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ABSTRACT

A (3,k,n,e) Ramsey graph is a triangle-frec graph on n vertices with e edges
and no independent set of size k. Similarly, a (3,k)-, (3,k,n)- or (3,k,n,e)-graph
is a (3,k,n,e) Ramsey graph for some n and e. In the first part of the paper we
derive an explicit formula for the minimum number of edges in any (3,k,n)-
graph for n<3(k—1), ic. a partial formula for the function e(3,k,n) investi-
gated in [3,5,7}. We prove some general properties of minimum (3,k,n)- graphs
with e(3,k,n) edges and present a construction of minimum
(3,k +1,3k —1,5k —5)-graphs for k >2 and minimum (3,k +1,3k, 5k)-graphs for
k >4. In the second part of the paper we describe a catalogue of small Ramsey
graphs: all (3,k)-graphs for k<6 and some (3,7)-graphs including all 191
(3,7,22)-graphs, produced by a computer. We present for k <7 all minimum
(3,k,n)-graphs and all 10 maximum (3,7,22)-graphs with 66 edges.

1. Motivation

Research leading to the evaluation of the exact values of Ramsey numbers R(3,k) has
reached the point where further progress is possible only if a new innovative method is
designed. We feel that the exact knowledge of small minimum Ramsey graphs can be helpful
in better understanding their general properties. The original plans for this paper included
only the construction of a catalogue, but while working on it we were able to derive several
general theorems and constructions, which are presented in section 3. We believe that these
theorems and the catalogue of small (3,k) Ramsey graphs, together with the techniques intro-
duced by Graver and Yackel [3] and refined by Grinstead and Roberts [5], can lead to the
evaluation of the exact value of R (3,8) and improvements of known bounds for R(3,k), k 210.
The listing of known exact values and bounds for the classical two color Ramsey numbers
R(k,!l) can be found in [2,8].

Only some of the (3,k)-graphs needed to achieve the above goals appear in different pub-
lications [3,5,7 and others]. The authors do not know of any previous systematic attempt to

enumerate all (3,k)-graphs for small k and to put them together into a catalogue. The second

part of this paper presents our construction of such a catalogue.

2. Definitions and Tools

The two color Ramsey number R (k,/) is defined as the smallest integer n, such that any
graph on n vertices contains a clique of size k or an independent set of size /. We say that a
graph G on n vertices has the (k,/)-property, or, for short, G is a (k,/,n)-graph if and only if the
existence of G proves that R(k,l)>n. A (k,l,n)-graph G with e edges will be called a (k,/,n,e)-
graph. Following [3), let e (k,/,n) and E(k,/,n) be the minimum and the maximum number of
edges in any (k,/,n)-graph. They are defined to be oo or —oo, respectively, if no such graph
exists. Knowing the values of e (k,/,n) and E (k,/,n) often makes computer searches for (k,l,n)-
graphs feasible, in particular when the difference E(k,l,n)—e(k,l,n) is small.
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Let G=(V,E) be a fixed (k,l,n)-graph and choose some vertex veV. Define H,(v) to be
the graph induced in G by vertices adjacent to v and H,(v) to be the graph induced by the set
of vertices nonadjacent to v. The Z-sum of vertex v in G is Z(v)= I (deg {(u):u€H,(v)). Let
S(v) = [|Ha()|| —e(k,l—1,n~deg(v)—1), where ||Ha(v)]] denotes the number of edges in
H(v). In such a situation we say that vertex v is preferred. Obviously f (v)>0, and if f (v)=0,
then vertex v is called full [5] If G is a (3,k,n,e)-graph then by preferring any vertex v, Hy(v) is
an independent set of size deg(v) and H,(v) is a (3,k—1,n—deg(v)=1,e~Z(v))-graph. Any
vertex of degree i will be called an i —vertex.

If G is a (3,k)-graph, then we can evaluate the sum ¥/ (v) using the following obvious
1%
variation of proposition 4 in [3).
Lemma 1: In any (3k.ne)-graph G = (V,E), if n; denotes the number of i-vertices in G, then
k-1
3/ (v)=A(G.k,ne)=ne— Y nfe(3,k=1,n—i=1)+i%) > 0 (1)
=17 i>0
and there are at least n—A(G,k,n,e) full vertices in G.

Finally, let gu(n,e) be the number of nonisomorphic (k,/,n,e)-graphs, and if e =e (k,/,n)
then any such graph is called a minimum (k,I,n)-graph. A (k,l,n,e)-graph is called a maximum
(k,l,;n)-graph if e=E (k,/,n). If the parameters k, /, and n are defined by the context or are
irrelevant in some particular situation, then a minimum (maximum) (k,/,n)-graph will be called
simply 2 minimum (maximum) graph.

3. Bounds for ¢(3,k,n) and E(3,k,n)

The goal of this section is to derive explicit nartial formulas and bounds for functions
e(3,k,n) and E(3,k,n), which will be given in theorems 1, 2 and 4 and lemma 4. We start with
two technical lemmas stating properties of minimum (3,k,n)-graphs.

Lemma 2: If G is a minimum (3 k.n)-graph, then
(@) If a component of G is a cycle, then it is a sentagon.
(b) If G has an isolated point, then all vertice: in G are of degree less than 2.
(c) All 1-vertices in G are endpoints of isolat: ' edges.

Proof: Suppose that G is a minimum (3,k,n)-graph.

(a) Let C; be a cycle component of G of length i, is# . Thus i >4 :ince G is triangle-free. Let H
be the triangle-free graph obtained from G by repl: :ing cycle C; with i /2 isolated edges if i is
even, or with a pentagon and (i —5)/2 isolated edg: s if i is odd. One can casily check that &
has less edges than G but the same maximal indepe 1dent set size. Hence, H is a (3,k,n)-graph
contradicting the fact that G is a minimum graph.

