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ABSTRACT

An algorithm for the construction of Ramsey graphs with a given auto-
morphism group G is presented. To fina a graph on n vertices with no
chque of k vertices, K,, and no independent set of / veruces, K,, k, | = n,
with an automorphism group G, a Boolean formula o based on the
G-orbits of k-subsets and /-subsets of vertices is constructed from inci-
dence matrices belonging to G. This Boolean formula is satisfiable if and
only if the desired graph exists, and each satisfying assignment to «
specifies a set of orbits of pairs of vertices whose union gives the edges
of such a graph. Finding these assignments is basically equivalent to the
conversion of a from CNF to DNF (conjunctive-to disjunctive normal
form). Though the latter problem is NP-hard, we present an “efficient”
method to do the conversion for the formulas that appear in this particu-
lar problem. When G is taken to be the dihedral group D, for n = 101,
this method matches all of the previously known cyclic Ramsey graphs,
as reported by F. R. K. Chung and C. M. Grinstead [“A Survey of Bounds
for Classical Ramsey Numbers,” Journal of Graph Theory, 7 (1983),
25-38], in dramatically smaller computer time when compared to the
time required by an exhaustive search. Five new lower bounds for the
classical Ramsey numbers are established: R{4,7) = 47, R(4,8) = 52,
R(4,9) = 69, R(5,7) = 76, and A(5,8) = 94. Also, some previously
known cyclic graphs are shown to be unique up to isomorphism.

1. INTRODUCTION AND NOTATION

In this paper we only consider two color Ramsey numbers, and follow the defi-
nitions and notation of Chung and Grinstead [1]. The two-color Ramsey num-
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ber Rk, /) is defined as the smallest integer n such that, no matter how the
edges of the complete graph on n vertices k', are colored with 2 colors. there
exists a monochromatic complete subgraph K, or K,. Equivaiently. R(k.!) is the
smallest integer n such that any graph on n vertices contains a clique of size k.
K, . or an independent set of size /. K,. We say that a graph T on » vertices has
the (k./)-property. or for short I is a (k, /. n)-graph. if and only if the existence
of I proves that R(k,1) > n. A graph I with vertex set X = {0.1.2,....
n — 1} is cyclic if the mapping g :x — x + 1 is an automorphism of I, addi-
tion performed moduio n. Note that any cyclic graph I' must have as an auto-
morphism group at least the dihedral group D, = (g,h). where h:x — —x.
since g"™*"":{u, v} = {—v, —u}. Whence the mapping & is also an automor-
phism of T

Table | gives all known values for R(k./), where 3 =< k = /. together with
the best-known upper and lower bounds for the other Ramsey numbers. The
data gathers information from [1] where further extensive references can be
found. from [8, 12, 13}, and from this paper. The centered numbers in the table
refer to the exact known values of R(k, /), whereas a pair of numbers gives the
best-known lower and upper bounds. A single number at the top of an entry in-
dicates a lower bound and is given when the above references do not cite any
upper bound better than the one implied by the weli-known recursive inequality
R(k.l) = R(k.l1—1) + R(k—=1,1), [3]. We note that the majority of lower
bounds of the form n < R(k,!) were established by the construction of cyclic
(k. 1. n)-graphs; the exceptions are marked in Table 1 by “e” or s.” An entry
preceded by “e” indicates that the graph has no evident structure; “s™ precedes
those entries that can be obtained by the method discovered independently by
Mathon [12] and Shearer [13]. New values obtained in this paper are marked by
“n.” We recently learned that the bound R(4.7) = 47 was aiready known in

TABLE 1
/ 3 4 5 6 7 8 9 10 11 12 13 14
k
e28 39 46 49 58 63
3 6 9 14 €18 e23 29 36 44 54 63 73 84
4 18 25 34 n47 nb2 n69
28 44
5 42 57 n76 n9%4
55 94
102
6 169
7 s205
586
8 282
9 s565
10 798
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1978 to R. Irving. and the bounds R(4.8) = 52 and R(3. [4) = 64 were known
in 1985 to V. Longani {all three unpublished. private communications|. Note
that this last bound improves that given in the table.

