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Constructing 6-(14,7,4) Designs

DONALD L. KREHER AND STANISIAW P. RADZISZOWSKI

ABSTRACT. A summary of the algebraic and computational techniques used
in the construction of two non-isomorphic simple 6-(14,7,4) designs and four
non-isomorphic simple 5-(13,6,4) designs is presented. With the exception
of the 6-(33,8,36) designs discovered by Magliveras and Leavitt, and the 6-
(20,9,112) designs discovered by Kramer, Leavitt and Magliveras, this is the
only other small parameter situation in which a simple 6-design is known to
exist.

1. Introduction

The results and ideas in this paper are not new but instead are spread
over three of our papers [KR1], [KR2], [KR4]. Thus the authors were at first
reluctant to enunciate them again. However, due to the encouragement of
colleagues and the apparent importance of the results, this paper was pre-
sented and received favorably at the 307th AMS meeting held in Lincoln,
Nebraska. This is the only paper in which the entire details of our method
appear.

2. Notation and background

The construction of the 6-(14,7,4) designs had three essential components.

I: Incidence Matrices
II: Basis Reduction
III: Extension

Each of these components posed difficult and interesting problems both com-
putational and mathematical. They will be discussed in the sections that
follow. First recall that a t-design, or t — (v, k, 1) design is a pair (X, #)
with a v-set X of points and a family & of k-subsets of X called blocks such
that any ¢ points are contained in exactly 4 blocks. A ¢ — (v, k, A) design
(X, @) is simple if no block in & is repeated. A group G < Sym(X) is
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an automorphism group of a ¢ — (v, k, 1) design (X, %) ifevery g € G
preserves & . For example a 2 — (7, 3, 1) design (X, %) is given by X
= {1,2,3,4,5,6,7} and & = {124,235,346,457,156,267,137}. The points on
the 6 lines and 1 circle in Figure 1 are the 7 blocks of this design. Thus easy
observation shows that it has G =< (1 4 5)(2 7 6), (2 6)(4 5) >~ S, as an
automorphism group.

FIGURE 1. The 2 - (7, 3, 1) design.

The set of all automorphisms of a t— (v, k, A) design (X, %) is said to
be the full automorphism group and is denoted by Aut(#). Indeed, as it is
well known, for the 2-(7,3,1) design given above Aut(%#) is isomorphic to
PSL ,(7) and thus it has in fact 168 automorphisms.

3. Incidence matrices

Incidence matrices have been investigated by a number of researchers but
probably their intimate connection to ¢ — (v, k, ) designs with a given
automorphism group was first given by Earl Kramer and Dale Mesner in
1976 [KM]. Their observation was:

A t— (v, k, ) design exists with G < Sym(X) as an automorphism group
if and only if there is an integer solution U to the matrix equation

(1) A U=24-Jy

where:
(a) The N, rows of A, are indexed by A,, A,,...,Ay the G-orbits of
t-subsets of X ; '
(b) The N, columnsof A, areindexedby T pe s eeny l"Nk the G-orbits
of k-subsets of X ;
(c) 4,[4,.T;]= KK eTl;:K2T,TeA, fixed}|;
() Jy =01, 1,1,..., 1.
We call the matrix A4,, defined above an incidence matr x, and when it is
important to keep track of the automorphism group we write A, (G|X) for
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that no confusion arises. An example appears in Figure 2. A solution

to equation (1) in this caseis U =[0,1,0,0,0,0,1,0,0, 1)7 and the
correspondingly chosen 3-subsets form a 2-(7,3,1).

{12 47 16 56 57 24} 155" 2l 1 1.1 0 O O 0 O

123 125 127
347 147 467
136 146 167

356 124 456 126 256 134 137 236
357 457 157 247 257 345 346 237
234 156 245 567 246 135 235 145 367 267

{133435}| 2 0 0 0 O 2 1 0 O O
(144515}l o 1 2 0 0 1 0 1 0 O
{17462} 0 0 2 0 2 0 1 0 0 O
{23373} 2 0o 0 0 0 0 1 0 2 0O

262763 o o o 1 2 o0 o0 0 1 1

7 1 7
FIGURE 2. A,,(G| X), G=<(145)(276), (26)(45)>

This observation led directly to the discovery of many previously unknown
designs and we mention a few.

