Minimum Triangle-Free Graphs

Stanislaw P. Radziszowski ! and Donald L. Kreher !

Department of Computer Science
Rochester Institute of Technology
Rochester, NY 14623

Abstract. We prove that e(3,k + 1,n) > 6n— 13k where e(3,k + 1,n) is the
minimum number of edges in any triangle-free graph on n vertices with no independent
set of size k + 1. To achieve this we first characterize all such graphs with exactly
€(3,k+ 1,n) edges for n < 3 k. These results yield some sharp lower bounds for the
independence ratio for triangle-free graphs. In particular, the exact value of the minimal
independence ratio for graphs with average degree 4 is shown 1o be 4/13. A slight
improvement 1o the general upper bound for the classical Ramsey R(3, k) numbers is
also obtained.

1. Introduction

The study of the minimum number of edges in a triangle-free graph on n vertices
with no independent set of size k, e(3, k, n), and the construction of some related
minimum graphs led, in particular, to the evaluation of the exact values of classical
Ramsey numbers R(3, 6) (Kalbfleisch [5]), R(3 , 7) (Graver and Yackel [3]) and
R(3,9) (Grinstead and Roberts [4]). In this paper we pursue further this approach
by strengthening our results related to the function e(3, k,n) obtained in [7].

The major progress in the investigation of asymptotics for the classical Ramsey
numbers R(3, k) was obtained by Ajtai, Komlés and Szeremédi [1], and later
refined by Shearer [9] and Bollobés [2] by finding a good lower bound for the
maximal size of independent set in a triangle-free graph with fixed average degree,
which implies the best known so far general upper bound [2, p. 296]:

(k-1)2
log, k+1/k—c

R(3,k+1) < +1, fork >3, wherec=1, 1)

Our results imply that the bound (1) holds for ¢ = 0.9409... for all k > 3.
The technique used in this paper was originated by our previous work reported in
[71,[8]. Recently we have learned that Shearer [10, and his private communica-
tion] showed that R(3, k) < k2 /( log, k—c) + O(k/log, k) for c=0.7665... .

.Section 2 introduces the notation and recalls some previous results. Section 3
develops properties of a class of minimum graphs, which is of particular impor-
tance for further sections. Section 4 completes the full characterization of all min-
imum triangle-free graphs with the average degree not exceeding 10/3. The main
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theorem stating that e(3,k+1,n) > 6n— 13k is presented in Section 5. Sec-

tion 6 relates these results to the independence ratio, in particular the exact value of
minimum independence ratio of triangle-free graphs with average degree not ex-
ceeding 4 is calculated. Finally, the connection of the latter with Ramsey numbers
R(3, k) is presented.

2. Definitions and Previous Work

All the graphs considered in this paper are simple and triangle-free. If v is a vertex

of a graph G = (V, E) then deg,(v) denotes the degree of vertex v in G, Ng(v)
is the neighborhood of v. n(G) and e(G) denote the number of vertices and edges,
respectively, in G. Alsoif G = (V, E) then wedefine V(@) = V and E(G) = E.
By a component of a graph we will always mean a connected component, If
A, B C V then the set of edges in E with one endpoint in A and the other in B
will be denoted by Eg(A, B). The Z-sum of vertex v is the number Zg(v) =
Y {degqy(z) : = € Ng(v)}. Sometimes we will write Zg(v) =dj +dy + -+ - +
dacgo(v) When the exact specification of the degrees of the vertices in N(v) is
needed (in some situations were no confusion arises the subscript denoting graph
will be omitted). Any vertex of degree d will be called a d-vertex. I(G) denotes
the maximum size of independent set in G and the independence ratio i(G) of
G is defined as i(G) = I(G) /n(G). If © is a class of graphs then the minimum
independence ratio of © is definedby i(©) = inf {i(G) : G € ©}. The minimal
degree of vertices in a graph G is denoted by 6( G) . We write G = H if graphs G
and H are isomorphic. G+ H or }_ {H; : i € I} will denote the disjoint union of
graphs GG and H or the disjoint union of a family of graphs { H;};er, respectively.

A (3, k,n,e) Ramsey graph is a triangle-free graph on n vertices with e edges
and no independent set of size k. Similarly, (3,k)-, (3,k,n)- or (3,k,n,¢€)-
graphs are (3, k, n, e) Ramsey graphs for some nand e. e(3, k, n) is the minimum
number of edges in any (3, k, n)-graph and is defined to be co if no such graph
exists. A (3, k,n, e)-graph is a minimum graph if e = (3, k, n). We note that
for any minimum (3, k, n)-graph G we have I(G) = k — 1 unlessn < k — 1,
in which case G is formed by nisolated points and 1(G) = n. Observe that if H
is a minimum graph and H = S + P, then obviously S and P are also minimum
graphs, but the converse is not true in general. In the above context the classical
Ramsey number R(3,k) can be defined as the smallest nonnegative integer =
such that e(3,k,m) = oo. Since the maximal degree in a (3, k, n) -graph is at
most k — 1, then in order to conclude that R(3,k) < nit is sufficient to show
thate(3,k,m) > w(k—1)/2,

If v is a vertex of graph H, then H" is the graph induced in H by the set o!
vertices V(H) — (N(v) U {v}). Using the terminology of [3], [4], the grapt
HY coincides with the so called graph H, (v) in H obtained by preferring verte
vin H. If v is a d-vertex of a (3,k+ 1,n+d+ 1,e)-graph H then the graph
H" is a (3,k,n,e—Zy(v))-graph. A vertex v is called full in H if H"Y is ¢



minimum graph. An operation in some sense inverse lo preferring a vertex is that
of extension, which is formalized below,

Definition 2.1. Graph H is a d-extension of a (3,k)-graph G, I(G) = k — 1,
if H hasa d-vertex v such that H® = G and H is a (3, k+1) -graph.

To facilitate reading we also include in this section some of the previous re-
sults needed later in this paper. The following proposition is a condensation of
Theorems 1, 2 and 4 appearing in [7):

Proposition 2.2,
(@) Fork > 2
0 iIf0<n<k,
e(3,k+l,'n)={'n-k ifk<n< 2k,
3n—-5k if2k<n< S5k/2.
Furthermore, the carresponding minimum graphs are unique and are given
by n isolated points for 0 < n < k, 2k — n isolated points and n— k
isolated edges for k < n < 2k, and 5k — 2 isolated edges with n—2 k
peniagons for2k < n< 5k/2.
(b) Forall k,n>0
e(3,k+1,m) > Sn—10k. 2)

Furthermore, (2) becomes an equality for k = 3, n= 8 and for all n and
k such that k > 4 and 5k/2 < n<3k.

Finally, let us mention an obvious consequence of a technical Lemma 3 in [7).

Proposition 2.3. If v is a 2 -vertex in a2 minimum graph H and Z(v) =2+ 2
then the component of H containing v is a pentagon.

3. Graphs G, and F,
The minimum graphs G, introduced in [7] will be of a particular importance in
further sections. They are defined below.

Definition 3.1. Forall k 2 4 define the graph Gy = (Vk, E}) as follows:
Vi = {az;b:ncz ‘T E zk}:
Bk = {{¢z,6z41},{z, 82}, {Cz, bz}, {x, bz1}, {62,042} : z € Z4}.

The graph G has 2 k vertices of degree 3 and k vertices of degree 4. Gy is
drawn in Figure Ifork = 5. ]

"We have shown in [7] that for all k > 4 the graph G is a minimum (3, k+
1,3k,5k)-graph, I(G:) = k and it’s full automorphism group is isomorphic to
the dihedral group Dy. It can be easily seen that all 3-vertices in G} are equivalent
up to symmetry, similarly as are all 4-vertices. This justifies the correctness of the
next definition.
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b, 2

¢ Y

a3

by a,
Figure 1. Graph Gs.

Definition 3.2. For all k > 3 define the graph F} to be the graph GY,,, where
v is a 3 -vertex of the graph Gy.,. Define the graph F, to be the pentagon.

Note that if we would have defined also the graph G5 by Definition 3.1 (con-
taining one triangle coc; c;) then we will have F; = G3*. Since Zg,,, (v) = 10
for any 3-vertex v in G, hence by (2) the graph F} is a minimum (3, k+1,3 k—
1,5k-5) graph and I(F}) = k for each k > 2. In the following we will thus as-
sume that F;, = G4 . Easy examination of the graph G, reveals that the graph
Fi has4,2k—2 and k-3 vertices of degree 2, 3 and 4, respectively, for k > 3.
Also note that F3 is the well known unique (3,4, 8, 10) -graph [3], [5].