The regular coloring of edges in the sense of Kalbtleisch {8] of the complete
graph K, can be formulated as follows: Label vertices of K, by integers mod-
ulo n. Z,. and consider _n/2_ classes ot edges. where the class of the edge
e = \i.jr. 1.j € Z, is deftined by the number distte) = min{i —~ ;.; — i}, A
coloring of K, is regular iff distie,) = distte.) implies that edges ¢, and ¢. have
the same color. In the case of two colors. say red and blue. interpret red as an
edge and blue as a nonedge. Under such an interpretation the regular 2-coloring
corresponds exactly to cyclic graphs with at least a dihedral group of svmmetries.

Our group theoretical approach generalizes the above method of regular col-
orings. the method by Guldan and Tomasta [4|. and also partially generalizes
the method of sum-{ree-sets used by Hanson [5] and Hanson and Hanson {6].
Another interesting group theoretical construction was investigated by Hill and
Irving in [7], where they proved that R(7.7) = 126.

Section 2 presents combinatorial and algebraic concepts used to construct in-
cidence matrices for our aigorithm. Section 3 gives the construction of the
Boolean formula a used later to derive (k. /. n)-graphs. Our main resuit. a char-
acterization of (k./.n)-graphs with a given automorphism group. is given in
Theorem 3. This characterization leads to a natural algorithm described in sec-
tion 4, where we also present some of the details of our implementation. in-
cluding remarks useful for programming the method. Finally. in section 5 a
report of the new lower bounds and other results is given.

2. PATTERN MATRICES FOR (k,/,n)-GRAPHS

We start with the definition of incidence matrices as applied in [9] in the theory
of r-designs (generalized Steiner systems) and used by the authors in [10] and
[11] for the construction of some simple r-designs with t = 6.

Definition 1. Let X be a set of n elements, G a subgroup of the symmetric
group of permutations of X, G = Sym(X), and 1, k integers, | <r <k < n.
The incidence matrix B, belonging to the group G is defined as follows:

(a) the rows of B, are indexed by the G-orbits of z-subsets of X

(b) the columns of B, are indexed by the G-orbits of k-subsets of X;

(¢) B,ll,J) = {F € I:F C Fy}|, where F, is any fixed representative of
orbit J.

A simple counting argument gives the first lemma:
Lemma 1. The incidence matrix B, has column sum equal to (}). i.e., for

each J, a G-orbit of k-subsets of X, Z{B,[l,J]): 1 is a G-orbit of 7-subsets of
X}=®.
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Lemma 2. On a vertex set X there is a 1-] and onto correspondence between
the (k./.n)-graphs with an automorphism group G and the (0. I)-vectors U.
indexed by the G-orbits of 2-subsets of X. which simultaneously solve the
inequalities

k
(U -By)lU]l< <2

(U - B,)[J] > 0 for all G-orbits J of /-subsets of X . (2)

) for all G-orbits J of k-subsets of X . (0

where B, . B, are incidence matrices belonging to G.

Proof. Suppose I’ = (X, E)is a (k. [, n)-graph with automorphmsm group G.
If {u,v} € E then for all g € G {uf,v*} € E, which implies that E must be a
union of some G-orbits of 2-subsets of X. Define the vector U. indexed by
G-orbits of 2-subsets of X, by U[/] = 1if I C E, otherwise U[/] = 0. To
show that (1) holds, consider some G-orbit J of k-subsets of X and take any of
its representatives. say F, € J. The subgraph induced by F;, in I has less than
() edges since T has no k-cliques. Note that (U - By)[/] counts the number of
edges in subgraphs of I' induced by any representative of J, in particular by F,,.
so (1) follows. Similarly, (2) hoids since (U - B,)[J] counts number of edges
in subgraphs of I" on /-vertices. Conversely, let U be a vector satisfying (1) and
(2). Define the graph I on vertices X by

E = U{l:1 is a G-orbit of 2-subsets of X and U[/] = 1}.

