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ABSTRACT

At the Seventeenth Southeastern International Conference on Combinatorics,
Graph Theory and Computing we presented a new algorithm for finding
t-(v k,)) designs without repeated blocks. The central idea of the algorithm
was basis reduction. This year we report on the success we have had using it
Namely, the construction of several new simple t-designs including a
4-(12,6,10) design, a 6-(14,7,4) design and 5-(28,6,A) designs for each

admissible A, A #1 (or 22),

1. Introduction

This paper is an expository account of the new t-designs we found using the method we
introduced at the Seventeenth Southeastern International Conference on Combinatorics,
Graph Theory and Computing, [8]. This method is the first use of basis reduction for finding
t-designs. The two works that inspired our development of basis reduction are the 1985
paper of Lagarias and Odlyzko [13] in which they use a similar method to attack the subset
sum problem and the 1973 paper of Kramer and Mesner {7] in which they give an algebraic
formulation that expresses when a ¢-design can have an automorphism group.

Recall that a t—(v k A) design (X ,B) is a family of k-subsets B called blocks from a v-

set X of points such that every ¢ ~subset T C X is contained in exactly A of the blocks in B. It

is said to be simple or to have no repeated blocks if all of the members of B are distinct, A
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group G < Sym(X) is an automorphism group of a t=~{rk A) design (¥ B) if every geG
preserves B. That is for al] 8€G and X €8 the k-set K'=(x?:xeK)is also a block in 8.
Here x? denotes the image of x under the permutation g, and K7 is said to be the image of
the k-set B. The collection P = X G = (K?:2 €G) is said 1o be a G-orbit. Clearly, G is an auto-
morphism group of a t=~(v .k ,A) design (X.,B)if and only if B is a union of G-orbits. The full
automorphism group of a t~(v,A) design (X.B) is the set of all automorphism in Sym(Xx)
preserving B. A t=(v kA) design whose full automorphism 8roup is the trivial group is said to
be rigid.

Given a group G <Sym(X) and integers 0<¢ <k <y =X, leta,, . WA, e »Ay, and
| STREERIN I +Tn, be the G-orbits of ¢ and k-subsets, and define the N, by N, matrix
Ay = Ax(G1X) to have (i.j)"‘-cntry equal to |(K eI‘,-:K.‘_.'T)l where Tea is any fixed

representative. See figure 1.

Dk r; A Tw,
4,
4; >y -
Ay,

kl(l( €l;:K2T), T e, fixed,
Figure 1: The Ayx matrix belonging to G acting on Y.

Then the following 1973 observation of Kramer and Mesner is clear,

A t~(v k) design exists with G < Sym(X) as an automorphism group if and only if
there is a (0,1)-solution U to the matrix equation
AU = Ay, 1)
where Jy =[1,1,1,..1]7.
In [8] we gave the following method for finding a solution to equation (1). We let [ pe the

Ny +1 dimensional integer lattice Spanned by the columns of the matrix below

Iy, 0©

Au =My, @
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Let Oy, be the N,-dimensional zero vector. Then as pointed out in [8] the following proposi-
tion and discussion is clear,

PROPOSKTION I: 44U =d-ry, Jor some integer 4 if and only if (U On)Te L.
¢ (3

Thus to find a (0,1)-solution U to Ay U =AJy, we need only look for a linear combina-
tion U-[U.O,.]" of the columns of matrix (2) such that U is a 0,1)-vector. If U $ly,
then we will have found 8 {~(v,k.d-)) design for some Positive integer d. Note that
since the complement of a design is a design then the search can be restricted to
UP<n/2 Thatis, Uisa particular short vector in [,
The algorithm presented in (8] tries to find in [, a8 new basis all of whose vectors are as short
® we can make them. We refer to this method as basis reduction and the new basis asa
reduced basis, Apparently, if a solution to (1) exists, it is likely that it will appear in a
reduced basis. In fact several new simple t-designs all with t 24 were found using this
method (9,10,11]. In the sections that follow we give a summary of the new designs and some

open problems connected with them.

