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ABSTRACT

Using several computer algorithms we calculate some values and bounds
for the function e(3,k,n), the minimum number of edges in a triangle-free
graphs on n vertices with no independent set of size k. As a consequence, the
following new upper bounds for the classical two color Ramsey numbers are
obtained:  R(3,10)<43, R(3,11)<51,  R(3,12)<60, R(3,13)<69 and
R(3,14)<78.

1. Introduction

The two color Ramsey number R(L,k) is defined to be the smallest integer n, such that
any graph on n vertices contains either a clique of size / or an independent set of size k. In
this paper we consider only the case /=3. A (3,k,n,e)-graph is a triangle-free graph on n ver-
tices with e edges and no independent set of size k. Similarly, a (3,k)- or (3k,n)-graph is a
(3.k,n,e)-graph for some n and e. Let e(3,k,n) be the minimum number of edges in any
(3,k,n)-graph and define it to be oo if no such graph exists. Any (3,k,n,e)-graph is called a
minimum graph if e =e (3,k,n). The following formula was established in (4] for k >4:

0 if nSk'
n—k if k<n<2k,
eGk+ln)=4{ 5 o if 2k <n <5k )2, L

5n—10k if 5k /2<n <3k.

Recently in [5], we also proved that
e(3.k+1,n) > 6n—13k forall kn>1, (2)
and the equality holds in (2) for all 3k <n <13k [4—sign(k mod 4).

If G is a (3,k,n,e)-graph and n; denotes the number of vertices of degree i in G then by
proposition 4 in [1] we have

k-]
ne— Y nfe(3,k=1,n—i=1)+i?) >0, (3)
=0
h-1 h-1
where n= Y n, and 2¢ = Yin,
=0 =0 =

Equation (1) and inequalities (2) and (3) form the starting points of several computer
algorithms we have implemented for the evaluation of bounds and sometimes exact values of
the function e(3,k,n) for n>13(k ~1)/4. Section 2 presents the progress we have done in the
case k=8. Five new upper bounds for the classical two color Ramsey numbers R(3,k), for
10<k <14, are obtained by iterative application of inequality (3) to the results given in section
2. These new upper bounds are reported in section 3.
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2. e(3,8,n)

The values of e(3,8,n) for n<21 are given by equation (1). Grinstead and Roberts [2]
proved that 28<R(3,8)<29, R(3,9)=36 and established lower and upper bounds for e (3,8,n),
26<n <28. Using the techniques described in [1,2] we have developed several computer algo-
rithms (4] for searching for (3,k,n)-graphs. The bounds and the exact values of e(3,8,n) calcu-
lated by these algorithms are displayed in table I, together with the previous lower and upper
bounds found in [2]. The bound e(3,8,28)<98 is true under the assumption that R(3,8)=29,
otherwise e(3,8,28)=c0.

n this Grinstead &
paper Roberts

22 42

23 49

24 56

25 65

26 73 71-74

27 | pK8s | 81-87 |

28 | —~54-08——"t—90-98—1

Table 1. Bounds and values of ¢(3,8,n), n >22.

To establish each of the lower bounds of the form e(3,8,n)>e well tuned implementa-
tions of the algorithms described in [2,4] were used. In (4] an example of a typical procedure
was given that can be followed to find all (3,k,n)-graphs for a given k and n. This technique
requires the previous knowledge of all (3,k —1,7,€)-graphs for 77 and & ranging over some
(hopefully small) set S of values, where S can be determined by the method of Graver and
Yackel [1]. Using this method to obtain the lower bounds presented in table 1, it is sufTicient
to know the following graphs:

(a) all (3,6)-graphs,

(b) all minimum (3,7)-graphs,

(c) all (3,7,22)-graphs,

(d) all (3,7,n,e)-graphs for n>18 and e =e(3,7,n)+1,
(e) all (3,7,21,53)-graphs.