Now. similarly as before, (1) implies that I' has no k-cliques, and (2) implies
that T has no /-independent sets. 1§

Example 1. Letn =8, X = Z;,G = D¢, k = 3, and | = 4. We label D,-
orbits of 2-. 3-, and 4-subsets of X by sequences describing differences between
consecutive elements of a representative in given orbit, for example, the se-
quence “4 4" denotes the orbit of 2-subsets {04, 15, 26, 37}. The incidence ma-
trices B, , and B, , belonging to group Dy are as follows:

(8) (16) (16) (8) (8)

B,; 116 125 134 224 233
17 2 1 i 0 0
826 1 1 0 2 1
(8)35 0 1 1 0 2
444 0 0 1 1 0

RAMS
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(8) {16) {8) (8) (4) (16) {8) {2)
B,o 1115 1124 1214 1133 1313 1223 1232 2222
@17 3 2 2 2 2 1 1 0
826 2 2 1 1 0 2 2 4
(8)35 1 1 2 2 2 2 3 0
@4)44 0 1 1 1 2 1 0 2

The numbers in parenthesis denote the lengths of the corresponding orbits. The
orbits indexing rows and columns of matrices are denoted by their difterence
sequences. The only two (0. |)-solutions to the simultaneous inequalities (1}
and (2) are L', = (1.0.0.1) and U, = (0.0. |. 1). and according to Lemma 2
U, and U, correspond to the two existing cyclic (3. 4. 8)-graphs. which are iso-
morphic. Note also that, according to Lemma 1. the sum of entries in each
column is equal to 3 in B, ; and 6 in B, ..

The incidence matrices B, contain redundant information for our purposes:
namely. we will show that Lemma 2 can be modified to be true for simplified
(0. 1)-matrices B, . Let

I if B,(1.J] > 0:

) (3)
0. otherwise .

Bi1.J] = {

for all orbits /,J labeling rows and columns of B, . Define ﬁ,‘. from B, by identi-
fying equal columns in B as one column in B, labeled by the union of the cor-
responding G-orbits of k-subsets.

Lemma 3. On a vertex set X there is a 1-1 and onto correspondence between
the (k. [, n)-graphs with an automorphism group G and the (0. I)-vectors U.
indexed by the G-orbits of 2-subsets of X, which simultaneously solve the
inequalities

(U - By)[J1> 0 for all G-orbits J labeling a column of £, .  (4)
(U - B,)[J]1> 0 for all G-orbits J labeling a column of £, .  (5)

where U is the binary complement of vector U.

Proof. We show that a (0, I)-vector U satisfies (1) and (2) iff U satisfies
(4) and (5). Lemma | implies that a (0. 1)-vector U satisfies (1) iff for each
G-orbit J of k-subsets of X there exists a G-orbit [ of 2-subsets of X. such that
U[1) = 0 and B,,[1,J] > 0. The latter holds iff T[/] = | and 8,[1.J] = |
by (3). iff U satisfies (4). A similar argument vields that U satisfies (2) iff U
satisfies (5). 1
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Example 1 (continued). The simplified (0. 1)-matrices é: . and éz__. are as
follows:

By 116 125 134 224 233
17 1 1 1 4] 4]
26 1 1 0 1 1
35 0 1 1 0 1
44 0 0 1 1 0
1124
1214
. 1115 1133
B,, 1232 1223 1313 2222
17 1 1 1 0
26 1 1 0 1
35 1 1 1 0
44 0 1 1 1

According to Lemma 3. U, = (1.0.0. 1) and U. = (0.0. 1. 1) are the only twc
(0. 1)-solutions to (4) and (5).

Define § = Sté,‘} to be the set of columns of the matrix é,‘. Consider the
natural partial ordering = on S. (S.=). implied by the coordinatewise order
0 = 1. We show that only the minimal elements of S are important for the con-
struction of (k. /. n)-graphs.