2 5-(28,6) designs from PSLy(27).

In figure 2 appears the A3 ¢ matrix belonging to PSLA(27). Solutions giving a 1—(» k A)
design are also shown for each A, 2<A< 11 A detailed description of these designs appears
in {10} The only open parameter situation with ¢ =5 k=6and y -28_ is thus A = 1, since the
complement of a t~(v.k ) design is a t~(v k,23-1) design, As was pointed out by Dennis. -
ton in [6), PSL,(27) cannot be the automorphism group of a 5(28,6,1) design hence we state

the following problem.

PROBLEM 1: Does there exist a 5-(28,6,1) design?

3. Cylic 5-(13,6,4) designs and their extensions to 6-(14,7,4) designs

Here we give a Summary of what is known about the cyclic S-designs found in [9) and
announce some new 5(13,6,4) designs that have trivial automorphism group,
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111100110100110000201000000101111000001001000010000001
003111101110000000000011000100000001001010101011001101
100021110011200000111001100110100000010000010001100010
000000000100011030110!11111020000000000000200100111100
011001001011100010030100100000000000010111011000031200
102000000100000013000001000000011101100100112131000100
300000000011010310001000010110010101100002130000010010
000000010100011000110010011001030002000000000103110131
000000001030200010110001001210010120101000001011000010
100130000000011000000100000011101001010111111010010010

----------- L R Rl Rl A T )
------ L R R R B R Ry SR R Y
R R L R L Pecetteattec-tt-a-atAmd
“leee-. Teceacocannnas Pevee- LR Pesetlecteatacfr-Ans
--------- IR R R AREES EEERRY PRY P B S S T
SR REIREED S EEE KRS EERE & B § FRTE NN T TR 1 1 1 DTS Teeeet--1d=7
SRR ERE LRSS R R LEEEEE N A & R R T-ef-ft---A=8
celec-etlecctlecectectotoccalonaaann Pecena TTiteect--11-1=9
STtetle-e-n. Peetlelootetocecettoteaatlectocanaan tT-ct-tt-2=10
R AR EEEE RE RS & R R O £ RIS I I S, Prf-etet-ctt-A=ll

Figure 2: The A44 matrix belonging to PSLy(27) acting on the projective line and solutions.

IfX=Zyand G =<x —x +1> then G is cylic and the A s matrix belonging to G is 99
by 132 With some modifications our basis reduction algorithm found that there are exactly
two non-isomorphic solutions. A complete description of these designs can be found in [9].
Also in the same paper it was established that these two designs are nonisomorphic and each
have full automorphism group cyclic of order 13. Furthermore they partition all of the 6-
subsets. Utsing Alltop's Theorem [1] any 5+(13,6,4) design (X.B) can be ext.ended to a 6-
(14,7,4) design (X Ulee),B ‘UB*°) where

B’ =(K|lw):K €8) -
B w(X-K:KgB)
These two 6-designs each have full automorphism group cylic of order 13 and they partition
all of the 7-subsers.
In this paper we would like to point out that the extension from 5-(13,6,4) designs to 6-
(14,7,4) designs is unique. Furthermore, if (X (oe},B(YB*’) is the extension of 3 cyclic §-
(13,6,4) design (X,8), thea the derived designs with respect to any point x € ¥ have trivial

automorphism group. So we state and prove the following theorems.
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THEOREM L IffXB)isa35-(1364) design it has a unique extension to a 6-(14.7.4) design,

Prouf: Let 1 denote the trivial 8roup and suppose that (X,B) is a 5-(13,6,4) design. Then

13
there is a (0,1) solution U 10 dy(1]X)U = 4Jy,, where Ns=(s) Furthermore if
X = X|(co), then arranging the rows and columns so that those sets containing co appear
first it is easy to see that