The construction of the graphs specified in (a), (b) and (c) was reported in [4]. By using
the data base of all (3,6)-graphs we were able to build all the graphs in (d) and (e). For (d), the
number of (3,7,n,e)-graphs is 15, 417, 479 and 70 for n = 18, 19, 20, 21 and e = 31, 38, 45 and
52, respectively. The number of (3,7,21,53)-graphs is 717. Somewhat surprisingly, the lower
bound hardest to obtain by this method was e(3,8,25)>65. It required about 250 hours of
CPU time on a VAX780. Perhaps this is connected to the unique known so far irregularity of
the form e(3,k,n+1)—e (3,k,n)<e (3,k,n)—e(3,k,n—1), which occurs in this case, k=8 and
. n=25. For all others known exact values of e(3,k,n) the latter inequality is false.

The upper bounds for e(3,8,n), n = 22, 23 and 24 are achieved by the construction of
(3.8,22,42)-, (3,8,23,49)- and (3,8,24,56)-graphs by applying consecutively corollary 6 of [1]
three times to the unique minimum (3,8,21,35)-graph presented in [4]. Remaining upper
bounds are established by examples of (3,8,25,65)-, (3,8,26,73)- and (3,8,27,85)-grapks. which
are described in the appendix.

From the result of Grinstead and Roberts [2], R(3,8)=29 if and only if there exists a
(3,8,28)-graph. Using the algorithms mentioned above and some relatively simple reasoning,
we have established that any (3,8,28)-graph G =(V,E) can have only vertices of degree 6 and 7.
Thus there are only 5 possible degree sequences for G, one for each number of edges
94<|E | <98, i.e. G has s vertices of degree 6 and 28—s vertices of degree 7, where 0<s <8 and
s is even.
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We would like to point out, that further improvement of bounds in table I and calcula-
tion of R(3,8) by the same method cannot be obtained unless a very powerful machine is run
using probably prohibitively long time.

3. New Upper Bounds

One of the most fruitful ideas used so far to obtain upper bounds for R(3,k) is the calcu-
lation of good lower bounds for e (3,k,n) [1,2,3]). We also exploit this approach.

The exact values of e(3,k,n), for n <13(k—1)/4=sign((k —1) mod 4), are given by equa-
tions (1) and (2). The values of e (3,k,n), for k <7 and all possible n, are listed in [4], and the
case k =8 was discussed in the previous section. For other parameter situations we proceed as
follows. Inequality (3) together with simple analysis of the degree sequences produce reason-
able lower bounds for e (3,k +1,n) provided good lower bounds for e (3,k,n—i), 0<i <k, can be
given. This computation is essentially a simple case of integer linear programming [4]. Table II
reports the results of such calculations, which were performed to obtain lower bounds for
e(3,k,n) with 9<k <13 and 3k—1<n. We note that these results improve all of the lower
bounds listed in [3].

The entries in table II preceded by a "t" are obtained by applying (2), in which cases
they are larger than those obtained by using (3) only. The entries preceded by an "s” are also
larger than the values obtained by (3) and in these cases a straightforward checking shows that
no graphs can exist for any degree sequence solving (3) with a smaller number of edges. For
example, one of the three solutions to (3) for a (3,9,31,92)-graph is ng=29 and ns=2. This
implies that there are at least 29=1-5+4-6 edges adjacent to the neighbours of any vertex v of
degree 5, and consequently also implies the existence of a (3,8,25,x)-graph, for some
x <63=92-29. This is impossible since e(3,8,25)>65. Also observe that at least three values in
table II are exact, namely by (2) we have: ¢(3,9,26)=52, ¢(3,13,38)=72 and ¢(3,13,39)=78.

n k e k

9 10 11 12 13 9 10 11 12 13
26 | t52 49 229 184 153
27 59 50 243 196 162
28 67 51 208 172
29 75 t57 52 221 s 182
30 84 63 53 233 193
31 | s93 70 54 248 204
32| 103 77 t62 55 262 216
33| 114 85 68 56 276 227
34 125 94 75 57 291 239
35| 136 103 81 t67 58 306 252
36 113 88 t73 59 322 5266
37 123 96 79 60 280
38 133 104 86 t72 61 294
39 145 113 93 t78 62 308
40 156 122 100 84 63 324
4] 169 132 108 91 64 339
42 182 143 115 97 65 354
43 153 124 104 66 371
44 165 132 112 67 389
45 177 142 120 68 406
46 189 152 128
47 201 162 136
48 214 172 144