Definition 2. The pattern mamx P, . belonging to the group G is the column
submatrix of the (0. 1)- matnx B,‘ belonging to the same group G. and has
exactly those columns of B, that correspond to the minimal elements of partial
order (S(B,‘) =¥

We now state the final version of Lemma 2 as a theorem:

Theorem 1. On a vertex set X there is a I-1 and onto correspondence be-
tween the (k. /. n)-graphs with G = Sym(X) as an automorphism group and the
(0. I)-vectors L  indexed by the G-orbits of 2-subsets of X. which simulta-

neously solve the inequalities

(C - P,1[J]>0 for all G-orbits J labeling a column of P., . 16
(L' - P,)[J] >0 for all G-orbits J labeling a column of P,, . (7)

where P. . P, are pattern matrices belonging to the group G.
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Proof. By Lemma 2 we only need to show that a (0. I-vector L satislies
(4) and (3) itf L satisfies (6) and (7). Since P, 15 a column submatrix of B . 14)
implies 16) and 15) implies (7). Conversely. for any column / of B, that 1s not a
column of P, . by the definition of P, there exists some minimal column J in
P .. such that J = [ in the sense of partial order 5. =<). Consequently. (6)
mmplies (4) and (7) implies (5). @

Example 1 (continued). The pattern matrices P. . and P. , are as follows:

P, 116 134 224 233
17 1 1 0 0
26 1 0 1 1
35 0 1 0 1
44 0 1 1 0
11158
Py 1232 1313 2222
17 1 1 0
26 1 0 1
35 1 1 0
44 0 1 1

Although Example | explains the sequence of constructions pertormed. it does
not show the amount of reduction that occurs for larger matrices. As an exam-
ple of typical reduction, consider the following: For n = 56. k = 5.1 = 6.
and G = Dy there are 3.819.816 S-subsets and 32.468.436 6-subsets of Z.,.
and the incidence matrices B. s and B. , have 34,111 and 289.955 columns.
respectively. while P, s and P, , have only 6164 and 9221 columns. Further-
more. using the method described in section 4. this situation easily produces
the cyclic (5. 6, 56)-graphs found in [6].

Finally, assuming a fixed automorphism group G acting on n vertices. let us
define the k-clique pattern matrix Cl, 10 be P,, and the Il-independent-set pattern
matrix In, as P,,. Note that in the case of searching for lower bounds for diago-
nal Ramsey numbers Cl/, = /n,, which halves the amount of calculations
required for the generation of matrices.

3. BOOLEAN CALCULUS

Let m be the number of G-orbits of 2-subsets of X, so Cl, and /n, are (0, 1)-
matrices with m rows. We will work with propositional Boolean calculus on m
variables x,.x,, .. .,x, with the following operators: "—" for negation, "+ (or



66 JOURNAL OF GRAPH THEORY

2) for disjunction. and " (or TI) for conjunction. If no confusion arises con-
juction is also represented by juxtaposition. The logical meaning of each vari-
able x,. 1 = i = m. s if the ith G-orbit of 2-subsets of X should or should not be
inciuded 1n the edge set of the (k. /. n)-graph under construction. Given a (0. | )-
vector V = (v, v... ... v, ) denote by neg(V) = X, _ x,and pos(V) = 2 _x .

Definition 3. The (k./.n)-graph formula «,, belonging to group G is

ay, = Bi * Y- where B, = Il{neg(J): J is a column of C/,} and vy, =
{pos (J): J is a column of /n,}.

Theorem 2. On a vertex set X there is a 1-1 and onto correspondence
between the (k./.n)-graphs with an automorphism group G and the (0. | )-
assignments to the variables x,.x,.. .. .x, satisfying the (k./. n)-graph formuiz
oy, belonging to group G.

Proof. By Theorem | we need only to show a I-1 and onto correspondence
between vectors U satisfying (6) and (7) and true assignments to formula q;, .
The correspondence is x, = | iff U[/] = I, where [ is the ith G-orbit of 2-
subsets of X. fori = 1...., m. Each of the inequalities in (6) with J. a G-
orbit of k-subsets. is equivalent to the fact that at least one of the literals in the
clause neg(J/) is true. so U satisfies (6) iff B,, is true under the assignment to x;s
defined by U. Similarly U satisfies (7) iff v,, is true under the assignment. de-
fined by U. The result follows, since a,, = B,, * ¥,,. ¥

We summarize Theorems 1 and 2 with the following characterization theorem.