The graph Fy is drawn in Figure II for £ > 3.

a, L] bya; b; as B bes 2y he Az by b,

' < 2 € G-3 G-z Gy 2

Figure I1. Graph F;.

Proposition 3.3, The full automorphism group of the graph F; for k > 3 is
isomorphic to the dihedral group D4 and is generated by permutations:

a=(apcp)(crby),
B = (aobe)(coar—1)(cick-i)1<ick/2 (Bibk—i)1gick—2.-

Furthermore all 2 -vertices in Fy are equivalent up to symmeltry.

Proof: Let I' be the full automorphism group of F;. Observe that a and S arc
automorphisms of F; of order 2. One can easily check that the order of o is 4
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Hence I' contains D, as a subgroup. By examination of graph F; we can see
that the pointwise stabilizer in I" of the set of 2-vertices {a0,co, k1, b} is the
identity, so I is isomorphic to the restriction of " acting on 2-vertices, which is
isomorphic to Dy. i

Proposition 3.4, Forall k 2 2, Fy,) is a 2 -extension of F.

Proof: One can easily see that F; is a 2-extension of F;. For k > 3 using Propo-
sition 3.3 we can check that F, = Fg, | if z is any 2-vertex in Fj, . ]

Proposition 3.5. Let H be one of the graphs Fy, or Gy. Then for any vertex
v € V(H) there exists a k-independent set S in H not containing v.

Proof: The pentagon F, obviously has the required property. If H = G4 then
letS1={a;: 0 <i<k}and8S, = {h;: 0 < i< k}. Note that S; and S,
are disjoint k-independent sets in G}, hence at least one of them misses any given
vertex v. Similarly, if H = F for some k > 3 then consider S, as before and
S = {co}U{b;:2 < i<k} Again§, and S, are disjoint k-independent sets
in Fy, thus proposition follows. |

4. Minimum Graphs
4.1 Class @

Let @ be the set of all nonempty minimum (3, k+1,n,5n— 10k) -graphs and
observe that F;,G; € @ fori > 2, J 2 4. Our first lemma below says, in
particular, that any graph H, whose each component is formed by graph F; or
G; for some 1, is a member of @, The goal of Section 4 is to show that all the
graphs in @ have this property (Theorem 4.3.1) and consequently n < 3 k for any
(3,k+1,m)-graphin @

Lemma 4.1.1. Let H be a disjoint union of nonempty graphs S and P. Then
He® ifandonlyif S€ ® and P € .

Proof: First assume that H € ®,s0 H isa (3,k+1,n,5n—10k)-graph. Since
any component of 8 minimum graph is a minimum graph, we can assume that S
is a minimum (3, k; + 1,m, e1)-graph and P is a minimum (3, k241,15, €3)-
graph, and k; + k; = k. Then by (2) and by the fact that H = S + P we have
5n—10k = e; +e3 > S5(m + m) — 10(k; + k). Furthermore we must have
€1 = 5m —10k; and ez = Sny — 10k;, so S, P € @ as claimed. Conversely,
assume that S, P € ®. Then, using the same notation, we have e1 =5m—10k;,
e2=5m—10k; and Hisa (3, k+1,n, 5n—10k)-graph, where k = k;+k; and
n=m+m. Thusby (2) H € ®. [ |

The restriction in Lemma4.1.1 to the set & is essential since in general adisjoint
union of minimum graphs is not a minimum graph. For example, if S is an isolated
point and P is a pentagon then by Proposition 2.2(a) S and P are minimum graphs
and § + P is a (3,4,6,5)-graph, but e(3,4,6)=3.
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Lemmad.1.2. If H=(V,E) € P, then
(@) forall ve V,Z(v) < 5deg(v) -5,
(b) forall v € V,deg(v) > 2;
(c) if deg(v) = 2, then Z(v) = 2+ 3 or the component of H conlaining v

is a pentagon;
(d) if 6(H) > 3, then for some v € V,deg(v) =3 and Z(v) =3+ 3+ 4.

Proof: Let H be aminimum (3, k+1,n, 5n—10 k)-graph and v be an r-vertex in
H. Then H" is a (3, k, n—r—1)-graph and by (2) e( H") > Sn—10k—-57r+ 5.
Counting the edges of H we have e( H") + Z(v) = 5n— 10k and consequently
(a) holds. Now (b) follows since (a) and Z(v) > r imply r > 2. For (c) assume
that r = 2. Using (b) we note that Z(v) > 4,soby (@) Z(v) = 4 or 5. If
Z(v) = 4 then by Proposition 2.3 the component of H containing v is a pentagon,
otherwise Z(v) = 2+ 3 and (c) follows. To prove (d) suppose that §( H) > 3 and
observe that 6( H) = 3 since otherwise if we set r = §( H) > 4 then Z(v) > r?
contradicts (a). Hence the graph H must have some 3-vertices, and by (a) for any
3-vertexvin H,9 < Z(v) € 10;s0Z(v) =3+3+30rZ(v) =3+3+4.
Consequently, in order to complete the proof of (d) it is sufficient to show that H
cannot have a cubic component. Assume that S is a cubic component of H. By
Lemma4.1.1, S € ®; furthermore S is a (3, k+1,n,3n/2)-graph and 3n/2 =
5n—10k for some integers k and n. Thus the independence ratio of S is i(S) =
k/n=7/20. On the other hand Staton [11] proved that i(©) = 5/14 if © is the
class of triangle-free cubic graph. Therefore S cannot exist since 7 /20 < 5/14.
|

4.2, Minimum Extensions

The following two lemmas establish the minimum graphs in ¢ which can be
obtained as an extension of G or F.

Lemma 4.2.1. No graph in ® can be a d-extension of the graph Gy ford > 0
andk > 4.

Proof: Assume that H is a d-extensionof G, H € ® and HY = G}. If z €
N (v) then by counting degrees in N(z) and by Lemma 4.1.2(a) we have

d+ (deg(z) — 1)(8(Gr) + 1) < Z(x) < 5deg(z) —35. €))

Note that 6(G¢) = 3, hence (3) gives deg(z) > d+ 1. Now similarly, by counting
degrees in N(v) and Lemma 4.1.2(a) we obtain

d(d+1) < Z(v) < 5d-5,

which is a contradiction. [ |
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Lemma 4.2.2.
(@) Forall k > 2 the graph F has a unique 2 -extension in ® and it is
isomorphic to Fi,,.
(b) F» has no 3-extension. Forall k > 3 the graph Fi has a unique 3 -
extension in ® and it is isomorphic to Gy, .

Proof: (a) F; is the unique (3,4,8,10)-graph, so by Proposition 3.4 it is the unique
2-extension of F,. Let H be a 2-extension of Fyforsomek >3, He®,HY =
F} and deg(v) = 2. Note that H must be connected since by Lemma 4.1.2(b)
deg(z) > 2 for x € N(v) and F; is connected. Thus by Lemma 4.1.2(c) we
obtain Z(z) = 2+ 3 forany 2-vertex zin H. Let N(v) = {s,t},deg(s) = 2 and
deg(?) = 3. Since Z(s) = 2+ 3, s is connected 1o some 2-vertex in H* and by
Proposition 3.3 we can assume, without loss of generality, that {s, a1 } € E(H)
(see Figure III).

bes ayy by 2y, by, b,

G-3 Gz Gy ey

Figure I1I. Graph H from Lemma 4.2.2(a).

Now ¢ must be connected to two vertices in H'. One of them is b; because
otherwise by would be a 2-vertex in H with Z(bx) > 6. One still missing edge
connects ¢ to some vertex u in V(H") — {a,_1,b;}. Let J be the graph H with
the edge {t,u} deleted. Observe that any vertex z in the set

S={ao,Co}U{a,'12 SiSk-—2}U{b;:3SiSk—2}

satisfies Z;(z) = § deg;(zx) —5, soitis full in J, and this by Lemma 4.1.2(a)
implies that u cannot be a neighbor of any vertex in S. Furthermore u ¥ a;_; since
we have 10 avoid the triangle bia;_,t. The only possibilities left are u = ¢c;_; for
k > 3 andu = a; inthe case k = 4. The latter case = a) can be discarded since
then the set {t, s, a2, b2,c;,c3} would be a 6-independent set in H contradicting
the fact that H is an extension of Fy. So u = k-1 and the graph H must be as
drawn in Figure I1I. Finally observe that H = Fi+1 since, after renaming v — a,
8 — bgs1,t — cx, graph H is identical to F+1. This completes the proof of
part (a).

