DO

4. Additional remark

The system 9B, of Section 3, giving C(10, 6, 5) <50, was found independently
by Guy Giraud in the context of Turén numbers (letter to de Caen dated August
1987). Recall that the Tur4n number T(n, 1, k) is the minimum possible number
of k-subsets of an n-set such that every l-set contains at least one of these k-sets.
See for example [1] for more information. It is not hard to see that T(n, /, k) =
C(n, n—k, n 1), simply by complementing blocks. Thus C(9, 5, 4)=T(9,5,4)
and C(10, 6, 5) = T(10, 5, 4). Kalai [3] has an intriguing question concerning the
Turdn numbers T(n, 5, 4): Let (X, Q), |X|=n, Q| =T(n, S, 4), be a minimum
system of quadruples such that every quintuple contains a member of Q. Does it
follow that every quintuple contains an odd number of members of Q? We
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observe that Kalai’s question has an affirmative answer for n < 10: this is easy for
n < 8 (the minimal systems are unique and easily tested); for n = 9 there are three
minimal systems (Section 2) and for n =10 a unique system (Section 3); in all
cases one can verify that the parity condition is satisfied. Thus any coun-
terexample must have at least 11 points. We have not determined T(11, 5, 4) =
C(11, 7, 6) < 84. Also, for T(12, 5, 4) = C(12, 8, 7) we have 120=< ((12, 8, 7)<
126. The upper bounds 84 and 126 can be derived from the results in [2]. Details
are omitted.

References

{1] A.E. Brouwer and M. Voorhoeve, Turén theory and the lotto problem, Math. Centre Tracts 106
(1979) 99-105.

[2] D. de Caen, D.L. Kreher and J. Wiseman, On constructive upper bounds for the Turdn numbers
T(n, 2r + 1, 2r), Congr. Numer. 65 (1988) 277-280.

[3] G. Kalai, A new approach to Turan’s conjeclure, Graphs Combin. 1 (1985) 107-109.

[4] W.H. Mills, Covering Designs 1: Coverings by a small number of subsets, Ars Combin. 8 (1979)
199-315.