1975:

1982:

1982:

1984:

1986:

1986:

Two 5-(17,8,80) designs. The first examples of 5-designs on an odd
number of points, Kramer [K1].

A large number of 5-(33,6,12), 5-(33,7,42) and 5-(33,7,126) designs.
The second, third and fourth sets of examples of 5-designs on an odd
number of points, Magliveras and Leavitt [ML)].

Thirteen 6-(33,8,36) designs. The first examples of 6-designs, Magliv-
eras and Leavitt [ML].

Two 6-(20,9,112) designs. The second set of examples of 6-designs,
Kramer, Leavitt and Magliveras [KLM].

Four 5-(13,6,4) designs. The fifth set of examples of 5-designs on an
odd number of points, Kreher and Radziszowski [KR2].

Two 6-(14,7,4) designs. The third set of examples of 6-designs, and
the smallest possible 6-designs that can exist. Kreher and Radzis-
zowski [KR2].

We also point out that an initial investigation of the algebraic properties

of the

A, matrices was done in [K2, K3] where some new combinatorial

identities were found.
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Now given this mathematical motivation our first computational problem
is:

How can the matrix A, be computed efficiently?

3.1. Computing 4, . If G < Sym(X), then for any integer t, 0<t<wv
the number of orbits of t-subsets can be computed by using the well known
Cauchy-Frobenius-Burnside Lemma

N, =) x(g)
g€eC
where x(g) is the number of t-subsets fixed by g. It is easy to determine
the value of x(g) from the cycle representation of g on the point set X .
If G< Sym(X) and 0 <t < k < v, where v = |X|, then given orbit
representatives {7; : 1 < i < N,} of t-subsets and orbit representatives
{K,:1<1i< N} of k-subsets it is easy to see that the 4, matrix of G
acting on X can be efficiently generated by making one pass over the group
elements. For example algorithm Mat computes 4,, in time O(|G|-N,-N,).

Algorithm Mat
Let A bean N, by N, array with each entry set to 0.
Let stab be a 1-dimensional array of N, entries all set to 0.
for each (g, j) where g € G and l<] <N, do
if K;=Kj then stablj] = stab[j]+1;
foreach z, 1<i<N, do
ifT CKg then A[z J1=Ali, j1+1;
for each (1 j) where 1<i< N, and 1<j< N, do
Ali, j1= Ali, j)/stab[j].
Thus the problem of constructing an A, matrix is reduced to being able to
compute a complete list of orbit representatives Reps(t)={T;:1<i< N }
of t-subsets and a complete list of orbit representatives Reps(k) = {K,:
i < N,} of k-subsets.
In our next algorithm “<” is a total linear ordering on the set of all
subsets of X . In particular if we take X = {0,1,2,..,v — 1}, then
code : P(X) — Z given by

code(S) = Z 2

i€S
gives such a linear ordering. That is

S < T if and only if code(S) < code(T).

This is particularly effective when |X| < “the machine word size” (e.g. 32)
since one can take advantage of bit operations for doing set operations. If
for some ¢ a complete list of orbit representatives Reps(t) of t-subsets is
known we define X Reps(t+1) tobe {SU{x}:S € Reps(t) and x € X -S}.
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It is easy to see for any complete list of orbit representatives, Reps(t+ 1),
of (t+ 1)-sets that for all S € Reps(t+ 1) there is a g € G such that S¢,
the image of S under g, is an element of XReps(¢+ 1). This observation
leads to algorithm Reps.

Let L be an empty list to which the following two operations apply: IN-
SERT S, which means insert S on list L and DELETE S, which means delete
S from list L.