(b) A 3-extension of F, would be a (3,4,9)-graph, but such a graph does not exist
since R(3,4) = 9. Itis known [7] that there are unique (3, k+1, 3k, 5 k) -graphs
fork =4,5,6,7 and they are isomorphic to the corresponding graph G. Hence,
by Definition 3.2, Lemma 4.2.2(b) holds for k < 6. Let H be a 3-extension of F,
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H € ® and H® = F,, for some k > 7. We have Z(v) = e( H) — e(Fi) = 10.
Similarly as in (3), for z € N(v) we have

3+ (deg(z) — 1)(8(Fy) + 1) < 5deg(z) —5

and §( F;) = 2, which implies deg(z) > 3 and consequently Z(v) = 3+ 3 + 4.
Let N(v) = {a,b,c}, deg(a) = 4 and deg(b) = deg(c) = 3 (see Figure IV). In
the graph H vertex a has three neighbors in H", say t1,¢2,¢3, similarly let s, s2
and u;, up be the vertices in H" connected to b and c, respectively. Denote the
sets of these vertices by T, S and U, respectively. The remaining portion of the
proof consists of showing that the sets T, S and U are determined uniquely (up to
symmetry) and that this situation yields H = Gi.1.

he oz by, b, a, & b a,
o J J cbz

Figure 1V. Graph H from Lemma 4.2.2(b).

Put X = TUSUU,sowehave | X| < 7. DefineY to be the set of full vertices
in HY = F}. Observe thatY = Y; UY3, where Y; = {ao, co, ax-1, by} is the set
of 2-vertices in Fy and Yz = {a; : 2 <1< k—3}U{b; : 3 <1< k—2}, hence
we have |[Y2| = 2(k—4) > 6. Similarly as in part (a) we note that if z € X and
. {=z,y} € E(H") for some full vertex y then y € X. We will use repeatedly this
property while determining the set X . First note that Z(b) < 10 implies that at
least one vertex in S is a 2-vertex of Fi. Thus by Proposition 3.3, without loss of
generality, we have s; € {ao,co}. But{ao,co} C Y and {a0,c0} € E(H"),
hence {ao,c0} C X and | X NYi| > 2. The vertices in Y> form a path in F,
consequently X N'Y2 # @ implies Y2 C X, and therefore X N'Y> = @ since
|Y2| > 6. Now similarly, foreach z € X andy € Y, we have {z,y} ¢ E(H).
So

X cYiu{a,bz,ck-1,0k-2}

Note that {c¢;,b2} C X or {ck-1,ak-2} C X implies thata; € X or b1 € X,
respectively, which as before implies that Y2 C X . Thus using Proposition 3.3,
without loss of generality, we can assume that

XCA=Y1U{c,ck1}.
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We have |A| = 6, hence there exists y € A which is an endpoint of at least two
edges in E(N(v), B(H")), and call any such y a repeated ventex. If ¢; or ¢;_;
is arepeated vertex then a; € X or b;_; € X, respectively. Similarly, if ag or by
is a repeated vertex then b, € X or ag—2 € X, respectively. Thus any repeated
vertex is one of cg, ax—;. If both of them are repeated then we can conclude that
A C X, which leads to a contradiction | X| = |4| + 2 < 7. Using once more
the symmetry of F let co be the only repeated vertex and X = A. Assume that
Co is a common vertex of S and U. Consider the graph J = (H*)¢. Observe
that n(J) + 6 = n(H) and e(J) < e(H)—12 since we can easily count that
there are at least 12 edges in E(H) — E(J). On the other hand J must be a
(3, k) -graph since any k-independent set in J could be extended by b and ¢ to
a (k+2)-independent set in H. Using (2) and n(H) = 4 + n( F;) we obtain a
contradiction as follows

e(H)—12 > e(J) > 5(m H)—6) — 10(k—1) = 5k— 5 = e(H) - 10.

Hence we have SN U = @, which implies that ¢y € T'. Finally, considering that
T, S and U are independent sets in H we arrive, up to symmetry, to the unique
possibility

T={co,ct~1,bk}, S={co,ae-1}, U={ao,c1}

and the graph H must be as drawn in Figure IV. To complete the proof one can
check that, after renaming v — a4, a — ck, b — bo, c — by, the obtained graph
H is identical to Gy,1. |

4.3. Characterization Theorem

Theorem 4.3.1. Let H bea (3, k+1,n)-graph with I(H) = k. Then H € ®
ifand only if H = Y, . F(i) + Eju G(j), where I and J are multisets of
integers satisfying:

(@ ifieItheni>2,ifjeJ thenj > 4,

(®) Yieri+ Y esj = kand3k—|I| = n.

Proof: Assume first that H is as specified on the right side of the equivalence.
Using properties of graphs F; and G; listed in Section 3 and simple arithmetic
we conclude that 37, (3i—1) + Y., 3/ = 3k — |I| = nand Y i (5i-5) +
3 jes 5j = 5n—10k, hence by (2) and Lemma 4.1.1 & contains all the graphs
specified by the right side of Theorem 4.3.1. Conversely, assume that H € @. By
Lemma 4.1.1 each component of H is a member of ®. So it is sufficient to show
that any connected graph in @ is isomorphic to F; or G}, since simple calculation

of parameters of graphs proves that (a) and (b) hold for any disjoint union of F;’s
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and G;'’s. Let H € @ be a connected minimum (3, k+ 1,7n)-graph. We will
prove by induction on k that H = F; or H = Gy. For k < 2 the only graph
of consideration is a pentagon, which is F,. In the general case we consider two
possibilities: 6( H) = 2 or §(H) = 3. Note that by Lemma 4.1.2 one of them
must occur.

If 5(H) = 2 and v is a 2-vertex, then by Lemma 4.1.2(c) H is a pentagon or
Z(v) = 2+ 3. In the first case we are done, s0 Z(v) = 2+ 3, v is a full vertex in
H, H* € ® and H is a 2-extension of HY. Note also that there are exactly three
edges in the set Y = Eg(N(v),V(H")). If H* is connected then by induction
and Lemmas 4.2.1 and 4.2.2 H = F}. Thus to complete the case §( H) = 2 itis
sufficient to show that H¥ must be connected. By induction we know that each
component S of H" is an F; or G;. If H" has more than one component then,
since [Y'| = 3, there is a component S and exactly one edge f = {z,y} €Y such
thaty € V(S). Now by Proposition 3.5 there is a maximum independent setin S
missing y, hence the removal of the edge f from H does not increase [ (H),and
consequently H is not a minimum graph. This contradicts the fact that H € @.

If 5(H) = 3, then by Lemma 4.1.2(d) there is a 3-vertex v in H such that
Z(v) =3+3+4,visafull vertex in H, H* € ® and H is a 3-extension of H".
Note also that there are exactly 7 edges in the setY = Eg(N(v),V(H")). f HY
is connected then by induction and Lemmas 4.2.1 and 4.2.2 H = G;. Note that
any component S = F; of H" contributes at least 4 edges to Y since 6(H) = 3
and F; has 4 or 5 2-vertices. Observe that 2 j 3-vertices of G; form a cycle of full
vertices in G; and any vertex in G; has some 3-veriex as a neighbor. Hence any
edge in Y with an endpoint in G; implies that there are at least 2 j such edges in
Y. Thus any component § = G; of H* contributes at least 8 edges to Y. But
|[Y| = 7, so H* must be connected. This completes the proof of the theorem. |§

Table I below presents all minimum (3, k+ 1)-graphs in @ with k¥ < 8. In
Table 1, §1 S ... S; denotes a disjoint union of graphs S;,1 < 7 < 1.