Ag(11X) 0

AdUX) = Al

13
where I,,. is the Ng by Ng identity matrix, Ng= ( 6 ), and 0 dcnotes the matrix of all 2C108.
Thus a 5-(13,6,4) design has an extension to a 6-(14,7,4) design if and only if therc is a(0,1)
vector ¥ such that
; U 41 ”S
Ag(11X ) vi= 4J”°
In particular V must solve
U+VA31(||X)-4J"° (3)
Observe that 6+ 7= 13 a 1X |. Hence, by lemma 10 of [12] Ag4(11X) has an inverse. Thus V' is
completcly determined by U. Whence, since Alltop's construction [1] provides a (0,1) solu-

tion V to (3), any 5-(13,6,4) design has an extension which is unique. o

Recall that if (X,8) is a t=(vk,A) design then for cach xeX the derived design with
respect to x is the (t=-D)~(v=1k=1,) design (A,8,), where A= X=(x) and
B, ={K-(x):Ke8) If G < Svm(X) fixes a subsct AC X, then cach permutation g2eCG
induces a permutation g% on A and we denote the totality of ¢2's formed by G4. Note that

the stabilizer in G of x is G, and fixes the set A= X =-(x).

THEOREM 2 Let(XB)beab-(147.4) design with full awomorphism group G. Then for cach

X € X, the derived design with respect to x has full automorphism group G where A= X -{x).

Proof: Let (X,B) be a 6-(14,7,4) design. Fix x €X, sct A= ¥={x)and lct H be the full auto-

morphism group of the the derived design (4,8, ) of (X,B) with respect to x. It is casy to scc
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that

22 H. However, we note by theorem 1 that (X ,B) is the unique extension of (A.8,) so it
must be obtained by Alltop's construction [1]. That is
B=(K{x):K €8, )yla-K:K ¢€8,)
Whence, if a€ H then (A-K P aA-(K® and then the extension of a to &: X — X given by
y2ay®if y #x and x%ax must preserve B. Thus the mapping a—4& is an isomorphism:

H =G, and H = G2 as claimed. 4

If (X.B) is a t=(r k A) design then (X,B) where B = (f) is a 1-(1',1;,(,::“)-,\) design
and is called the complementary design of {X.B). We note that the complementary design of a
6-(14,7,4) design is also a 6-(14,7,4) design.
THEOREM 3: Let (X.,B) be a 6-(14.7.4) design and let (X .B) be its complementary design.
Then for each x €X any isomorphism a:(X—(x},B:)—(X —{x),B,) lifis to an isomorphism
a:(X,B)—(X,B).
Fix x€X, sct A=X-{x) and supposc a:(A.B,)—o(A,E,) is an isomorphism. Dcfinc
a:X—=XDbyy*=sy®ify¥xand x*=x. Then & isa isomorphism from (Y ,B) to (Xx,8) since
by Alltop's construction and theorem | we have
B={Klx):K€B,)UlA-K:K€&B,)
F=(kyx):KeBIula-K:KeB,)
o
COROLLARY: The 6-subsets of a 13-set can be partitioned into two nonisumorphl_';: rigid
5-(13.6.4) designs.
Proof: Let A=nZyy, X =4 {oo) and considcr the two complementary 6-(14,7,4) dcsigns
(Y.B)and (X ,B) found in {9} These two designs arc nonisomorphic with full automorphism
group cyclic of order 13 gencrated by the permutation a which is x —x + 1 on A and [lixcs

co. Now fix x € A and apply Theorems 2 and 3. The result now follows. 4
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This section suggests the following problems,

PROBLEM 2. Does there exist a way to partition the 6-subsets of a 13-set into two iso-
morphic designs?

PROBLEM 3: Does there exist a shorter description of the 6-(i4,7,4) designs found in [9]?