Algorithm Reps
for each S € Reps(t) do
foreachx e X - S do
INSERT {S U {x}};
n—N,-(v-1);
repeat
for each S on L do
for each g € G do
K~ S%;
if K < S then
DELETE S
if K is on L then
n—n-1
else
INSERT K
S—K
until (n =N, ,);
Reps(t+1)={S: S is on list L}.

This algorithm is the (asymptotically) best algorithm we know of for com-
puting Reps(t + 1) from Reps(t). It is easy to modify Reps so that the
output, Reps(t + 1), has the property that whenever S € Reps(t + 1) and
g € G, then S < S%. This canonical form for Reps(t+ 1) is often useful in
other applications. Since Reps(0) = {J} it is easy to construct from algo-
rithm Reps an algorithm to compute a complete list of orbit representatives
of t-sets for all 0 < ¢ < k. An algorithm similar in spirit but different in
implementation is used by Magliveras [M]. A different algorithm has also
been constructed by Leo Chouinard [C]. Although his algorithm uses ideas
similar to ours he makes a clever use of data structures to compute the orbit
representatives and the resulting algorithm appears to run faster in practice.
Its asymptotic running time has not yet been determined. A probabilistic
algorithm has also been successfully used by Kramer, Leavitt and Magliveras
[KLM, ML).

Now that an eificient method has been developed to obtain the matrix 4,,
we ask the second and more difficult question.

How can equation (1) be effectively solved?
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4. Solving equation (1)

Logically our approach to solving the integer linear equation (1) does not
rely on the fact that the matrix A, is special, however the performance of
our algorithm on general matrices has not been investigated. The related
general decision problem is known to be NP-complete and thus we do not
present an efficient deterministic algorithm. Instead we use the powerful
tool of basis reduction [LLL] with some heuristics and do not guarantee that
a solution, if it exists, will always be found. On the other hand we know
of no situation for ¢ — (v, k, A) designs and automorphism group G with
N, <200 in which a solution is known to exist but our algorithm is unable
to find it.

Let X be a v-set, G < Sym(X) and consider the (m+n) by (n+1)
matrix B below:

I 0

where A4, isthe m by n Kramer-Mesner matrix described in (1) I, is the

n by n identity matrix, and J,=11,1,1, ...l]T. Let L be the n + 1
dimensional integer lattice spanned by the columns of B. That is

L={ReZ™":R=B.S, for some S € Z"*'}.

Let E, be the m-dimensional zero vector. Then the following proposition
is clear.

ProrosiTioN 1. 4,U =d - AJ,, for some integer d if and only if
[U,E, ) eL.

Thus to find a (0,1)-solution U to A, U =AJ,  weneed only look for a linear
combination U = [U, Em]T of the columns of B such that U is a (0,1)-
vector. If U # J_, then we will have found a nontrivial ¢ - (v, k,d-2)
design for some positive integer d. Note that since the complement of a
design is a design, then we may assume U |i2 <n/2. Thatis, U isa “short”
vector in L. Our algorithm will try to find for L a new basis all of whose
vectors are as short as we can make them. It has been our experience that
the vector U tends to appear as one of the vectors in such a new basis.

4.1. Basis reduction. Let n be a positive integer. A subset L of the r-
dimensional real vector space R, r > n is called a lattice if and only if
there is a basis B = {b,, by, ..., b,} of an n-dimensional subspace of R’
such that every member of L is an integer linear combination of the vectors
in B. Recall that given a basis B = {b,,b,,..., b,} of an n-dimensional
subspace of R’, an orthogonal basis B* = {b;,by,..., b} of it may be
obtained inductively via the Gram-Schmidt process of orthogonalization as
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follows:
i—1
(3) b =b=) u;b;, forl<i<n,
Jj=1
(4) W= (b, b))/(b;, b)), forl<j<i<n,

where (-, ) denotes the ordinary inner product on R". An ordered basis
B=[b,b,,...,b,] foralattice L will be said to be y-reduced (or reduced)
if the following two conditions hold:

(i) lu;l <1/2for1<j<i<n,
() 167 + s, 4,07 2 2y b)) for 1 < i< m,

where y, 3 < y < 1 is a constant and || - || denotes ordinary Euclidean

length. Lenstra et al. [LLL] describe an algorithm which, when presented
with y, § <y <1 and an ordered basis B = [b,, b, , ..., b,] foralattice L
as input, produces a reduced ordered basis B' = [b], bj, ..., b’] as output.