Corollary 4.3.2. For 5k/2 < n< 3k, H is aminimum (3, k+ 1, n) -graph if
and only if H is a disjoint union of F;’s and G;'s.
Proof: This is obvious from Proposition 2.2(b), Theorem 4.3.1 and from the prop-
erties of parameters of graphs F; and G;. |
Let H;3 be the graph defined on the vertex set Z;3 by joining with an edge
vertices 4 and j if and only if i — j is a cube in Z;3. It is known that H,3 is
the unique up to isomorphism (3,5,13,26)-graph [5], [7]. We note that Hj3 is a
4-regular minimum graph and Hj; = F; for any vertex v € Zi3.
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graph n=3k—4 n=3k-3 n=3k-2 n=3k-1 n=3%k
k parameters e=5k—20 e=5k-15 e=5k=10 e=5k-5 e=5k
2 (3,3,n B none
3 (3,4,n) I3 none
4 (3,5,") Fh& Fy G4
5 (3,6,n) RF Fs Gs
6 3,7,n) BRP P3Py Fs Gs
P Fy F2Gs
BT (3,8,n BRBF; F3F, ” G
F, Fs FGy
RGs
8 (3,9,n) BREREP R PPy Fy Fy Fg Gs
R EF, F3Fs FyGq GGy
B, Fg FGs
B F,G, PG

Table I. Minimum (3, k+ 1, n)-graphs for 5k/2 <n<3k,2 < k<8.

Corollary 4.3.3.

(a) e(3,k+1,3k+1) > 5(k+id) forall i >0,
(b) e(3,k+1,3k+1) =5k+ 6 forall k> 8.

Proof: Assume that e(3,k+1,3k+1) < 5(k+1) for somei > 0. Then by (2)
equality must hold and there exists a minimum (3, k+1,3k+14,5k+ 51) -graph,
which belongs to ®. This contradicts with Theorem 4.3.1 and Corollary 4.3.2
considered simultaneously, hence (a) follows. The graph Hi3 + G4 isa (3, k+
1,3k+1,5k+6)-graph for k£ > 8, so (b) follows by (a) withi = 1. [ |

We note that Corollary 4.3.2 solves the characterization problem stated in [7]
and Corollary 4.3.3(b) answers to a question given in [7] after Corollary 3 there.
Another observation is that by Lemma 4.2.2 and Theorem 4.3.1 all connected
graphs in © can be obtained by a sequence of 2-extensions and at most one 3-
extension of an isolated edge, since the pentagon is a 2-extension of an edge.

Finally let us interpret Theorem 4.3.1 in terms of the average degree. LetG bea
(3, k+1, n, e) -graph with average degree d < 10 /3. Thene = nd/2 > 5n-10k
implies n < 3 k and consequently any minimum graph with an average degree not
exceeding 10/3 is specified by Proposition 2.2(a) or Corollary 4.3.2. In particular,
if2 < d < 10/3 then G is a minimum graph if and only if i(G) = 1/2 —d/20.
Further discussion of the relation between average degree and independence ratio
will be given in Section 6.
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5. Main Theorem
5.1 The Theorem and Initial Properties

Theorem 5.1.1. Forall k,n>0
e(3,k+1,m) >6n—13k. 4)

In order to present our proof of Theorem 5.1.1, which is technically compli-
cated, we first develop some properties of graphs which meet exactly the bound
(4). We start with introduction of a class of minimum graphs ¥, whose idea is
basically the same as of ®. A general approach relating this kind of class to the
independence ratio and some further properties of minimum triangle-free graphs
will be presented in Section 6.

Definition 5.1.2. Let ko be the largest integer (or oo) such that (4) is true for
all0 < k < ko andall n > 0. Define ¥ lo be the class of minimum (3, k+
1,n,6n— 13 k) -graphs such that0 < k < ko.

Definition 5.1.2 clearly reflects the fact that we will use induction on k to prove
(4). We say that a smallest counterexample 1o (4) is a minimum (3, ko+1,n,¢e)-
graphif we have e < 6m—-13ko. Denote by A the set of smallest counterexamples
to (4) (A = @if kp = 00).

Assume for a moment that (4) holds for all n,k > 0, ie. ko = oo is as-
sumed to be true in this paragraph. Observe that by comparing (2) and (4) we can
conclude that ¥ N @ contains exactly all the (3, k+ 1, 3 k, 5 k) -graphs, thus by
Theorem 4.3.1(b) these are the graphs whose all components are isomorphic to a
G;. Note also that H;3 € ¥ and by Corollary 4.3.3(b) a disjoint union of H;3
and any (3, k+1,3k,5k)-graph is a member of ¥. Finally observe that when
Theorem 5.1.1 is proved we will be able to say that \¥ is the class of all minimum
(3,k+1,n,6n—13k)-graphs.

The sequence of propositions and lemmas in Section 5§ will impose various con-
ditions which must be satisfied by graphs in ¥ or A. At the end we will be able
to conclude that A = @ and k¢ = oo, consequently proving Theorem 5.1.1.

Proposition 5.1.3.
(@) If G is a minimum (3,k+ 1,7n)-graphand G € A, then k > 8 and
n>3k+2,
(b) If G € A, then G is connected.
(©) H13,G4,Gs,Ge €Y.

Proof: Check that the values and the bounds of e(3, k+1, n) calculated in [3], [4],
[7], [8] satisfy (4) for k£ < 7. From Corollary 4.3.3(b) follows thatn > 3k + 2,
thus (a) holds. If G violates (4) and G = S + P, where S and P are nonempty
graphs, then it is easy to see that S or P has to violate (4) for some k < kg, so
(b) follows. (c) is obvious from (a) and the fact that the specified graphs meet the
bound (4) exactly. [ |

76



Proposition 5.1.4. If G € ¥ U A is a minimum (3, k+1, n)-graph, then:
(a) n> 3k,
(b) if H = G® for some v € V(QG), then e(H) > 6n(H)—13I(H),
furthermore the equality holds if and only if H € ¥,
(¢c) if Ge Y, thenforall v € V(G),Z(v) <6deg(v) —17.

Proof: (a) is obvious since 6n— 13k < Sn—10k forn < 3k. To prove the
inequality in (b) note that the parameters of H are smaller than those of G and
use the definition of V. Also by the definition of ¥, for G* = H and @ €EA,
H € ¥ ifand only if e(H) = 6n(H) — 131( H), hence (b) holds. Using (b)
observe that e(G¥) > 6n—13k—6 deg(v) + 7. Counting the edges of G we have
e(G") + Z(v) = 6n— 13k and consequently (c) holds. |

Proposition 5.1.4 will be used many times in the remaining portion of this sec-
tion, sometimes even without specific reference to it.

Lemma5.1.5. If Ge ¥, then §(G) > 3.

Proof: We use induction on k = I(Q). By examination of all the values of
e(3,k+1,n) fork < 6 [7), using Theorem 4.3.1 and Corollary 4.3.3 observe
that only the graphs listed in Proposition 5.1.3(c) are members of ¥ withk < 6.
Since 6(G;) = 3 and §( Hy3) = 4 lemma holds for & < 6. Let G be a minimum
(3,k+1,7n)-graph in ¥ and let v be a d-vertex in G for some k > 7. Since
Z(v) 2 d, by Proposition 5.1.4(c) we obtain d 2> 2 and §(G) > 2. Assume that
d = 2. By applying once more Proposition 5.1 4(c) and using Z(v) > d6(G) we
have Z(v) =2+ 2 or Z(v) = 2+ 3. If Z(v) = 2+ 2, then by Proposition 2.3
G = S+ P where S is a pentagon and P is a minimum (3,k-1,n-5,6n-13 k-5)-

graph. But k < ko, so by (4) we must have 6(n—5) —13(k—2) < 6n—13k-5,

which is a contradiction. If Z (v) = 2+ 3, then there is a 2-vertex w in G such
that {v, w} € E(G), furthermore by Proposition 5.1.4(b) G® € ¥. By the same
argument as before Z(w) = 2+ 3, hence the other neighbor of w must be some
3-vertex ¢ in G. Note that ¢ would be an i-vertex in G for some i < 2 and this
contradicts the inductive assumption that §(G) > 3. |

Lemma 5.1.6. If G € A, then G is a connected 4 -regular graph.