-

(b) Let v be an isolated vertex and w an r—vertex, r -2. Define graph H from G by deleting all
Ehc cdges adjacent to w and joining vertices v and w Oy an edge. Again one can check that &
i8 a (3,k,n)-graph with fewer edges than G, which cortradicts the mi..imality of G.

(c) Let v be a 1-vertex connected to an r-vertex w, r 22. Define grap’ H from G by deleting all

the edges adjacent to w except the edge {v,w). The same argument as in (a) and (b) proves the
assertion of the lemma. O
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Lemma 3: If G is a minimum ( 3k.n)-graph and F is the subgraph induced by the 2-vertices in G,
then F is a disjoint union of isolated points. isolated edges and pentagons.

Proof: Graph F has onl, vertices of degree 2 or less, hence each component of F must be a
cycle or a path (possibly of length 0). To prove the lemma it is sufficient to show that F can-
pot have as a component 2 path v;,v3, ** Ve with r >3, since any cycle of F is a component of
G and by lemma 2(a) it must be a pentagon. Since v, and v, are 2-vertices in G by lemma 2(c)
v, and v, must have neighbors in G of degree at least 3. There are four cases. In case (i) G has
a vertex x, deg (x) 23, adiacent to both v, and v, In remaining cases G has vertices x and y,
deg(x), deg(y)2 3, adjacent to v, and v,, respectively. In case (ii) 7 is odd. In case (iii) r is
even and x and y are nonadjacent and in case (iv) ris evenand x is adjacent to y. In each of
the cases we will transforn graph G into a (3,k,n)-graph H with a smaller number of edsges,
thus contradicting the mii imality of G.

case (i): Transform G into H by deleting all the edges adjacent to x except those connecting x
to v, and v,. For cach independent set S in H including vertex x we can find another indepen-
dent set S in H, |S)=|S| and x¢S, by shifting one position vertices of § lying on the cycle
X,¥1, *** .Y~ Thus S is an independent set in G. If § does not contain vertex x then § is an
independent set in G. Therefore we can deduce that H is a (3,k,n)-graph.

case (ii): Transform G into H by deleting all the edges adjacent to x and y except edges (x,v,)
and (y,v,), then add the edge {x,y). Now X,vy, ***,Vn) is an isolated cycle C of odd length in
H. To show that H is a (3,k,n)-graph note that any independent set § in H can be transformed
into an independent set S in G, |S|=|S1, by rotating vertices of S on C to the position where

S does not contain none of x and y.

case (iii): Transform G into H by deleting the edge (»,v,) and all the edges adjacent to x
except the edge (x,v;), then add the edge {x,v,). Now the cycle x,vy, * - v, has odd length in
H, so as in case (iii) we can transform any independent set § in H to one avoiding points x

and v, and conclude that / is a (3,k,n)-graph.

case (iv): Transform G into H by deleting the edges {x,v;) and {y,v7} and adding the edge
{v1,v,) Yielding an even cycle vy, < -+ ,v. Each independent set S in H containing x can be
transformed to one avoiding v,, and each S containing y can be transformed to one avoiding

v. Hence His a (3k,n)-graph. O

Initial values of e(3,k+1,n) and the structure of minimum (3,k +1,n)-graphs with
n <5k /2 can be obtained from theorem 1 below.

Theorem 1: For k22
0 if n<k,

e(3,k+1,n) = n—k if k<n<2k, (2)

3n—5k if 2k <n<5k/2.

Furthermore 8s.xn(me (3,i¢ +1,n))=1 for n<5k /2, i.e. the minimum graphs are unique and are
given by n isolated points for n<k, 2k —n isolated points and n—k isolated edges for k <n <2k,
and Sk —2n isolated edges with n—2k pentagons for 2k <n <5k /2.

Proof: The statement is obvious for n <k. For the case k <n <2k onc can casily check that the
graph G formed by i=2k~—n isolated points and e=n~k isolated edges is a 3,k +1,n,n~k)-
graph. Assume A is a minimum (3,k +1,n,8)-graph with e<e and let 7 be the number of iso-
lated points in H. If 7>0, then by lemma 2(b) H has only isolated points and isolated edges,
thc_rcforc T+e<k and n=7+2¢, which yields €2n—k. Thus #=e, T=i and H is isomorphic to G.
If 7=0, then since G has only isolated points and 1-vertices and &<e, H has only isolated edges
and i =0, so H and G are isomorphic.
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In the case 2k <n<5k /2 we use induction on k. Since the pentagon is the unique
(3,3,5)-graph theorem 1 holds for k=2. Note that the graph G, formed by i=5k —2n isolated
edges and j=n—2k pentagons with e=3n—5k edges, is a (3,k +1,n,e) graph since k =i +2j,
n=2i+5j and e=i+5j. Assume H is 2 minimum (3,k +1,n,&)-graph with €<e. Then cither &
has a 2-vertex or it does not.

If H has a 2-vertex v, then by preferring v in H, Hy(v) is a (3,k,n—3,6—Z(v))-graph. Note
that n—-3<5(k—1)/2, so by induction the number of edges e~Z(v) in H,(v) is at least
3(n—=3)—5(k—1) for n>2k+1 or at least (n=3)—(k—1) for n=2k +1. In both cases, since
e€<e=3n-5k, we obtain 2<Z(v)<4. If Z (v)=4, then by induction H,(v) is a minimum

(3,k,n=3)-graph formed by pentagons and one or more isolated’ edges since- ...
2k—1)<n=3<5(k=1)/2 for n>2k+] and w=3=2k=1) for a=2k+L- Each :maximal: - -
independent sét in H,(v) is of size k—I and contains. exactly onc eadpoint-of each isolated - —

edge and a pair of nonadjacent points from each pentagon. Since H avoids (k +1)-independent
sets, the two neighbors of v must be connected to the endpoints of an isolated edge in H4(v).
This implies that v belongs to a pentagon in A and straightforward counting of pentagons and
isolated edges shows that H must be isomorphic to G. If Z(v)<3, then the 2-vertex v must be
adjacent to at least one 1-vertex, which contradicts lemma 2(c).