The L3 algorithm consists of applying a finite number of two kinds of linear
transformations. These are:

T1: Interchange vectors b, and b,_, if ||b] +u,_ b7 I*> > y 167_, 112
does not hold, for some 1 < i < n, and the global constant y €
(3> 1).

T2: Replace b, by b, - rb;, where r = round(y, ;) is the nearest integer
to u,;,and I””J’I >4,forsome 1<j<i<n.

The efficient implementation of the sequence of transformations T1 and
T2 relies mainly on the fact that old values of 4, ; and |6} ||2 can be easily
updated after each transformation without using the full process of orthogo-
nalization. The L3 algorithm performs the transformations T1 and T2 using
a strategy somewhat resembling the bubble-sort. However as H.W. Lenstra
[LLL] remarks, any sequence of these transformations will lead to the re-
duced basis.

The L} algorithm terminates when neither T1 nor T2 can be applied and
such a situation implies that conditions (i) and (ii) are satisfied. The resulting
reduced basis B’ is an integer approximation to the basis B* defined by the
Gram-Schmidt orthogonalization process and as a consequence contains a
“short” vector, as can be seen in the following proposition of Lenstra et al.
[LLL, Proposition 1.11]:

PrOPOSITION 2. Let B' = [b)], b,, ..., b\] be a reduced basis of a lattice
L. Then
1B 1P < 2" min{|b|)>: b€ L and b # 0.

They also give the following polynomial worst-case running time for its
performance [LLL, Proposition 1.26].
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ProposITION 3. Let B=1[b,, b,,...,b,] be an ordered basis for an inte-
ger lattice L and let Max be an integer such that ||b, I*<Max for 1<i<n.
Then the L} algorzthm produces a reduced basis B' = [bl ’ b2 - b'] Jor

L using at most O(n log, Max) arithmetic operations, and the mtegers on
which these operations are performed have length at most O(nlog -2 Max).

In summary, the effect of the L3 algorithm is such that when given a basis
B of an n-dimensional lattice L C .Z" it produces a reduced basis B’ of
L, and

(1) L? uses at most on* logMax) arithmetic operations,
(i) B' is almost orthogonal (integer approximation to Gram-Schmidt
orthogonal basis),
(ili) B’ contain a “short” vector.
Furthermore, we point out that although it is only proven [LLL) that B’
contains a vector not longer than 2"~ /2 s where s is the length of a

shortest nonzero vector in L, in practice the L’ algorithm finds much shorter
vectors [LO].

When the number of rows in the A, matrix is m = 1, then (1) reduces to
the knapsack or subset-sum problem. The application of the L> algorithm to
solve the subset sum problem was first studied in 1985 by J. C. Lagarias and
A. M. Odlyzko [LO]. Our improvements in this direction appear in [KR3].
When the number of rows in the A, matrix is greater than 1, then our

experience has been that L} by itself often doesn’t find ¢-designs. Thus
further reduction methods are necessary.

4.2. Weight reductlon If B is the (n+ 1)-dimensional reduced basis pro-

duced by the L algorithm applied to (2), then there often exist, as extensive
experiments showed, pairs of indices i and j, 1 <1, Jj<n+1,i+#j,and
€ € {+1, —1} such that

(5) if v = b, +eb;, then |lv|] < max{||p,]|, |15, ]}.

Apair (i,j), i#], sansﬁes the last condition for some € € {+1, -1} if
and only if min{]|b, || 16; || }<2-|(b;, b;)|. In such a case we take € to
have a different sign from (b, , j) and substitute v for the longer of b, and
b , obtaining a new basis with decreased total weight

n+l

w(B) = 2 b, .