Proof: LetGbea (3,k+ 1,n,e)-graph, k = ko, e < 6n—13k and let v be
an arbitrary d-vertex in G. We have Z(v) > d and similarly as in the proof of
Proposition 5.1.4(c) we obtain

Z(v) <6d4-8, )]
whichyields d > 2. If d = 2, then Z(v) = 2+ 2, and similarly as in the proof of

Lemma5.1.5,G = F, + P which leads 1o a contradiction with (4) applied to graph
P. Thus §(G) > 3. Recall that all the minimum graphs with average degree not
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exceeding 10/3 were characterized at the end of Section 4 and obviously G cannot
be one of them. This implies that G must have a vertex of degree atleast4. Assume
that§(G) = 3. Then (5) implies that Z(z) = 3+3+3 orZ(z) = 3+ 3+4 forany
3-vertex z in G. Note that by Proposition 5.1.3(b) G is connected, in particular
G cannot have a cubic component. Consequently G must have a 3-vertex v with
Z(v) = 3+ 3 + 4, furthermore v is full in G, so G* € ¥. Let w be one of the
two 3-vertices in G connected to v. Since Z(w) < 10 there must exist another
3-vertex t in G connected to w. By observing that ¢ would be an i-vertex in GV
for some i < 2 we have a contradiction with Lemma 5.1.5 applied to G*. Thus
8(G) > 4. Choose a vertex v such that d = deg(v) = 8§(G). Then Z(v) > d?
and (5) imply that 6(G) = 4 and Z(v) = 4 + 4 + 4 + 4. Finally using again
Proposition 5.1.3(b) we can conclude that G must be a connected regular graph of
degree 4. |

Proposition 5.1.7. If G € A, then all the vertices in G are full, G* € ¥ for any
vertex v € V(@), and e(G) = 6 (G) — 13 ko — 1. Furthermore ko > 11 and
G) > 36.

Proof: Let G beaminimum (3, k+1,n,e)-graphin A, k = ko. By Lemma 5.1.6
G is 4-regular, thus for any vertex v, Z(v) = 16. ThenG" isa (3, k,n—5, e~16)-
graph and, since k—1 < ko, by (4) we oblain e > 6n—13k — 1. On the other
hand since G € A we have e < 6n—13k, so consequently e = 6n—13k—1,
G € W and thus v is full in G. Since by Lemma 5.1.6 G is 4-regular we have
6n—13k—1 = 2nand the smallest integer solution to this equation with k£ > 8

(Proposition 5.1.3(a)) is £ = 11 and n= 36. B

Proposition 5.1.8. If G € A, then G has no 4-cycle.

Proof: Assume that abcd is a 4-cycle in G € A and {a,c} ¢ E(G). By Propo-
sition 5.1.7 G® € ¥ and it is easy to see that c is an 1-vertex in G° for some 1 < 2
since by Lemma 5.1.6 G is 4-regular. This contradicts Lemma 5.1.5 applied to the
graph G°. ]

5.2. Pentagons

In a few of the next lemmas we will prefer more than one vertex at a time, so we
need a generalization of the technique used so far. Let S be an independent set
in a graph G. If S has only one vertex v then define G5 as G, if § = RU {v}
then G¥ is defined inductively by GS = (G¥) B. The Z-sum of the set § in G is
the number of edges in G adjacent to a neighbor of some vertex in S. Note that
for triangle free graphs this is a generalization of the Z-sum defined for vertices.
By the neighborhood of the set S in G we will mean the set of vertices Ng(S) =
U{Ng(v) : v € S}. The support of the set S is defined as the graph induced in
G by vertices in N(S) U S and this induced graph will be denoted by sup(S).
In all the definitions from this paragraph the subscript G will be omitted if nc
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confusion arises. The following proposition gives some basic properties of the
concepts introduced above. It’s proof is omitted, but can be obtained directly
from definitions.

Proposition 5.2.1. If Gisa (3,k+1,n,¢) -graph and S is a t-independent set
in G, then:

(a) G5 isa (3,k—t+1,n—n(sup(8S)),e— Z(S))graph;
() Z(S) = e—e(G%) = > zen(syus 9ega(z) —e(sup(S)).

We can now continue to investigate the class of smallest counterexamples to
Theorem 5.1.1 using the tools just introduced.

Lemma 5.2.2. If G € A, then in G there are

(a) atleast 1 pentagon passing through each path of length 2,
(b) at least 3 pentagons passing through each edge and
(c) at least 6 pentagons passing through each vertex.

Proof: Let G be a (3,k+1,n,e)-graph in A. By Proposition 5.1.7 we have
e = 6n—13k—1 and by Lemma 5.1.6 G is a 4-regular graph. Let v and u
be any two vertices with a common neighbor, say ¢, and let R denote the graph
supg({v,u}). Note that by Proposition 5.1.8 N(v) NN (u) = {t}, which implies
thatn(R) = 9. Let N(v) = {t,v1,v2,13}and N(u) = {t,u1,u2,u3}. Since G
is a smallest counterexample to (4), we can apply (4) and Proposition 5.2.1(a) to
the graph G4}, and this, using also Proposition 5.2.1(b), yields

e—Z({v,u}) = (6n—13k—1) — (9 -4 —¢(R)) 2 6(n—9) — 13(k-2). (6)

Whence e(R) > 9. The graph R has 8 edges adjacent to v or u, thus since there
are no triangles, R must have at least one edge in the set Ep({v1,v2,v3},{u;, 4y,
u3}). Any such edge gives a pentagon viuu,v; and furthermore this reasoning is
valid for any path of length 2 vtu in G, so (a) holds. (b) and (c) are easy conse-
quences of (a) and the fact that G is 4-regular, |

The main goal of this section is to establish a result saying that in Lemma 5.2.2
“at least” can be substituted by “exactly”. To achieve this we will investigate
properties of graphs H = G* when G € A. In Lemmas 5.2.[3-9) and 5.3.1 H
will always denote such a graph and J will denote the subgraph of H induced
by it’s 3-vertices. By Lemma 5.1.6 and Proposition 5.1.8 H has 12 3-vertices
and (n( H) — 12) 4-vertices. By Proposition 5.1.7 H € ¥, so it is a minimum
(3,k+1,n,e)-graph, where e = 6n— 13 k. The symbols for parameters k, n and
e of H will be also fixed in the same scope as H and J. Note that J is a graph on-
12 vertices and the modification of Lemma 5.2.2 mentioned above is equivalent
to Lemma 5.2.2 together with the statement that J is formed by 6 isolated cdges.
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Lemma 5.2.3.

(@) J has no cycles of length 1 < 5.

(b) J has no isolated points.

(c) Any 1-vertex in J is an endpoint of an isolated edge in J .

(d) Any component S of J is an isolated edge or S has only 2- and/or 3-
vertices.

Proof: J is a subgraph of H, which is a triangle-free subgraph of a smallest coun-
terexample G € A. Let v be a vertex of G such that H = G¥. The graph J has
no i-cycles for i < 4 by Proposition 5.1.8. Note that V' (J) is the set of endpoints
in H of edges in Eg(N(v),V(H)). Since [Ng(v)| = 4 then if J has a 5cycle
then some two of its points, say s and ¢, are connected to the same vertex z, for
some z € Ng(v). However this would imply a triangle or a 4-cycle in G pass-
ing through szt since any two points on a 5-cycle are in distance at most 2. This
contradicts Proposition 5.1.8 and hence (a) follows. If deg;(s) = O for some
s € V(J) then {z,s} € E(G) for some z € N(v) and it is easy to see that in
this situation (G cannot have any pentagon passing through vxs, which contradicts
Lemma 5.2.2(a). Thus (b) holds.

Letsbea l-vertexin J, hence Zy(s) = 3+4+4 = 11. By Proposition 5.1.4(c)
Zy(s) < 11,thus sis fullin H and H® € ¥. Let ¢ be the only 3-vertex in H
such that {s,t} € E(H) and note thatt € V(J). Now if ¢ is not a 1-vertex in
J then there exists some other vertex y in J such that {t,y} € E(H) and y is an
i-vertex in H* for some ¢ < 2. This contradicts Lemma 5.1.5 applied to H* and
proves (c). Finally, (d) is obvious from (b) and (c) and the definition of J. |

Lemma 5.2.4. J has no 6-cycles.