Table II. Lower bounds for e(3,k,n) for 9<k <13 and 3k =1<n.
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If n(k) is the row index in which the last entry of column k appears in table II, thcq (3)
has no solution for any n>n(k). Thus R(3,k)<n(k)+1. The bound R(3,14)<78 is obtained
similarly by checking that (3) has no solutions for k=14 and n>78. Table III gives the new
upper bounds together with the best previously known lower and upper bounds for R(3,k),
10<k <14,

revious new
SHj[Ricxcriboung up;;cr bound | upper bound
10 39 44 43
11 46 54 51
12 49 63 60
13 58 73 69
14 64 84 78
15 21 29

Table II1. Bounds for R(3,k), 10<k <14.

The lower bound R(3,14)>64 was established by Longani in 1985 (private communica-
tion), the upper bound R(3,10)<44 was given in 1968 by Walker [6]. All of the other lower
and previous upper bounds in table 111 were derived by Kalbfleisch in 1966 [3].

Appendix

We have found 396 nonisomorphic minimum (3,8,25,65)-graphs, 62 minimum
(3,8,26,73)-graphs and 4 (3,8,27,85)-graphs, however possibly there are more of each of them.
(a) The following minimum (3,8,25,65)-graph Hjs has the largest group of automorphisms

among groups of symmetries for all of these graphs. It’s full automorphism group T of

order 10 is isomorphic to the dihedral group on § symbols and is generated by permuta-
tions

a;=(01234X56789)10 111213 14)(1516 17 18 19)(20 21 22 23 24),
az =(0)(1 4)(2 3X5 14)(6 13)X(7 12)(8 11)X9 10)(15 24)(16 2317 22)(18 21)X19 20).

The set of edges of H 5 is the union of orbits of pairs under I, whose representatives are:
{0.1), {0,10), {0,20), (5,10), {5,19), (15,17) and {15,20). The first orbit has length §, all the
others have length 10 which totals 65 edges. The orbit of singleton (5) forms 10 vertices
of degree 4; the remaining 15 vertices have degree 6.

Since no graph with automorphism group larger than 3 was found for the parameter
situations (3,8,26,73) and (3,8,27,85), we present examples of the corresponding graphs by
their incidence matrices.

(b) A (3,8,26,73)-graph with C, as a full automorphism group generated by permutation
a=(042)(153)6910)(78 11)121516)X13 17 14)(18 22 20)(19 21 23)(24)(25),

where the vertices are labeled from 0 to 25 according to the order of rows, is defined by
the matrix below:
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01010010000000
00000000010000
10100000100000
00000001000000
00001100001000
00000000000100
000010100001010000
0000010100011000000
00000001010000011000
00000001010000010100
000000000001101000100
0000000000001100100

100100000
010010011
101000010
000001101
001000100
010111000
00100
0010
101
110
00
1

—_—_ 00—~ 0000 —0—00O0

0001100000100000000

1
0
0
0
1
0
0
1
0
0
1
1 100
0 1010
0000000110010000000100001

1001

010

0
1
0
1
0
0
1
0
0
0
0
0
0
1

0010001100000000100000
10000000110000000100100
00001000001100100010000010
00001000001100010010000001
10000001000000001100010000
00010011001000000000100000
00100000000101010001000000
01000010110000000010000000
00001000100010100000000100
00000100011100000000001000
00000000000010011000000001
00000000000001100100000010

(c) A(3,8,27,85)-graph with trivial automorphism group is defined by the following matrix:

10101000000100100000010
000110101000000100010000001
01011100000011000000010
110000000001110011000000000
110001000000010001000010100
001010000011000000000101001
110000000110010000000001100
001000000001110100100010000
111000000000 1000001001000
001000100000 1000100110000
000001100000 1010011000000
100
000
10

s s s

0001010100000 0011000100
0001000111100 0000000100
000110110000001000000100000
000000001111010100000000000
110000010000001001000100000
001100000010000000100010100
001110000000000100001001000
100000010100000010010000001
010000000011000000100100010
000000001011000001000100001
000001000100010100011000000
000010010100000010000001010
000001101000000001000010000
000010100001100010000000000
101000000000000000010010001
010001000000000000101000010
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