Now we can assume that A has no 2-vertices. Then H must have some r —vertex v, r>3,
since otherwise H would have only 0- and 1-vertices and all such graphs are covered by the
case n<2k. Note that n—r—1<5(k ~1)/2. By preferring v in H and using the inductive assump-
tion, Hy(v) is a (3,k,n—r—1,e,)-graph with e323(n—r—1)=5(k~1) for n—r-1>2(k—-1) or
ea2n~r—k for n—r—1<2(k—1). In cither case it can be casily derived that e >¢—7, implying
that the Z-sum of vertex v satisfies 3<Z(v)<7. Hence, v has as a neighbor at least one 1-vertex
which contradicts lemma 2(c). O

Corollary 1:
(a) Any graph formed by isolated points and isolated edges is a minimum graph.
(b) Any graph formed by isolated edges and pentagons is a minimum graph,

Proof: By theorem 1 the graph formed by i isolated points and J isolated edges is the unique
minimum (3,i +j +1,i +2j)-graph and the graph formed by i isolated edges and j pentagons is
the unique minimum (3,i +2; +1,2i +5;)-graph. O

Theorem 2: Let k 22. Then for all n 20
e(3,k+1,n)>5n~-10k. (3)

Proof: By theorem 1 and simple arithmetic we have e(3,k +l,n)25n-.10k for n<5k /2. For
n>5k /2 we use induction on k. Inequality (3) holds for k =2 and k =3 since the only relevant
parameter situation is k =3, n=8, and it is a well known fact that e(3,4,8)=10 [7). Suppose G
is a minimum (3 ,k +1,n,e)-graph for some k >4, n>5k /2 and e <5n.—10k. Let n; be the number
of i-vertices in G. Then by applying (1) and induction to G we obtain

f ]

0 < A(G,k +1,n,e) = ne — L nfi%+e(3,k,n—i—=1)) <

: i=0
&

ne — Y n{i2—5i +5n—10k +5).
i=0
&
Recall that Y n,=n, hence
i=0

0 < A(G,k+1,n,e) < n(e~(5n—10k ~1)) — én.(i =2Xi -3). 4)
=0

The coefficient (i ~2)Xi~3) is nonnegative for all integers i. Hence, inequality (4) _and
e <5n-10k imply that e =51—10k —1, A(G,k +1,n,e)=0 and consequently G has only vertices
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of degree 2 and 3. Hence, all the vertices of G are full, and we conclude that for any vertex v
in G Z(v)=4 if deg(v)=2 and Z(v)=9 if deg(v)=3. Consequently, every component of G is a
cycle or a cubic graph.

We first show that n,=0. If n,>0, then by lemma 2(a) G is a disjoint union of a pentagon
and some (3,k—1,n—5,5n—10k—6)-graph H. But H cannot exist by induction- since
5(n—5)-10(k —2)>5n—-10k~6. Hence we¢ may assume that G is a cubic minimum
(3,k +1,n,e)-graph with e =3n /2 edges. On the other hand ¢ =571 —10k —1=3n /2 implies that

Tn =20k +2 (

whence k=2mod7. Thus G is a cubic (3,10+7p, 26+20p, 39+ 30p)-graph for some p=>0. To
complete the proof of theorem 2 it is now sufficient to show that no such graph can exist.

By preferring any vertex v in G, Hy(v) is a (3,k,n,e)-graph with n=n—4 vertices and
€=3n/2-9 edges. Note that H,(v) must be a minimum (3,k,7)-graph since by induction and
by (5) we have e(3,k,n~4)>5n—10k —10=5n—(Tn~2)/2—10=e. We first show that.the graph
H(v) can have only vertices of degree 2 and 3. Since H3(v) is a subgraph of cubic graph G,
H(v) can have only vertices of degree 3 or less. If Ha(v) has an isolated point, then by lemma
2(b) it would have at most 71/2 edges, which is a contradiction with €=3n/2—9 and n2>26. If
Ha(v) has a l-vertex, then by lemma 2(c) it is a union of an isolated edge and a
(3,k—1,i—2,e~1)-graph. But such a graph cannot exist, for by induction
e(3,k—1,1=2)>5n—10k —10=¢. Thus by counting cdges we conclude that Ha(v) has 6 2-
vertices and n—10 3-vertices. If u is a 2-vertex in H4(v) then Z(u)<5 with respect to the graph
H,(v). since by induction and (5) e (3,k —1,1=3) > 5(n~7)—10(k —2) = e~5. Thus any 2-vertex
in H,(v) has at least one other 2-vertex as a neighbor. Finally consider the subgraph F of
H,(v) induced by it’s 2-vertices. F cannot have isolated vertices since this would imply
Z(u)=6 in H,(v), nor can F have a pentagon, since F has 6 vertices and a pentagon would
imply the existence of an isolated vertex. Hence, by lemma 3 there are exactly 3 isolated
edges in F. Consequently, if any vertex v in G is preferred, then the situation has to be as in
figure 1. The 6 vertices in H,(v) showed in figure 1 are the vertices of degree 2 in H5(v).

It is clear that there are exactly 3 pentagons passing through each vertex v in G. Thus the
total number of pentagons in G is 3n /5 (cach pentagon was counted 5 times), which. implies
that n is divisible by 5. On the other hand (5) implies that n=1mod5. Thxs contradicts the
existence of G and completes the proof of theorem 2.

The proof of the nonexistence: of 'a cubic (3,10+7p,26+20p,39+30p)-graph can also be
obtained by using the result of Staton [9] on the independence ratio of triangle-free graphs
with bounded degree. O

L. a,
“\A /Mb‘

g4 & S.