To facilitate the process of ﬁndmg successive pairs of indices (i, j) sat-
isfying (5) and decreasmg w(B) the algorithm keeps an array containing
(b;, b;) and ||b,|| for 1 <i,j<n+1. Whenever a pair of indices (i, j)
is found satisfying (5) leading to substitution of some b, by v these arrays

S
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must be updated. It is not necessary however to recalculate ||v||2 and (v, b,)
for k # i from the definitions. Instead we keep track of the integers ||b,.||2

and inn,.j = (b, bj) ,for 1 < j<i<n+1. These are then sufficient since
we have the formulas:

2 2 2 i
loll” = 16,1 + 161> - 2jinn,,|, and
(v,bk)=innik+e~innjk, for1<k<n+1, k#iand k # j.

A simple algorithm for finding all such pairs can be designed and imple-
mented in time O(n2 ) for each reduction, producing as output a basis with
smaller weight. This algorithm, let us call it Weight-Reduction, is a useful
complement to the 1 algorithm. When used as follows, the algorithms
L? and Weight-Reduction jointly tend to produce much shorter vectors than
using L’ or Weight-Reduction alone:
B —L’(B);
repeat
Weight-Reduction
sort basis with respect to ||, ||2 3
B—L13B);
until (w(B) does not decrease) ;
Weight-Reduction.

The L3 algorithm can remove the vector bl' from the basis B only by
replacing it with a shorter vector, since for i = 2 if the transformation T1
can be applied then ||b,.||2 <|b,_, ||2 (note that this is not true when i > 2),
Hence sorting the basis with respect to ||b,.||2 guarantees that the shortest
vector in the basis B will not disappear in the next iteration, unless a new
shorter vector is found.

Following the above approach one can try in general to find a k-tuple of
distinct vectors b". N S P b,.k , for some k > 2, in the basis B, such that the
vector

k
U= fpbi,,’ for some choiceofep=:i:l, 1<p<k,
p=1
is shorter than b,.k , where b,.k is the longest vector in the k-tuple. In the
latter case the weight of basis B can be decreased by substituting v for b,.k
Note that ||v| < ||bik | if and only if

k
2 2 2
(6) lol™ =316, 1"+ D e €; (B, . b)) < b I
j=1 h#j
and a necessary condition for (6) is

k—1
Y05 1< Y@, 8)]-
=1 h#tj d
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Consequently, our approach is to search for such k-tuples of vectors by
considering the complete graph whose vertices are the basis vectors b, and
whose edges are labeled by edge weights (b, , b j)| . The endpoints of edges
with large weight are “less” orthogonal, and hence they are good candidates
for the desired k-tuple. We can try to construct it by finding subgraphs with
large edge weight.

Obviously, the complete analysis of all subgraphs would be too expensive.
However, we are satisfied with a heuristic search for just a few of relatively
small size. As before they are used to decrease the weight of basis B. This
technique leads to a generalization of the Weight-Reduction algorithm and
improves further the behavior of the L? algorithm. We have implemented
this strategy for k =3 and k = 4.

4.3. Size reduction. Recall that [U, Em]T € L if and only if there exist
integers a,a,,...,a,.  such that

Whence, it follows that:

(*) If there is exactly one j such that b,; # 0 forsome h,n<h<n+m,
then a ,=0.
In this case we let B’ be B with row 4 and column j removed and L'
be the lattice spanned by B’. Then the (n + m — 1)-dimensional vector
[U, Em__l]T € L' if and only if the (n + m)-dimensional vector [U, Em]T €
L.