Theorem 3. The following are all equivalent for a graph I' = (X. E£) with
G = Sym(X) as an automorphism group:

(i) T is a (k. /. n)-graph:
(ii) Each entry of U - B,, is less than (%) and each entry of U - B, is
nonzero. where U[I] = 1 if ] C E.O otherwise:
(ii)) The Boolean formula a,, is satisfied by the assignment x, = | iff E
contains the ith orbit of edges.

The formula a;,, is in conjunctive normal form (CNF): as it is well known.
the derivation of all the satisfying assignments is computationally equivalent to
the conversion of the formula to 1ts disjunctive normal form (DNF). The corre-
sponding decision probiem is NP-complete |2]. so we do not pretend to give an
efficient general algorithm for such a transformation. However. in the next sec-
tion we will describe a reasonable approach. which was used successfully to
solve all the pattern matrices we were able 1o generate so far. To avoid an
explosion in the number of terms during the transformation to DNF. we use the
heuristic strategy of alternately multiplying factors from B, and vy, . preferring
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those having a smaller number of terms and, or those leading to immediate can-
cellation of terms by the subsumption and or contradiction rules of Booleun
algebra.

Example 1 (continued). The formulas from Definition 3 for this example are

Biv = (X, T X)X + X = X)X = X)X = X

D2 St A Tl N S 2 29 N S o SR SR N SO I Y

Using the strategy mentioned above. with easy algebraic manipulations we
obtain

Oy gy = Bagt Yap = 0000 F 00N

which gives us exactly two satisfying assignments to a , , and by Theorem 2
they define the only two cyclic (3. 4, 8)-graphs.

The formula equivalent to «,,, but with many more clauses, could be
defined directly from matrices B, and B, and still would satisfv Theorem 2.
However, the sequence of constructions presented here reflects the structure of
the most efficient algorithm we were able to design.

Example 2. A search for (4,4, 17)-graphs is as follows: Since k = | = 4,
the pattern matrices Cl, and /n, are both equal to P, , for any group chosen. Set
X = Z\; and consider the three different groups:

(a) The trivial group G,. The pattern matrix P, , belonging to G, has (;) =
136 rows and (%) = 2380 columns, and solving it is equivalent to an ex-
haustive search among all graphs on 17 vertices.

(b) G, = D,;. The pattern matrix P, , belonging to G, has 8 rows and 12
columns. The formula a, , |; can be caiculated by hand, leading to two
self-complementary (4, 4, 17)-graphs I', and T, where [, = (X.E,), for
i =1,2,E, = {e:dist(e) € {1,2,4,8}} and E, = {e :dist(e) €
{3,5,6,7}}.

(c) Gy = SAF,;, the special affine group defined by {x — ax + b: a is a
nonzero square in Z,,,b € Z,;}. The pattern matrix P, , belonging to G,
has two rows corresponding to squares and nonsquares in Z,, and one
column. The same solutions as in (b) are obtained immediately without
effort.

Thus it is clear that the choice of automorphism group G is crucial in obtain-
ing a tractable Boolean formula a,,,. The choice of the correct group is perhaps
one of the most difficult steps. It is easy to see that the chosen group cannot act
more than transitively, for otherwise there wouid be only one orbit of edges.
Although the dihedral groups appear profitabie (ali new lower bounds obtained
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in this paper use a dihedral group). we believe further improvements of lower
bounds will be obtained with groups that do not lead to cyclic graphs.

4. ALGORITHM

The algorithm that follows naturally from Theorem 3 is

Aigorithm

(1) Input a chosen group G.G = Sym(X).lX = n.as a candidate for an
automorphism group of a (k./.n)-graph.

(2) Construct the incidence matrices én and B,, belonging to G.

(3) Construct the pattern matrices P,, and Py, belonging to G by finding
minimal columns of matrices ﬁz‘. and B.,.