< (X c

/'S, S,
[ G
=
Q, b,

5, Qg

Figure 1. Graph G Figure 2. Graph G
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The construction given in the next theorem defines an infinjte family of minimum
(3,k +1,3k)-graphs. We use the group theory terminology as in [10],

Theorem 3: For all k > 4 define the graph Gy =(V,,E,) as follows:
V= A, UBUC, where

Av=(a,:x€X,),
B,,=(b,:x ERX,) and
C,,=(c,:x eZ,,):

Ey=F,u ('E%.s,) where

Fy= { (astbt%}:x ezk} and
Sy= { (cmca-l-l)’ (cs+1’b:+1)i {bs-i-ha:}s (amc:} hxe z,.

Then G, is a minimum (3,k +1,3k,5k)-graph and it’s full automorphism group is isomorphic to
the dihedral group D, on k symbols.

Proof: First note that each S, is a 4-cycle and we refer to them as squares. Thus among the
squares there are 4k edges. Hence, G, has 4k + | F,) = 5k edges. Furthermore, if k > 3 it is easy
to see that G, contains no triangles. The graph G, is drawn in figure 2 for k =5.

Suppose that 7 is an independent set in G, and consider how 7 intersects vertices of the
cyclic sequence S, Sy,..., Sk-1 of squares. Let V(S,) denote the set of vertices of S,.
Observe that the edges in F, imply that if 7NV (S,) ={a4,€241) then INV (S, 1) =(cs41). Let
@ count the number of such pairs S,, S;41. This accounts for 2a elements of 7, Similarly, if
INV(S,)=(bys41,cs), then 70 V(Ss-1)=(c,} and we let # count the number of such pairs
Ss-1, S,. They account for 28 elements of 7. All of the other squares intersect 7 in at most one
vertex and there are k—(2a+28) of them Thus it follows that
17| £2a+2f+k —2a—28=k. Whence G, has no independent sets of size k +1. By theorem 2
G, is a minimum graph.

We now show that the full automorphism group T of the graph G; is isomorphic to the
dihedral group D, on k symbols. Note that the following permutations are in I’

a by, ¢,
S (as-i-l bs+l Cesi1 )séZn
a;, b, ¢
ﬂ= (b-. a_, c;):ez..

Thus D, is a subgroup of T. Note that C, is a block of imprimitivity, since C, has all vertices
of degree 4 in G,. Furthermore, it is relatively easy to see that the po‘atwise stabilizer in T of
C\ is the identity group. Hence, the restriction of T to the the subgraph induced by C, is an
isomorphism. Thus, since this induced subgraph is a cycle of length & it follows that T is iso-
morphic to D,, as claimed. O

Corollary 2: There exist mininum (3,k +1,3k ~1,5k —5)-graphs for k :-2.

- Proof: A pentagon is the desired graph for k =2. For k 23 observe that any 3-vertex in the
graph G, defined in theorem 3 has Z-sum equal to 10. Therefore by preferring any 3-vertex
vy in Gyy, the graph Ha(v) is a (3,k+1,3k-1,5k ~5)-graph. By theorem 2
e(3,k+1,3k=1)>5k -5, so Hj(v) is a minimum graph. We remark that for all k 23 this H,(v)-
graph has the full automorphism group of order 8. O
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The graph G, is the unique minimw: 3,k +1,3k)-graph for 4<k <7. The uniqueness of
(3,5,12,20)- and (3,6,15,25)-graphs was sho™ :: in [7] and [5], and these graphs are isomorphic
to G, and G;, respectively. The uniquenes. of G and G7 was established by the computer
programs described in section 4. For k 28 1 minimum (3,k +1,3k)-graph nonisomorphic to G,
can be obtained as a disjoint union of G; ar.d G,_; for any i, 4<i <k—4. For 3<k <5, corollary
2 establishes minimum graphs for the para neter situations (3,4,8), (3,5,11) and (3,6,14). These
minimum graphs are unique and were described in the literature [3,5,7].

Corollary 3:
(@) There exist (3,k +1,3k +1,5k +7)-grw, s for <k <7.
(b) There exist (3,k +1,3k +1,5k +6)-graphs for k 28.

Proof: For (a) apply corollary 6 of Graver and Yackel in [3] to the graph G,. To establish (b)
take a disjoint union of the unique (3,5,: 3,26)-graph [7] and G, . O

Corollary 3(a) gives the construction of (3,6,16,32)- (3,7,19,37)- and (3,8,22,42)-graphs.
They are minimum graphs since e (3,6,16)=32, e(3,7,19)=37 [5,7] and we have found by com-
puter that e(3,8,22)>42. We do not know whether all the graphs given by corollary 3(b) are
minimum graphs, but we consider it possible. Corollary 3(b) and theorem 2 imply that for all
k >8 we have 5k +5<e(3,k +1,3k +1)<5k +6.

As a consequence of theorems 2 and 3 we obtain the following:

Theorem 4: For k >4 and 5k [2<n<3k
e(3,k+1,n)=5n-10k.

Proof: By theorem 2 it is sufficient to construct (3,k+1,n, 5Sn—10k)-graphs for k >4 and
5k /2<n<3k. For k=4 and k=5 the parameters of graphs of consideration are: (3,5,11,15),
(3,5,12,20), (3,6,13,15), (3,6,14,20) and (3,6,15,25). Note that a (3,6,13,15)-graph can be
obtained as a union of a pentagon and a (3,4,8,10)-graph, for the remaining four parameter
situations the graphs exist as mentioned after the proof of corollary 2. The general construc-
tion for k >6 is by induction on k. For 5k /2<n <3k let G be the graph obtained by a disjoint
union of a pentagon and any minimum (3, —1,n~5)-graph H. By induction / has 5n—10k -5
edges since 5(k—2)/2<n—5<3(k-2). So it is obvious that G is a (3,k +1,n, Sn—10k)-graph.
For n=3k the construction of (3,k +1,n, Sn—10k)-graphs is given by theorem 3. O

The values of e(3,7,n) for 19<n <22 were given in [5]; all the values for n <19 can be
obtained from theorems 1 and 4. Thus the calculation of e (3,7,n) is completed for all n. The
smallest parameter situation in which minimum (3,k+1,n)-graph is not unique for

5k /2<n<3k is (3,7,16). The two minimum (3,7,16,20)-graph are obtained by two disjoint -

copies of the unique minimum (3,4,8,10)-graph and by a disjoint union of a pentagon and the
unique (3,5,11,15)-graph.