Proof: Assume that J has a 6-cycle C = abcdef and let p, ¢ and r be the other
neighbors in H of e, c and e, respectively. Note that p, g and r are three different
vertices not lying on C since the contrary would imply a 4-cycle in H (see Fig-
ure V). Let f(z) = degy(z) — 3,50 f(z) isequaltoOor 1 forz € V(H).
Consider a 3-independent set S = {a, c, e} and its support R = sup 4(S) in H. If
weset F' = f(p)+ f(g) + f(r) then F is the number of 4-vertices in H belonging
toV(R).s00 < F < 3. Now n(R) = 9 and similarly as in (6) in the proof of
Lemma 5.2.2 we obtain

e—2Z(S) = (6n—13k) — (9-3+F—e(R)) > 6(n—9) — 13(k-3).
Whence e(R) > 12+ F. The graph R has 9 edges adjacent to some vertex in S

Thus at least 3 + F edges must have both endpoints in N(S) = {b,d, f,p,q,7}
so since we have to avoid triangles they are in the set

P={{p,q}.{p,7}.{a,7}. {p,d}.{q, £}, {r, b}}.
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If F = 3, then P C E(H) since |P| = 6, but P has a triangle pqr, so F < 2.
If F = 2, then we can assume that f(p) = 0, i.e. p € V(J), and consequently
we cannot use the edge {p, d} since this would form a 5cycle in J, contrary to
Lemma 5.2.3(a). Thus again we are forced to make triangle pgr, so F < 1. If
F =1, then assume that f(g) = f(v) =0,s0q,7r € V(J).

P

Figure V. 6-cycle in Lemma 5.2.4.

Similarly, by avoiding 5-cycles in J we can see that only 3 edges with an end-
point p from the set P can be used, but we need 4 of them. Hence the last possi-
bility to consider is F = 0 and p, ¢, r € V(J). However in this case the addition
of any edge from P forms a 5-cycle in J, thus we have a contradiction completing
the proof of the lemma. |

Lemma 5.2.5. Let z and y be 2-vertices in J with a common neighbor t in J .
Furthermore let Ny(z) = {t,%1,z2} and Ny(y) = {t,y1,12}, where z,,y, €
V(J). Then {z1,y2}, {z2,1} € E(H).

Proof: Note that z; and y, are 4-vertices in H since z and y are 2-vertices in J.
Furthermore by Lemmas 5.2.3(a,c) and 5.2.4 there are two other vertices v,u €
V(J) such that {z,,v},{y1,u} € E(J) (see Figure VI).

Figure VI, H in Lemma 5.2.5.

Let § = {z,y} and R = sup,(8S) = {z,y,t,71,22,51,12}. 50 (R) = 7.
Observe that by Lemma 5.2.3(d) the vertices v and u in the graph HS have degree
less than 3, hence by Lemma 5.1.5 HS is not a minimum graph in ¥, and e( #5)
is at least 1 larger than the bound given by (4). Considering the latter, once more
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by the same argument as in (6) we obtain
e—~Z(8)=(6n—13k) —(5-3+2-4—e(R)) > 6(n—-7) — 13(k-=2) + 1.

Whence e(R) > 8. The graph R has 6 edges adjacent to z or y, hence at least two
additional edges must be in the set Eg({z1,z2},{y1,92}). By Lemma 5.2.3(a)
we cannot take {z, y, }, 50 it is easy to see that the only possibility is to add edges
{z1,%2} and {z3, y1 }, since by Lemma 5.2.5 H has no 4-cycle. ]

Lemma 5.2.6. If deg;(z) = 3, then Z;(z) =2+ 2+ 3.

Proof: If deg;(z) = 3 then by Lemma 5.2.3(d) we have 6 < Z;(x) <9,
Define s;(z) to be the number of vertices in J in distance 7 from z. Assume firs
that Z;(z) > 8, s0 x has at least two 3-vertices as neighbors in J. Using the facts
that a component of J containing = has only 2- and 3-vertices (Lemma 5.2.3(d)),
and J has no i-cycles fori < 6 (Lemmas 5.2.3(a) and 5.2.4), we can easily derive
that so(z) = 1, 8;(z) = 3, 82(z) > 5 and s3(x) > 5. Hence we obtain a
contradiction 14 < Z?=o 8;(z) < |V(J)| = 12. Thus to complete the proof
it is sufficient to show that Z;(z) # 6. Let N;(z) = {a,b, c} and assume thai
a,b and c are 2-vertices in J. Then there are three other vertices p, g and r in J
connected to e, b and c, respectively (see Figure VII),

Figure VII. H in Lemma 5.2.6.

Note that the three unlabeled vertices in Figure VII are 4-vertices in H. If wc
apply three times Lemma 5.2.5 to pairs of vertices from {a, b, ¢} with commor
neighbor z, then the six resulting edges are those in Figure VII which are nonad-
jacent to any of a,b or c. This contradicts Lemma 5.2.3(c), since P, q and r are
1-vertices in J, but their neighbors in J are 2-vertices. 1

We are ready to put together properties of graph J. What are possible compo-
nents S of J? If S is not an isolated edge, then by Lemma 5.2.3(d) 6(S) > 2
so S must have cycles and by Lemmas 5.2.3(a) and 5.2.4 S has at least 7 ver-
tices. Hence if S has only 2-vertices then S is a cycle of length 8, 10 or 12, since
V(J) = 12. If S has some 3-vertex, then by Lemma 5.2.6 it has at least twc
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of them and, in general, 3-vertices of J are grouped in disjoint pairs of adjacent
vertices. Using the fact that S has no i-cycles for 1 < 6 one can easily derive that
there are exactly two possible graphs S and S, , both of them on 12 vertices, say
Z,,, with edges {i,4+1} for i € Z;, and a diagonal edge {0,6 }, and S, has one
additional edge {3, 9 }. We summarize this as the next proposition.

Proposition 5.2.7. Any component of graph J is one of the following: an iso-
lated edge, 8-cycle, 10cycle, 12-cycle, S, or S, .

The next two lemmas will eliminate all the above possibilities with the excep-
tion of an isolated edge as a component of the graph J.

Lemma 5.2.8. A component S of graph J is not an i-cycle for i = 8,10,12.

Proof: Assume that § = (Z;,{{j,j+1}:j € Z;}) fori = 8,10 or 12. Apply
Lemma 5.2.5 1 times for vertices j and ; + 2 with a common neighbor ; + 1,
forj € Z;. If i = 8, then there exists a vertex z ¢ Zg in H such that 012z
is a 4-cycle in H contradicting Proposition 5.1.8. If i = 10, then there exists
avertex z ¢ Zjo in H such that 01z is a triangle in H. If i = 12, then there
exist three 4-vertices zo,z; and z, in H such that z; is connected to vertices
3p+jfor0 <j<2and0 < p < 3. Note that in this case the component of H
containing J has vertices Z;; U{zo, 1, z2 }. Recall that H = G¥ for some G € A
and G is connected by Proposition 5.1.3(a), thus here H has to be connected, and
consequently |V(G)| = 5+ |V (H)| = 20, which contradicts Proposition 5.1.7. §

Lemma 5.2.9. J is not isomorphic to S, norto S,.

Proof: AssumethatJ = S; orJ = §,,where §; = (Z;3, {{i,i+1}:i € Zj }u
{{0,6}}) and S, is the same as S but with the edge {3, 9 } added. Now similarly
as in the last lemma by applying Lemma 5.2.5 whenever possible, there exist two
4-vertices z and y in H such that z is connected to {2, 5,8, 11} and y is connected
10{1,4,7,10}. Inthecase J = S, note that as in the Lemma 5.2.8 H has vertices
Zy; U{z,y},s50|V(G)| = 19, which is impossible by Proposition 5.1.7. Hence
J = 81 and the situation is as drawn in Figure VIII,

Figure VIII. H in Lemma 5.2.9.
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Consider a 6-independent set P = {1,3,5,7,9,11}. Let R = supy(P) and
note that [V(R)| = 15 or 16 depending whether 3 and 9 have a common vertex
in H, i.e. whether s and t is the same vertex. Considering the latter and reasoning

as in (6) we obtain
(6n—13k) —(12-3+3-4—~e(R)) > e—Z(P) > 6(n—16) — 13(k—6).

Whence e(R) > 30. Note that so far R has 23 edges in Figure VIII and that
deg (1) = 3 fori € Z;3. We need at least 7 additional edges, while only one can
be added between s and ¢, furthermore only if s # t. ]

Corollary 5.2.10. If G € A, then in G there are

(@) exactly 1 pentagon passing through each path of length 2,
(b) exactly 3 pentagons passing through each edge and
(c) exactly 6 pentagons passing through each vertex,

Proof: By Proposition 5.2.7 and Lemmas 5.2.8 and 5.2.9 the graph J on 12 points
is formed by 6 isolated edges, each of them yielding a pentagon passing through
a vertex in G defining H and J. Thus Corollary 5.2.10 is a consequence of
Lemma 5.2.2. ]

Corollary 5.2.11. If G € A, thenin G

(a) two pentagons can share zero or one edge,
(b) apentagon and a hexagon can share at most two edges.