4. A 1-rotational 4-(12,6,10) design.

Using basis reduction we were also able to establish the existence of 1-rotational simple
4-(12,6,10) designs. A t=(v k A) is said to be d-rotational if it has an automorphism that fixes

exactly 1 point and has d [ vd;l]-cycles on the remaining points. The orbit representatives

for a 1-rotational 4-(12,6,10) design appear in figure 3.

045678 012568 0124510 0124600 024580
023456 023578 0234710 0235600 0456900
012346 024569 0245710 0145800 02459c
023567 014569 03468co 012480 034690
014567 024579 023450 045670 04561000
014568 0234610 0124500 023480 023510

Figure 3: These 30 orbit representatives when developed into 11-30 =330 6-sets
using the permutation x — x + | modulo 11 give a 4-(12,6,10) design.

5. Table of all small tdesigns: v <15 and ¢ > 3

In table 1 is a list of all t=(vk ) designs with v <15and ¢ >3 including the designs dis-
cussed above. The entry for b is the number of blocks in the design with minimum A if“it

were to exist. All other number of blocks can casily be calculated from this,
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Table 1

t k| b A remarks
1 Derived design of 5-(12,6,1)
41 51| 11 66 | 2 Derived design of 5-(12,6,2)
3 Derived design of 5-(12,6,3)
415]12 396 | 4 Denniston [5]
2 Does not exist Dehon and Oberschelp [14]
4  5-(12,6,1) as 4-design
6 Unknown
41 61| 12 66 | 8  5-(12,6,2) as d-design
10 Kreher and Radziszowski {11}
12 5-(12,6,3) as 4-design
14  extension of 3-(11,5,14)
T Witt [15]
56112 132 | 2 Witt two disjoint copies of A=1 [15]
3  Brouwer (2]
41 5] 13 429 | 3  Derived desien of 5-(14,6,3)
6 Unknown
416113 286 12 Kramer & Mesner [7]
18 5-(13,6,4) as 4-design
516113 858 | 4 Kreher and Radziszowski [9]
4| 61 14 ] 1001 ouwer {2]
S 1 3 ey e
1 ~1,12) as 4-design
WQ & {. 60 Brouwer [2]
5] 61| 141001 | 3 Brouwer {2]
KnowS 3 Brouwer |
MR 8? s| 7{14] 57212 Kramer & Mesner [7]
18  6-(14,7,4) as 4-design
61 7| 14| 1716 | 4 Extension of 5+(13,6,4)

We note that if a 5-(14,7,6) design were to exist, then it is a 4-(14,7,20) design and its
derived design is a 4-(13,6,6) design. Consequently to complete this table one geed only
establish the existence of a 5-(14,7,6) design and a 4-(12,6,6) design. Thus we have our next

two problems.

PROBLEM 4: Does there exist a 5-(14,7,6) design?

PROBLEM §: Does there exist a 4-(12,6,6) design?
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6. Summary

The results and problems Preseated in this paper are summarized below.

New Designs
. 5-(28,6,1) designs for each ) = 2,3,4,..., 21
. Two non-isomorphic cyclic 5-(13,6,4) designs.
. Two non-isomorphic rigid 5-(13,6,4) designs,
. Two non-isomorphic 1-rotational 6-(14,7,4) designs.

. A 1-rotational 4-(12,6,10) design,

Problems
PROBLEM 1: Does there exist a 5-(28,6,1) design?

PROBLEM 2 Does there exist a way to partition the 7-subsets of a 14-set into two iso-

morphic designs?
PROBLEM 3: Does there exist a shorter description of the 6-(14,7,4) designs found in
or
PROBLEM 4: Does there exist a 5-(14,7,6) design?
PROBLEM 8: Does there exist a 4-(12,6,6) design?
We add one aditional general problem.

PROBLEM 6 Under what conditions will basis reduction always be able to find a

(0,1)-solution to the Diophantine system Al = 827

We are now in the progress of trying to answer these problems and invite the reader to

do the same. We wish you the best of luck.
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