Corollary 4: Any graph which is a disjoint union of pentagons, (3.4.8.10)-graphs and minimum
(3.q+1,r)-graphs with 5¢ [2<r <3q is also a minimum graph.

Proof: Let C,,...C, be components of some graph G of the form required by corollary 3. By
theorem 1 and 4 each C; is a (3,k;+1,n,e)-graph with 5k;/2<n;<3k; and e;=5n—10k; for
1<i<p. Furthermore, 5k;/2=n; only if C, is a pentagon. If all C/'s are pentagons, then Gis a
minimum graph by corollary 1(b). In all cases G is a (3« +1,n,e)-graph with .

| 4 1 4 P
k= zk.', n= En,- and e= 28.'.
i=1 i=1 i=1
Note that e =51—10k, and if at least one C; is not a pentagon then 5k /2<n <3k. Hence G is a
minimum (3,k +1,n)-graph by theorem 4. O
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It is an interesting problem to decide whether corollary 4 can be extended to give a com-
pact and complete specification of ail minimum (3,k +1,n) graphs with 5k /2<n <3k, using
constructions as in theorems 3 and 4 and in corollary 2. These constructions provide such a
characterization for k <6 (see the list of minimum graphs in ‘section 4),

Finally, observe that theorems 1 and 2 say that e(3,k +1,n) is minorized simultaneously
by a set of linear functions. That is for k>2

e(3,k+1,n) > max(an—bk : 1<i <4) 6)

two parameter situations k=2,n=6 and k=3,n=9, when R(3,k+1)<3k and thus
e(3,k+1,3k)=co.

Relatively little work has been done with respect to the function E(3,k,n), probably
because of the following two reasons: the situation scems to be simpler than for function
€(3,k,n) and so far there are no substantial applications of E (3,k,n) in obtaining information
about (3,k)-graphs. The basic properties of E(3,k,n) are stated in lemma 4,

Lemma 4: For k >2
EQ@.k+1,n) = |n?/4]| for n<2k and (7)
E(3,k+1,n) < nk /2 for n>2k. (8)

Proof: The well known theorem of Turdn, see Harary [6, P.17], says that the number of edges
in a triangle-free graph on 7 vertices is bounded by [n3/4). Furthermore it is easy to see that
& complete bipartite graph X (»/3], [n/2) is @ (3,k +1,n, [n2/4])-graph for n <2k, so (7) follows.
To show (8) note that the maximal degree of any vertex in a (3,k +1,n)-graph is k. O

"We.note-that,the bound given by (8) is tight for 2<k <5 and 2k <n <R(3,k +1) with the
«exception of parameter situations (3,5,9), (3,6,11) and (3,6,12) (see the tables in section 4).

4. Construction of the Catalogue

Uéing computer techniques we have constructed the following graphs:
(A) all (3k)-graphs for 3<k <6,
(B) all minimum (3,7)-graphs,
(C) all (3,7,22)-graphs.
The basic agproach to accomplish (A) was different from the one used in (B) and (C),

«since there are simply too many (3,7)-graphs and the exhaustive construction of all (3.k)-
graphs is still feasible for k =6, Despite the difference in approaches common algorithms and

data structures were used in order to maintain a uniform database of graphs.

4.1. General Graph Algorithms

The elementary block of data for all implemented algorithms is a file G (k,n,e,d) formed
by the set of (3,k,1,e)-graphs with fixed k,n,e and given minimum degree d. We will call it a
graph file. Each line of a graph file represents one graph encoded similarly as in [1]. We
-explain this encoding in detail since the graphs listed in the appendix are presented this way.
Given a 0-1 incidence matrix 4 of a graph G on n vertices, first write G as the 0-1 string
formed by the n(n—1)/2 entries 4 [i,j] of the incidence matrix 4 for =l,.,nand j=i+],..n
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Then break the string into 32 bit words and convert them into hexadecimal notation. We
recognize that intuition can be lost in such representation, but an arbitrary graph on 22 ver-
tices can be defined just in 1 line! For example the hexadecimal numbers 265, 312 and 0f2
are three different representations of a pentagon. Although an arbitrary graph usually has a
large number of different such representations depending on the incidence matrix used, we
will give just one. A simple conversion routine from the hexadecimal encoding to the
incidence matrix of a graph is given in the appendix.

The major time consuming computational problem is the deletion of copies of iso-
morphic graphs from each graph file. In order to solve it we have basically implemented the
techniques described in [1}. Our "early isomorphism rejection” stratcgy was to calculate the
number of 3-independent sets passing through each. vertex and degree sequence of the graph.
The obvious sufficient condition for two graphs to be nonisomorphic was that their
corresponding combined degree- and 3-independent set sequences were not identical. Other-
wise, a full isomorphism algorithm was run.

The general graph algorithms we implemented also included conversions between dif-
ferent representations, graphics editor of graphs, finding cliques and independent sets, calcula-
tion of automorphism groups, and a manager of the graph data base.