(4) Build the (k. /. n)-graph formula e, belonging to G and find all the
satisfying assignments for a,,. Each such assignment (if any) yields a
(k.l.n)-graph with automorphism group G; furthermore. all such graphs
are obtained.

The programs were written in the programming language C for the supermi-
crocomputer MASSCOMP MC 500 running UNIX.* In our implementation.
rather than building one big program. we have followed the spirit of UNIX by
writing a package of programs for separate tasks and then using them as tools
together with system facilities. We will comment briefly on each of the steps
(2) through (4) above. stressing the more important aigorithms and techniques
used.

(2) We found more problems with huge memory required to store matrices
rather than with the time of computation. The columns of binary matrices
were packed into integers, which saves memory and permits an extensive
use of fast word bitwise operations. For the dihedral group. it is fairly
easy to write a program with an output stream formed by the columns of
matrix Bj. Further memory savings were obtained at this stage of com-
putation by buffering this output and performing local subsumption of
columns, i.e.. if inside the buffer. / = J for some columns / and J.
column J was eliminated. This reduced stream of columns was distributed
over different files according to the number of ones in each column.
Finally. the matrix B,, was produced by sorting files and deleting identical
elements. This was done on each file separately.

(3) The form of data obtained after step (2) permits efficient construction of
matrices P,,. since to find minimal columns we only need to execute &

*UNIX 1s a trademark of Bell Laboratories
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subsumption algorithm for each file of columns against only those files
with a larger number of ones in each column.

(4) To find satistying assignments to formula e, a recursive backtracking
algorithm is used. During the recursion we keep track of statistics of
number and location of columns (clauses of the formula a,, ) with a
fixed number of ones. Once the value of some variable . is assigned to 0
or |. the ith rows in C/, and /n, are eliminated. If x = 0 then all the
columns of C/, satisfying (6) are eliminated: it x = | then all the
columns of /n, satisfving (7) are eliminated. In both cases the statistics
are updated and then used to choose next variable x . When both
matrices C/, and /n, vanish then a satistying assignment(s) to the formula
ay,, has been found. The creation of a column with no ones returns recur-
sion to the higher level. This technique. with the heuristic strategy men-
tioned in section 3. permits the implementation of an efficient branch
and bound recursive algorithm with a surprisingly narrow recursion tree.
For example, in the calculation of R(4.7) = 47 the formula a, - .. has
2*' = 8.388.608 possibie assignments. but in our backtrack algorithm
only 1127 assignments were considered to find all of the |1 cyclic
(4.7.46)-graphs.

It seems that we are able to solve practical problems in which there is a large
number of columns in the incidence matrices. The bottleneck of the method is
the number of rows, i.e., the number of orbits of edges. With our current
implementation we can handle matrices with up to 64 rows.

5. RESULTS

5.1 New Lower Bounds

For each of the new lower bounds obtained, (. /. n)-graphs were constructed on
vertex set Z, with the dihedral group D, as an automorphism group. For each
parameter situation the graphs are specified by a set of values DIST C Z,.
where the graph has an edge e iff dist(e) € DIST. For notational convenience
pr{n) denotes the set of positive integers relatively pnme to n and smaller than
n/2, and the set obtained by multiplying DIST by s € pr(n) is
{dist({0, sx}): x € DIST}.

R4 7)=47 n =46

DIST = {1,2,4, 12,13, 17, 19, 20}. This is the unique cyclic (4.7.46)-graph,
up to isomorphism. All of the 11 cyclic (4, 7, 46)-graphs can be obtained from
this one by multiplying DIST by the 11 numbers in pr(46). There does not exist
a cyclic (4, 7. n)-graph for n = 47,48, and 49.
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R4, 8) = 52, n =51

There are exactly 4 nonisomorphic cyclic (4. 8.51)-graphs given by

(a) DIST, = {1.2.5.6.8.12,15.17.25).
(b) DIST, = {1.2.5.6.9. 12, 17.19. 25}
(¢) DIST, = {1.2.5.9,11.12.17.19, 25},

(d) DIST, = {1.2.5,9.12.17.19. 25}.