To achieve situation (*) forrow h, n < h < n+m, we perform the following
two operations

(1) Multiply row 4 by ¢ = max ||b,.||2.
4
(2) Apply Weight-Reduction and/or L3,

This almost always produces such a situation. If this procedure is successfully
iterated foreach h, h=n+m,n+m - 1,..., n+1, then the resulting
basis B’ will consist of n —m + 1 , n-dimensional vectors. Furthermore

UelL'ifandonlyif 4,U=d-iJ,,

for some integer d (see Proposition 1). Thus the result of these iterations,
let us call them collectively Size-Reduction, is a basis of shc t vectors for the
integer solution space to the matrix equation A, U =d-AJ . Consequently,
to discovera t— (v, k, d-A) design we need only search t .e lattice spanned
by B’ for a (0,1)-vector. Finally, our complete algorithm s given in Figure
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Algorithm MSV (Matrix Short Vector)
input basis B of the form in (2);

B—L}B);
B « Size-Reduction, (B);
repeat
Weight-Reduction;
sort basis with respect to ||b,.E|2 g
B —L’(B);
until (weight(B) =Y llb,.ll2 does not decrease);
Weight-Reduction.

Check for solution after each Weight-Reduction and L>.
FIGURE 3. The MSYV algorithm.

5. Extension

If (X,%#)isat—(v, k,A) designand x € X then (A, %) where A =
X—{x} and &, ={K—{x}:x€K and K € B} isa (t=1)~(v-1,k-1,2)
design and is said to be the derived design with respect to x. Similarly, if there
isapoint co ¢ X anda (t+ 1)~ (v+1,k+1,4) design (Y, &) whose
derived design with respect to co € Y is (X, &), we say that (Y,Z2) isan
extension of (X, &) by oo.

Let G be an automorphism group of a 7 — (v, k, A) design (X, #).
Then there is a (0,1)-vector U such that Au(G | X)-U = AJ, . Further
suppose that oo ¢ X, set ¥ = X U {oo} and let H < Sym(Y) be defined
by he€ H if h(co) =00 and k| X € G. Then it is easy to see, rearranging
orbits if necessary, that

[ 4G X) 0
A ol Y) = [A,Hk,k(GIX) A,_,_l,k“(GlX)] ’

where 0 is the matrix of all zeros. Consequently, an (X, &#) has an extension
toa (t+1)—(v+1,k+1,A) design (Y, @) if and only if there is a (0,1)-
vector V' such that

U AJ
Ay k1 (H]Y) [V] = [,{JNN' ]

In particular V is a solution to

1

(7) Ay k(G 1X)-V =20y~ 4., (G| X)-U.

Such a solution can be found by using the basis reduction method described
in previous sections. However, if ¢ is odd and the parameters of the design
satisfy v = 2k + 1 and || = 1(}), then by Theorem A of Alltop in [A] a
solution is immediate. We would also like to point out that if k+7+2 = v -
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then by Lemma 10 of [K2] A, 41(G | X) has an inverse and thus a (0,1)-
solution to (7), if it exists, would represent a unique extension.

6. Cyclic 5-(13,6,4) designs

If X={0,1,2,...,12} and G=<(0123456789101112) >
then G is cyclic and the 4, matrix belonging to G has 99 rows and 132
columns. A direct search applied to the reduced basis obtained from the basis
reduction algorithm after doing size reduction found that there are exactly
two non-isomorphic solutions. A complete description of these designs can
be found in [KR2]. Also in the same paper it was established that these two
designs both have full automorphism group cyclic of order 13. Furthermore,
between them they partition all of the 6-subsets.

If (X,%) isat~(v, k, ) design then (X, &), where & = () -F,
isa t—(v,k, (}_) — 1) design and is called the complementary design of
(X, #). Using Alltop’s Theorem [A] any 5-(13,6,4) design (X, %) can be
extended to a 6-(14,7,4) design (X U {oo}, &' UB") where

B' ={KU{oo}: K € &},
B ={X-K:KeR).
We note that the complementary design of a 6-(14,7,4) design is also a 6-
(14,7,4) design. These two 6-designs each have full automorphism group
cyclic of order 13 and they partition all of the 7-subsets.
Using the results in Section 5 it is easy to see that the extension from any

5-(13,6,4) design to a 6-(14,7,4) design is unique. So we have the following
theorem.

THEOREM 4. If (X, #) is a 5-(13,6,4) design it has a unique extension to
a 6-(14,7,4) design.