4.2. Building (3,k,n)-graphs for k <6

The following steps were executed for k=3,4,5 and 6:

a) Create graph files G(k,n,e,d) containing all (3,k,n)-graphs with n<k by generating
all triangle free graphs on n vertices with copies of isomorphic graphs deleted. The
number of graphs obtained is relatively small, so we were able to check completely
the correctness of this step by hand.

b) For each n=k,k+1,.,R(3,k)~1,
for each e =e(3,k,n)e (3.k,n)+1,.., |[n(k—=1)/2],
for each d =0, 1,...,min(k -1, |[n(k=1)/2}): _ g

Expand all the graphs G, if any, in the graph files G(k,n—1,e—d,d), d—1<d, by
adding new vertex of degree d to G and connecting it to-all d-independent sets
in G. Store the result in G(k,n,e,d) if the obtained graph is a (3,k)-graph-and its
minimal degree is d. After completion. delete.copies of-isomorphic graphs from
G(k,n.e,d).

It is straightforward to sec that the above steps produce all (3,k,n)-graphs with 3<k <6
and consequently

ng("’e) == E IG(kvnve1d)'
420

where |G(k,n,e,d)] is the number of graphs in file G(k,n,e,d). The correctness of the results -

was checked with all available data in [3,5,7] and with the lemmas and theorems in this paper.
The number of (3,k,n.e)-graphs for 3<k <6 and for all possible n and e is reported in:the
tables I, II, IIT and IV. A blank entry in all tables denotes 0. We note -that .the -values -of
e(3,k,n) and E(3,k,n) can be casily read in the table of g3, by finding.the location of the first
and last nonzero entry in column 7.

edges ‘| number of vertices n
e |1 2 3 a 5|
‘0 il 1 2
1 1 1 2
2 1 1 2
3 1 1
4 1 1
5 1 1
total 1 2 2 3 1 9

Table 1. Number of (3,3,1,€)-graphs, gss
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edges number of vertices n
e 2 3 4 S 6 17 g| toal

0 I R 3

1 1 Am]iN] 3

2 1s2ugad 4

3 25 2011 '] 5

4 1 3 1 5

5 2,4 4 6

6 1 4 1 6

7 3 2 5

8 1 3 4

9 1 2 3

10 L I | 55

11 B

12 1 1

total |1 2 3 6 9 15 9 3| a8

Table II. Number of (3.4,n,e)-graphs, g4,
edges number of vertices n

S 34 5 6 71 8 9 10 11 12 13| to
0 1 1 1 1 ] 4
1 8 1 R 4
2 1 2 2 1 6
3 20 53n ah3e ol 9
4 1 4 6 2 1 14
5 2 8 7 1 18
6 1 7 13 5 26
7 4 17 13 1 35
8 2 15 27 3 47
9 1 10 39 1 61
10 4 41 28 1 74
11 1 27 59 2 89
12 1 15 713 10 99
13 6 62 32 100
14 2 33 69 104
15 1 14 86 1 102
16 1 4 65 6 76
17 2 32 19 53
18 12 31 _ 43
19 3 30 33
20 Ther 813, 301 15
21 4 2 6
22 1 s 6
23 2 2
24 2 2
25 0
26 1 1
total [1 2 3-7 13 32 71 179 290 313 105 12 1| 1029

Table IIL Number of (3,5,1,¢)-graphs, g5

Some of the initial values of e(3,k,n) for k <5 appeared indirectly in the early work of
Greenwood and Gleason [4). Kalbfleisch [7] systematically constructed all (3,k,n)-graphs and
thus calculated g3,(n.e) for the following parameter situations: (3,3,5), (3,4,7), (3,4,8), (3,5,12),
(3,5,13) and (3,6,17). He also partially analyzed the situation (3,6,16,32). Graver and Yackel
[3]) showed the uniqueness of minimum graph for (3,5,11). They also calculated the values of
€(3,6,n) for n>12. Grinstead and Roberts in [5] have constructed all (3,k,n,e)-graphs and thus
calculated gsu(me) for the parameter situations (3,5,11,16), (3,6,15,25), (3,6,15,26) and
(3,6,16,32). We remark that each of the previous results known to the authors was obtained by
considering only a particular parameter sjtuation.
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cdges aumber of vertices »

e 1 2 3 4 5 & 7 (] 9 10 n 12 13 1) 13 16 17§ tonl
[ T 11 1) ]
| (R T T T | It
2 1 2 2 2 | 1
4 [ T | 7 3 ) 23
[ 2 9 1N 10 2 ) 37
3 1 7 10 (] ) 60
7 4 20 44 26 S 99
[} 2 m 70 16 ) 170
9 P11 142 60 3 - 290
10 5 6 24 118 16 ! 493
1 1 40 284 4351 64 ] 84)
12 12 267 864 265 4 1422
13 9 185 1255 900 20 2369
14 3106 1344 2393 "9 3923
15 2 47 114 444 644 ) 6252
16 [l 22 707 61X 2693 4 936)
17 s M 6 7968 45 14637
1 3 167 482) 16445 3715 21803
19 ) 71 2885 23986 2402 29343
20 ) 28 1408 25267{ 10176 ) 36878
21 13 s65 19704 27978 16 47
22 4 206 11672| snas 177 63247
23 2 64 5404 | 6422) 1588 71219
24 ) 20 2016 * 56809 8494 67340
23 ) 3 630 36312 27013 ) 63963
26 2 169 17208 353157 ? 70543
27 4 6189 67224 101 73553
8 g’ 1729 56478 122 59037
29 ) 377 32238 3998 36611
10 66 12784 10910 123760
3 ] 33550 17552 21110
32 ! 699 16896 5 1760)
» 94 9957 39 10090
M *9 387 200 3796
35 ) 79 47 1342
16 100 803 903
n 7 &M 641
3 275 273
9 62 62
40 3 "2 13
41 0 3 )
42 _ 2 2
ol |12 3 7 14 37 100 356 1407 6657 10395 116792 275086 261520 64732 2576 7 | 761692