Proof: (a) is implied by Corollary 5.2.10(a) and the fact that all the considerec
graphs have no triangles. A pentagon and a hexagon sharing more than 2 edges
yield either a triangle or two pentagons sharing two edges, hence (b) follows. |

5.3. Hexagons and the Proof
Corollaries 5.2,10 and 5.2.11 give already quite strong conditions on pentagons

in any possible counterexample to Theorem 5.1.1. However to conclude that nc
such graph can exist, we still need some more information about hexagons.

Lemma 5.3.1. If G € A, then two hexagons in G can share no mare than twc
edges.

Proof: If two hexagons in G € A share at least 4 edges or 3 nonconsecutive
edges, then it is easy to see that G has a triangle or 4-cycle, which contradicts
Proposition 5.1.8. Thus assume that two hexagons in G share 3 consecutive edges
i.e. there are two vertices x and y such that there are at least 3 disjoint paths ol
length 3 from z to y. Recall that G is 4-regular by Lemma 5.1.6 and let N(z) =
{zihcica, N(¥) = {yihicics- Note thaty ¢ S = U N(x;), but y is connectec
to at least 3 vertices in §, s0 SN N(y) > 3. Since we have to avoid 4-cycle:



Y 1
e €s

A %
e E
h| e X, X Xy B
s D

U
Y2

Figure IX. Lemma 5.3.1,

no two of them can belong to the same N (z;). Without loss of generality assume
that y; € N(z;) for 1 < 1 £ 3 and consider 6 pentagons passing through z
(Corollary 5.2.10(c), see Figure IX).

Lete,..., e be the edges of J in H = G=. Note that if ep = {y;,v} and
v € N(z;),then N(y)NN(z;) = @, since otherwise ify; € N(z,),then we have
atriangle yyiy;j ify; = v, or we have two pentagons passing through yivz;, namely
yyivz;y; and z;y,vz;z, which contradicts Corollary 5.2.10(a). Hence, up to sym-
metry, y,, y2 and y; are located as in Figure IX, furthermore Y4 is some other ver-
tex not in S, Now a pentagon guaranteed by Corollary 5.2.10(a) passing through
yy1z, cannot go through z by Corollary 5.2.11(a), so we can assume that y, is
connected to A. The pentagon P passing through yy, B by Corollary 5.2.11(a)
cannot go through y4, so it goes through y; or ys, i.e. there exists avertex C (not
shown in Figure IX) such that P = y1BCy, or P = yy, BCys. But then the
pentagon zzx; y; Dz, shares two edges with the pentagon BCy; Dz4 or the pen-
lagon zx3y3 Ex4 shares two edges with the pentagon BCy; Exg, respectively.
This is again a contradiction with Corollary 5.2.11(a). |

Lemma 53.2. If G € A » then in G there are at least six hexagons passing
through each edge.

Proof: Fix an edge f = {v,u}inG e A. Let Py, P, and P, be the three pen-
tagons passing through f according to Corollary 5.2.10(b). Consider pentagons
Py, P, and a 4-independent set § = {71,22,23,24} in G as in Figure X,

Observe that since G has no 4-cycles then by Corollary 5.2.10(a) vertices {1,
2,3,4,5,6, 7, 8} are all different, hence R = Supo(S) has 16 vertices. By
Corollary 5.2.10(a) there are Iwo pentagons passing through z, vz, and z, uzy,
thus without loss of generality {2,3} and {6, 7} are the edges in G. We estimate
the number of edges in R by Propositions 5.1.7 and 5.2.1:

e(G)—Z(S) = (6n—13k— 1) —(4-16 —e(R)) 2 6(n—16) — 13(k—4),

whence e(R) > 21. There are 19 edges already drawn in E(R) in Figure X,
hence we need at least two additional edges. Using repeatedly Corollary 5.2.11(a)
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Figure X. R in Lemma 5.3.2.

we conclude that all the additional edges must be in the set {{1,7}, {1,8}
{2,7}, {2,8}, {3,5}. {3,6}, {4,5}, {4,6}}. and furthermore each of then
closes a different hexagon passing through f.

The same reasoning gives us two hexagons passing through the edge f for eacl
pair of pentagons out of P, P, and P;. Finally, observe that all of them are dif
ferent by Lemma 5.3.1, so we have at least 6 hexagons passing through f. |

Corollary 5.3.3. Let G € A, f be a fixed edge in G and consider nine paths ¢
length 3 in G with a center edge f. Then:

(a) through three of them passes a unique pentagon,
(b) through other six of them passes a unique hexagon.

Proof: Obvious from Corollary 5.2.10, Lemma 5.3.1 and Lemma 5.3.2.

This completes rather tedious derivation of properties of a possible smalle
counterexample to (4). Using them we are finally ready to show that A = 9, thy

proving Theorem 5.1.1.

Proof of Theorem 5.1.1: Assume thatG € A. LetC = zo, ..., zs be ar
hexagon in G guaranteed by Corollary 5.3.3. Recall that G is 4-regular and 1
N(z;) = {Zi-1,Ti+1,0i,b;} for i € Zg. First observe that any common neighb
of two points on C must lie on C, since otherwise we would produce a triang]
4-cycle or two pentagons sharing 2 edges, none of which can happen. By Corc
lary 5.2.10(a) there is a unique pentagon through z;z;.1 ;42 fori € Ze. Since1
pair of them can share more than one edge, without loss of generality, the situatic
is as in Figure XI.

The above yields two pentagons through each edge {z;, T;+1}. The third pe
tagon through {z;, z;+1 } must go through a; and b;,; by Corollary 5.2.11(a). L
ing properties of pentagons in G easy check shows that the fifth missing point, s
¢;, has to be some new vertex, furthermore all ¢;’s are different (see Figure XII

By Corollary 5.3.3 there is a unique hexagon H passing through a 7o z1z2
cannot be a pentagon since zozz2a2bo is a pentagon). Note also that H pass
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Figure XII. Theorem 5.1.1, final stage.

through b,. As before, checking all possibilities we can deduce that the sixth
point of H is a new vertex, say A,s0 H = agzoziz2b2 A. Finally we will derive
a contradiction by trying to find a unique pentagon P passing through ag Ab; .
Observe that one missing point from P has to be in {zo,co0,bs } and the other one
isin {22, c1, a4 }. One can easily see that P is not passing through z¢ nor z,, since
all such pentagons have already been constructed. For each of the remaining four
possibilities one can find without effort some configuration violating Lemma 5.1.6
or one of the Corollaries 5.2.10, 5.2.11 and 5.3.3. For example, if P = a9 Abycico
then the pentagons c;a; x; by ¢y and a0 To T1 by co share two edges. Thus A = 0,
which completes the proof. |

The last corollary in this section extends Corollary 4.3.3(b).

Corollary 534. e(3,k+1,n) = 6n—13k forall k>0 and3k<n<13k/4 —
sign (k mod 4).

Proof: By Theorem 5.1.1 it is sufficient to prove the existence of graphs meeting
the bound exactly in the ranges specified above. Consider the graph G formed

87



by a disjoint union of n— 3 k copies of the graph Hj3 (defined in Section 4.3)
and the graph Gi3s—4n, Where Gp is the empty graph. Observe that I(G) =
4(n—3k) + (13k—4n) = k, n(G) = 13(n—3k) + 3(13k —4n) =7 and

e(G) = 26(n—3k)+5(13k—4n) = 6n—13 k; hence G meets the bound exactly.
To show that this construction covers therange 3k < n < 13k/4 —sign (k mod 4)
first assume that k mod 4 = 0. Then n < 13k/4 implies that 13k—4n = 0 or
13k—4n > 4, hence Giak-4, is defined and the above construction yields a
desired graph. If k mod 4 # 0, thenn < 13k/4 — 1 implies that 13k—4n > 5
and consequently G is well defined. |

6. Independence Ratio

Proposition 2.2 and Theorem 5.1.1 provide sharp lower bound for the functios
e(3,k+1,7) in the form of piecewise linear function. Furthermore, the classe:
of minimum graphs corresponding to these linear fragments seem to share som
interesting properties. This observation prompts the following definition.

Definition 6.1. If for some nonnegative reals = and y e(3,k+1,7n) > zn— yk
forall n, k > 0, thendefine Q (z, y) to be the class of minimum (3, k+1,n, zn—

yk) -graphs.