All of the 64 cyclic (4.8.51)-graphs are obtained by multiplying
DIST,. i = 1.2.3.4, by the 16 numbers from pr(51). The graph defined by
DIST, is a subgraph of those defined by DIST. and DIST,. There does not exist
a cyclic (4. 8, n)-graph for n = 52.53.

R(4,9) = 69, n = 68

There are exactly 7 nonisomorphic cyclic (4, 9. 68)-graphs given by

(a) DIST, = {1,2,6,7.9, 10, I5. 18, 22, 32, 33}.
(b) DIST. = {1.2.9,10. 15. 16, 18, 23,24, 28. 32}.

(c) DIST, = {1,2.6,7.9. 18, 19. 24, 28. 32, 33},
(d) DIST, = {1.4,5.10, 12.21.22,24,27,28, 33},
(e) DIST, = {1.2.7,11.12,17.18. 20, 27, 28. 32}.
(f) DIST, = {1.4.5.10.12.22.24,27,28.33}.

(g) DIST- = {1,4.5.10.12,22,.24,25,27.28,33}.

All of the 112 cyclic (4.9, 68)-graphs are obtained by muitiplying DIST,. i =
..., 7 by the 16 numbers from pr(68). The graph defined by DIST, is a sub-
graph of those defined by DIST, and DIST,. There does not exist a cyclic
(4.9.69)-graph.

R(5,7) =76, n= 75

There are exactly 4 nonisomorphic cyclic (5.7, 75)-graphs given by

(a) DIST, = {1.2.3,5.9.10.12.16. 19.22.24. 26.27.31. 32. 33}.
(b) DIST, = {1.2.3.5.8.9.10.17.19.20.28. 30. 33. 34. 36}.

li2

B

2
(c) DIST, = {1.2.3.5.8.9.10.17.19.20.21. 28. 30. 33. 34. 36}.
(d) DIST, = {1.2.3.6.7.8.15.16.17.19.22.27.28.31. 33. 34}.

All of the 80 cyclic (5.7.75)-graphs are obtained by multiplying DIST . i =
1.2.3.4. by the 20 numbers from pr(75). The graph defined by DIST. is a
subgraph of that defined by DIST,. There does not exist a cyclic (5.7.76)-
graph.
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R(5, 8/ =94, n = 93

Two of the several cyclic 15.8.93)-graphs we found are

DIST = {1.2.3.11.12.14.16.17.18.20.22.24. 27,29, 3], 32.39. 40. 46).
DIST. = DIST U {37},

The full search was not completed.

5.2. Uniqueness of Graphs that Appear in the Literature

R(5,6) = 57, n = 56

The cyclic (3. 6. 56)-graph with
DIST = {2.3.6.9.14.16.18.19,23,24.25.27.28;

was given in [6]. We have found that it is the unique cyclic (5. 6.356)-graph. up
to 1isomorphism. All of the 12 cyclic (5. 6. 56)-graphs can be obtained trom this
one by multiplying DIST by the 12 numbers in pr(56).

R(6, 6)

A cyclic (6.6, 101)-graph with DIST = {a: a is nonzero square in Z,, and
a < 51}. which proves that R(6,6) = 102. was given in [8]. Using our
algorithm we have found that

(a) The above graph is the unique up to isomorphism cyclic (6. 6. 101)-graph.
(b) There does not exist a cyclic (6, 6. n)-graph for n = 100, 102. and 103.

Thus the existence of a cyclic (k./,n = 1)-graph does not always imply the
existence of a cyclic (k,/.n)-graph [a simpler counterexample is as follows:
there exists a cyclic (4. 4. 17)-graph, but there does not exist a cyclic (4. 4. 16)-
graph]. It would be interesting to find other such counterexamples.

5.3. Note

Searching for the answer to a question in [6], we have noted an interesting
case: The cyclic graph on Z,, defined by DIST = {2.3} is the unique cyclic
(3.5, 12)-graph. Modular multiplication of DIST by pr(12) = {1.5} fixes the
graph defined by DIST. Hence, in the search for cyclic (k. /. n)-graphs with
k # [, by assuming 1 € DIST the generality can be lost.
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