Table 1V. Number of (3,6,1,¢ )-graphs, g4

4.3. Building (3,7)-graphs

R(3,7)=23 [3], thus the maximal number of vertices in a (3,7)-graph is 22. Since the
exhaustive construction of all (3,7,1)-graphs is not feasible, we restricted our search to all
minimum (3,7,7)-graphs for n>15 (all minimum graphs with n<15 are described by theorem
1), and all (3,7,22)-graphs. This task becomes tractable since we have already constructed the
complete catalogue of all (3,6)-graphs. 1

In addition to algorithms described in section 4.1, we have implemented algorithms
DELTA and EXPAND performing the following functions:

DELTA(k +1,n,e) finds all degree sequences n;, i <k, of graphs satisfying (1) and the two
equations below, counting vertices and edges of the desired graph

& &
2 n;=n and E in .'=28.
=0 i=0

EXPAND (H k,n,e,d,Z(v)) constructs from a (3,k,n—d—l,e ~Z(v))-graph H all (3,k+1,n,e)-
graphs G such that G has some d-vertex v, and by preferring v in G, Ha(v) is isomorphic to the
graph H.
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The algorithm DELTA is a simple case of integer linear programming. In the implemen-
tation of EXPAND we have basically generalized the algorithms described by Grinstead and
Roberts [5). Similarly as in [5] we use the concept of a good pair of independent sets, but
without any restrictions concerning sizes of involved sets. To construct all (3,k +1,n,e)-graphs
we proceed as follows. If algorithm DELTA4-finds no solution then no such graph exists. If
DELTA produces some solutions, then define a small (if possible) set S of parameters for algo-
rithm EXPAND exhausting all possible degree sequences obtained by DELTA. Then running
EXPAND for all elements in S produces the desired graphs. We remark that the above steps
give an automatic method to produce results similar to many of the lemmas appearing in [5). In
this section we report results concerning only (3,k) graphs with k =7, but are optimistic about
applying this technique with some refinements also for k>8;

Let us illustrate the method. by an example of the search for minimum (3,7,16,20)-graphs.
The set of degree sequences obtained by algorithm DELT A is given in table V.

ns ng ns na A
1 0 5 10{0
1] 2 4 107 2
0 1 6 915
0 0 8 8| 8

Table V. Results of DELTA(7,16,20)

Hence any (3,7,16,20)-graph must have a full 3-vertex or a full 2-vertex. The minimum
(3,6,12)- and (3,6,13)-graphs are unique, thus running EXPAND twice with the corresponding
parameters will yield two minimum (3,7,16)-graphs mentioned after the proof of theorem 4.
They have degree sequences as in two last rows of table V.

The results of search for (3,7)-graphs is summarized in table VI, which gives the values
of ¢(3,7,n) and the number of minimum (3,7,n)-graphs for n>16, and in table VI, which
gives the number of (3,7,22,e)-graphs for all possible e.

n 16 17 18 19 20 21 22
e=e(3,7,n) | 20 25 30 37 44 51 60
831(".2) 2 2 1 11 15 4 1

Table VL. gy7(n,e(3,7,n)) for n>16

e 60 61 62 63 64 65 66 | total
g37(22,e) 1 6 30 60 59 25 10| 191

Table VIL g37(22,e)

Kalbfleisch {7] constructed a (3,7,22,64)- and a (3,7,22,65)-graph. He also derived some
general properties of (3,7,21)- and (3,7,22)-graphs. Graver and Yackel in [3] obtained
€(3,7,20)=44 and gave a construction of a regular (3,7,22,66)-graph with automorphism group
of order 10. The values of gs;(n,e(3,7,n)) and the corresponding graphs for # >20, including
the unique (3,7,22,60)-graph, were described by Grinstead and Roberts in (5]. They also esta-
blished that e(3,7,19)=37. The unique (3,7,18,30)-graph is that obtained by the general con-
struction of theorem 3, corollary 2 gives one of the (3,7,17,25)-graphs. The second of
(3,7,17,25)-graphs is a union of a pentagon and the unique (3,5,12,20)-graph. Also, several
bounds for some values of e(3,k,n) with k >8 appeared in (3,5,7}
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4.4. Maximum (3,7,22,66)-graph

We conclude this paper by presenting an interesting maximum (3,7,22,66)-graph with full
automorphism group of order 22, the largest group of symmetries among automorphism groups
for all 191 (3,7,22)-graphs. )

‘Define the graph H=(V,E) by V= VluV,, where V;=Zn and V3=(£:XEZHJ. and for
each i,jeZ,,

(i.j)€E iff i—j=%1,£3mod 11,
(i,)EE iffi=j=x2mod 11,
G.JEE iff i—j=%2,£3mod 11.

The full automorphism group of the graph A is isomorphic to the dihedral group D,, and
is generated by permutations (i—i +1,7—i+1) and (i——i,7—=i). One easily notes that H is
triangle-free. To prove that H is a (3,7)-graph, first observe that the subgraphs induced in H
by ¥, and ¥, are both isomorphic to the unique cyclic (3,5,11,22)-graph (see table I in sec-
tion 4). Thus any independent set of size 7 in H must have 4 points in ¥V, and 3 points in V3
or 3 points in ¥, and 4 points in V3. The (3,5,11,22)-graph has unique up to symmetry 4-
independent set, given by the difference sequence 2225 in the case of ¥, and 1415 in the case
of V,. The remaining details needed to show that H has no independent set of size 7 are left
for the reader. The hexadecimal encoding of the graph H appears in the first row of the table
IX in the appendix. We would like to point out that we had previously constructed the above
graph by the algorithm described in [8). This algorithm scarches for Ramsey graphs with a
given automorphism group.

Appendix

All the graphs given in the appendix are in the hexadecimal encoding explained in sec-
tion 4.1. The following procedure HEX—INC converts graphs from hexadecimal notation into
standard incidence matrix representation.

Algorithm HEX —INC (n,HEX,A)

Input:  n - number of vertices in graph G,
HEX[i}, i =1,.,words - array of integers representing a graph G on n points.