Recall that if G < Sym(X) ﬁxes a subset A C X, then each permutation

geC 1nduces a permutation g on A and we denote the totality of gA ’s
formed by G*. Note that G, , the stabilizer in G of x, fixes the set
A=X - {x}.

THEOREM 5. Let (X, #) be a 6-(14,7,4) design with full automorphism

group G. Then for each x € X, the derived design with respect to x has Sfull
automorphism group GA where A= X — {x}.

PRrROOF. Let (X, %) be a 6-(14,7,4) design. Fix x € X,set A= X — {x}
and let H be the full automorphism group of the derived design (A, B,)

of (X, %#) with respect to x. It is easy to see that GA C H. However, we
note by Theorem 4 that (X, %) is the unique extensmn of (A, %) soit
must be obtained by Alltop’s construction [A). That is

#={KU{x}:KeBIU{A-K:KeB )}

Observe that H is also the full automorphism group of the complementary
design B, . Whence, if a € H , then (A~K)" = A—(K") € & . Consequently

A L e SRR
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the extension of @ to &: X — X given by y& =y* if y#x and x% = x
must preserve & . Thus H C Gﬁ and hence the two are equal.

THEOREM 6. Let (X, #) be a 6-(14,7,4) design and let (X, B) be its
complementary design. Then for each x € X any isomorphism o : (X —
{x}, B,) = (X - {x}, B,) lifis to an isomorphism & : (X, &) - (X, B).

ProoF. Fix x € X, set A= X —~{x} and suppose a: (A, B)— (A, B,)
is an isomorphism. Define 6 : X — X by y* = y° if y #x and x® =
x. Then & is a isomorphism from (X, #) to (X, &) since by Alltop’s
construction and Theorem 4 we have

#={KU{x}:KeB}Iu{A-K:KeB},
9={Ku{x}:Kegx}U{A—K:KG.QX}.

A t-design is rigid if it has no nontrivial automorphism. The lack of
automorphisms make them often difficult to find.

COROLLARY 7. The 6-subsets of a 13-set can be partitioned into two noni-
somorphic rigid 5-(13,6,4) designs.

PrROOF. Let A={0,1,2,...,12}, X =AU {00} and consider the two
complementary 6-(14,7,4) designs (X, #) and (X, %) found in [KR2].
These two designs are nonisomorphic with full automorphism group cyclic of
order 13 generated by the permutation a =(01234567891011 12)(o0).
Now fix x € A and apply Theorems 5 and 6. The result follows.

This section suggests the following problems.

PROBLEM 1. Does there exist a way to partition the 6-subsets of a 13-set
into two isomorphic 5-(13,6,4) designs?

PROBLEM 2. Describe in a compact way the 6-(14,7,4) designs found in
[KR2] without listing all of the orbit representatives.

7. Concluding remarks

The methods described above were also successful in finding some other
designs. These designs are listed in Table 1. Other small configurations
when needed, even though their parameter situation had been settled, were
also found quite easily with this method. We believe that basis reduction
and similar tools will become a valuable aid to the combinatorialist and are
currently conducting research to enhance the productivity of our algorithms.
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TABLE 1
Parameters Group Remarks Reference
5-(28,6,4) PSL,(27) New designs for all [KR4]
A,2<4<21
4-(12,6,10) C), New design [KR3]
4-(15,5,5) C, New design (K4)
3-(20,5,4) S New designs for [KdeC]
Ae {18, 28, 48, 58}
3-(20,5,4) 4 New designs for [KdeC]
A€ {24, 54}
3-(20,5,4) H<AF(19), |H| =114 New designs for [KdeC]

A€{12, 42,22, 52, 34, 64}

Note added in proof: Several thousand new designs were recently found by
Kreher, Chee, DeCaen, Colburn, and Kramer, using the methods described
in this paper. (Cf. Some new simple t-designs, to appear in the Journal of
Combinatorial Mathematics and Combinatorial Computing.)
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