Proposition 6.2. The class Q(z,y) is closed under disjoint union of graphs an
taking component of a graph.

Proof: Obvious by simple arithmetic as in the proof of Lemma 4.1.1.

After Lemma 4.1.1 we have already noted that a disjoint union of minimu
graphs does not have to be a minimum graph. Here observe that even two copit
of the same minimum graph can form a non-minimum graph; for example if G
a minimum (3,7,19)-graph then since e(3,7,19) = 37 [4] we see thatG + G is
(3,13,38,74)-graph, but by Corollary 5.3.4 e(3,13,38) =72 < 74.

Using Proposition 6.2 we can see that each class 2 (z,y) can be characterizc
by it’s connected members. In the next proposition, if C is a set of graphs the¢
the symbol {(C) denotes the class of graphs whose connected components are
C,andif E = (O) then we say that Z is generated by C.

Proposition 6.3.
(@) (0,0) = (isolated point),
(b) Q(1,1) = {isolated point, isolated edge),
(c) Q(3,5) = (isolated edge, pentagon),
@ @ =Q(5, 10) = <{F;'}i22 ) {G]'}j24>’
(€ ¥ =Q(6,13) D ({G)}j>4, Hia).

Proof: (a) through (d) follow directly from Proposition 2.2 and Corollary 4.3
To show (¢) note that G; € ¥ forallj > 4, Hi3 € ¥ and use Proposition 6.2.
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We are now able 10 relate the previous results to the independence ratio. Let
©4 be the class of triangle-free graphs with average degree d. The difficult task of
finding the minimal independence ratio 1(©y) is now possible for alld< 4.

Lemma 6.4. Ir G is a graph with average degree d and G ¢ Q(z,y) for some
Y70 then i(®y) = (z_a/2)}y.

Proof: Let@G ¢ Q(z,y) bea graph with average degree d. By the definition of
Q(z,y) we have e(3,k+1,n) 2 zn — yk for all nk >0,so0 for any (3, k+
1,m,nd/2)-graph H with average degree d and such that I(H) = k, we have
nd/2 > zn— yk, which implies that s( H) =k/n>( T—d/2) /y. Note also that
graph G meets the last bound exactly, hence the lemma follows, [ |

Theorem 6.5, For any rational ¢ <d< 4

1-d/2 if0<d<,
3/5-d/10  if1<d<a,

1/2-d/20  if2<d<10/3,
6/13-d/26 if10/3<d<4.

1(0q) = )

Proof: Letd = p/q for some nonnegative integers p and q. For each d in the
Tanges specified in (7) we will define a graph P(d) with average degree d, such
that P(d) € Q( z,y), where the parameters z and y are as in (b)~e) of Proposi-
tion 6.3, respectively. Then the application of Lemma 6.4 proves the correspond-

fo<d<i then P(d) = ( 2 g—2p)(isolated point) +p(isolated edge),
if1<d<2 then P(d) = (10g—5p) (isolated edge) +(2p—-2q) R A
if2<d< 10/3 then P(d) = (40g—-12p) F, + (5p-109)q, ,

if 10/3 < d<4 then P(ad) = (52¢-13p)Gy + (12p—40q) H;5.
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For each of the above cases one can easily check that the coefficients s and t
are nonnegative, hence the definitions are correct. Similarly, it is easy 10 confirm
that the average degree of P(d) is p/q. We illustrate this in thecase2 < d <
10/3. Note thatd = p/g > 2 implies 5p—10g > 0 andd < 10/3 implies
40g—12p > 0. Also o P(d)) = 5(40¢q—12p) + 12(5p—10g) = 80g and
e(P(d)) = 5(40¢g—12p) + 20(5p—10g) = 40p, hence the average degree
of P(d) is equal to 2e(P(d))/(P(d)) = p/qas claimed. Note that in each
case the graphs S and T" are connected generators of the corresponding classes
Q(, y), so by Proposition 6.3 P(d) € Q(z,y). ]

Theorem 6.5 gives, in particular, two values of interest: i(©3) = 7/20 anc
i(©4) = 4/13. The value 7/20 for graphs with average degree 3 was estab-
lished by Locke [6]. Using Theorem 5.1.1 one could even easily characterize al
triangle-free graphs with average degree 3 achieving minimal independence ratio
In particular, note that the graph P is the unique connected triangle-free grapl
with average degree 3 such that i(Fy) = 7 /20. Finally, observe that if ¥g de
notes the class of d-regular triangle-free graphs then we have i(¥q) = (04
ford = 0,1,2,4 since isolated point, isolated edge, pentagon and Hjs, r¢
spectively, are d-regular generators of some class Q(z,y). Ford = 3 we hav
7/20 = i(©3) < i(¥3) = 5/14, where the last equality is a result obtained b
Staton [11].

7. A Bound for Ramsey Numbers

We close this paper with two theorems: first of them establishing a general low
bound for the independence ratio i(©g) and the second one completing the pro
of (1). Letforreal 0 < z < 4 the function i*(z) be a continuous extension
i(©y) defined for rational d > 0.

Theorem 7.1. Let

i*(z) if0<z<4,
h(:l:)={6/13—-z/26 if 4 <IS3+\/2—,
G%ﬁr(zlog,z—-cz-l-l) if 3+ 2 < 1,

where ¢ = log,(3 + V2) — 3Z = 0.9409... . Then i(©q) 2 h(d) for
rational d 2> 0.

Proof: By the definition of i*(z) theorem holds for 0 < d < 4. By areasor
similar to that in the proof of Lemma 6.4 it also holds for4 < d <3+ V2.

the values of d > 3++/2 we will adapt the proof of Theorem 13 from Bolloba:
pages 294-295]. He defines there (after Shearer [9]) a real function foy £(0) :
£(1) = 1/2 and f(x) = (zlog, z—z+1) /(z—1)? forother z > 0. Inournota
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Theorem 13 there is even stronger than f(d) < i(©,) for all 4 2 0. It’s proof
relies on the following properties of function f:

(P1) £(0) =1,

(P2) fis strictly decreasing, continuous and convex for z > 0,

(P3) f solves the differential equation ( 2 —z)g'(x) =1 — (z+ Dg(z).
The general solution 9 to P3 passing through point (zo, yo) obtained by a standard
method for solving linear differential equations is

9(z) = '(';_:ET)z [E(l —70)% ~ log, :z:_:_ o zm:'o]
To enforce condition P2 for function g we search for a solution which is tangent
to the line 6 /13 — z/26 by solving g'(zg) = —1/26 andyo = 6/13 — Zo/26,
which gives (zo,y0) = (3 + V2, (9 —v/2)/26). One can easily check that, for
these values of zo and Yo, h is such a solution for > x0 = 3+ /2, where
¢ = log, zo+1/zp — yo(1—z0)2 /%o. Therefore h satisfies properties P1, P2 and
P3 forz > z¢, and the method of [2] proves our theorem. We note that the above

construction gives the best result by this method, ]
Theorem 7.2. Forall k 23 '
(k—1)2
R(3,k+1) < +1, fork >3,

‘ ~ log k+1/k —¢
where c is as in Theorem 7.1,

Proof: First check that the theorem is true for k = 3 and k = 4, Then suppose
that, contrary to the assertion of the theorem, there exists a(3,k+1,n)-graph G,
K(G) =k, for some k > 5 > 3+ v/7 such that

n=|(k—=1)%/(log, k+1/k —c)]+1.

Observe that the maximal degree in G is at most k, so the average degree d of G
satisfies d < k. Now, since h(z) is decreasing, by Theorem 7.1

1
1(G) = k/n2 (T:l—)-z—(klogek—ck+ 1)

contradicts the choice of n. [ |

Recently Shearer [10] obtained the following result: Define the function f by a
difference equation £(0) = 1, f(d+1) = [1+ (&—d) £(d)1/(d*+1) for nonneg-
ative integers d. Then for any triangle-free graph G we have | (G) >3, f(d),
where dy, ..., d, is the degree sequence of G. Shearer (private communica-
tion) also found asympiotics for the above difference equation f(d) ;s ( log, d—
c)/d+ O(log.d/d?), which in tum yields a bound R(3,k) < kz/(loge k—c) +
O(k/ log, k) for ¢ = 0.7665... .

Finally, let us mention that an extension of Proposition 6.3 can alsoextend Theo-
rem 6.5, decrease the constant cand consequently improve further the upper bound
for R(3, k).
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