Output: A[i,j), 1<i,j<n - 0-1 incidence matrix of graph G.

begin

bit == n(n=1)/2-1;

word = 1;

for i==1 step 1 to n do

begin
Ali,i1=0;
for j:=i+1 step 1 to ndo
begin

"Ali,j]:= ALj,i] = mask (HEX [word ],bit mod 32), Y
if (bit mod 32 = 0) then word := word+1;
bit = bit-1
end
end
end

where mask (x,y) is 1 if x has the y-th bit on and 0 otherwise. The bits of each integer are
numbered from O to 31 starting from the least significant position.
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We present all minimum (3k,n)-graphs for 3<k <7 and S5(k—=1)/2<n (those with
n<5(k—1)/2 are described by theorem 1), and all maximum (3,7,22)-graphs. Each row of the
following tables represents one (3 ,k,n,e)-graph. The last column S=|Aut (G)| gives the order
of the full automorphism group of the graph. Potentially those with larger automorphism
group deserve more interest.

k n e HEX[1] HEX[2] HEX[3) HEX[4) HEX|S) HEX[6] S
4 8 10 7120861 8
S 11 15 361c00 80980861 8
12 20 2 a85050c2 1c044113 8
13 26 3141 82450823 8a85184b 52
6 13 15 1a03 80080208 100313 80
14 20 56020c3 81800 80980861 8
15 25 192 144220a 6043208 8044113 10
16 32 b20130 4140221 18250824 2286184b 96
b20130 2240240 14250424 218a184b 12
b05120 a4508a06 0481201 480861 4
5cd4lc0 a0509¢00 44030412 12541044 2
c88881 2282212 80405885 205184a 2
17 40 c3 8612106 b010c85 98390840 205a284c 2
70 48ca0814 a088¢cl2 a0950621 824a4412 2
7 16 2 608184 80042 84405040 18004021 128
6¢c01c0 400203 80208 100313 80
17 25 ac al0l10a 882800 80480008 4100313 80
e8 230023 4801002 8001800 80894421 8
18 30 1850048 40440884 44088047 101002 8081213 12
7 19 37 660 20c80884 20048981 2010408 8149090c¢ 20c021
622 c40088 80440141 4041081 8111048 809c088b
7a8 231008 cl141109 3002210 84a04 21024203

758 431012 448240c0 4121000 41102288 2800ci2l
2d4 fo8014 44128221 440880 4842008a 450023
684 40209014 44128560 4402800 40420082 24c025
668 ca0081 8010920 408102a0 8a08442a 2180441
370 16c0003  408c2084 10481020 42002288 40380205
390 21628004 48620481 2082020  254050c 40208205
570 1061040 80041141 30040a 209102a 320701
521 81210258 920011 d0412  404c0900 810c0445

7 20 44 | 34504283 9301204 61a80102 3002400 10101440 88404b0b
30d0024a 1806040 90321130 20284142 40081080 4800485
31820310 41448003 10218140 20a40c0a 84460016 100902l
1€210662 8029008 48700518 80205123 2208 21181121
22420068 ¢ia80113 a80501 80900281 44248028 80860701
344c0284 1241010 ca80300 54112042 1401802 8284d001
1d4206a4 10049001 24840041 84420310 81280120 208928
2d2404b0 81012802 14043209 34880443 40280000 61c032
12248714 112020  48a30013 6c01006 28014040 24822241
31508221 91850040 24b08118 1020490 41500010 22090528

318c0298 41825000 ¢c80802 52007021 3802 2282¢080
2830443 i420004 18870180 11842032 18280040 19002844
35110020  304d00da b006 3210508 €20018 4040d830

39050020 30801647 all1042 2c1110a 1008483 2302003
34410068 21228018 50201921 80500280 4489080 40208854

e = DN N NN LA L O e = DDA L

Table VIII Minimum (3,k,n)-graphs, n >5(k~1)/2
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Table VIII continued:

o5c0  bcd018b  80e02080 18100400 91110191 88044c80 90a0alOl
dlcO 3940100b 88801810 24b10103 4241101 88044c80 9020a105
39004 88990013 91840828  4b10103 5200142 1600c40 5020cll!
c9%0c  1c0a0385 28210  258006a 50ba00 18003080 448c2561

e s e ON

Minimum (3,7,21,51)-graphs, HEX has 7 words

The unique (3,7,22,60)-graph with automorphism group of order 2 is given by HEX on 8
words

24 ¢2424c]12 20310491 4a441da 1a45008 a241140a 10009020 1998068¢

Finally, table IX presents ten 6-regular graphs, which are all maximum (3,7,22,66)-
graphs. The first one was described in section 4.3; the second one was constructed by Graver
and Yackel in (3]

HEX
1 2 3 4 5 6 7 8

la 91038148 e108205 11081410 42035184 6248b0cl  2401c265 4240844b
27 8101b808 30488221 11044402 22222844 518 16109 1207058a aa30844b
70 89008708 1a00cl190 28814228  440450al 11448440 45118862  cc00844b
4b 810240c8 11608622 10022484 14301460 9421 88c0 620d04ac  6700844b
2¢ 8102b088 a88638 10011442 22110406 23028al8 980c8584 a700844b
51 29008cd8 1008708 10008612 441244a0 63 120248 4a0652a5 4d00844b
59 9024828 12a0830a 10880cl8 6602508 52110980 584cdlcb  4940844b
55 3000e88 19a0850a 10426082 24302540 20428312 2404clad  4540844b
54 31021448 15208505 101806d0  1402c104 52910920 98154320 ¢a80844b
4a al030148 2908311 11460420 4222604b  42alll0 b034aa0 ca80844b

22
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Table IX. All (3,7,22,66)-graphs

The electronic copies of the entire catalogue (or hardcopy of a portion of it) together
with basic manipulation procedures written in C under UNIX! can be requested from the
authors.

1 - UNIX is » trademark of Bell Laboratories.
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