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Abstract—Authenticated encryption (AE) schemes are sym-
metric key cryptographic methods that support confidentiality,
integrity and source authentication. There are many AE al-
gorithms in existence today, in part thanks to the CAESAR
competition for authenticated encryption, which is in its final
stage. In our previous work we introduced a novel AE algorithm
MK-3 (not part of the CAESAR competition), which is based
on the duplex sponge construction and it is using novel large
16×16 AES-like S-boxes. Unlike most AE schemes, MK-3 scheme
provides additional customization features for users who desire
unique solutions. This makes it well suited for government and
military applications. In this paper, we develop a new array-
based statistical analysis approach to evaluate randomness of
cryptographic primitives and show its effectiveness in the analysis
of MK-3. One of the strengths of this method is that it focuses on
the randomness of cryptographic primitive function rather than
only on the randomness of the output.

I. INTRODUCTION

The overarching goal of symmetric key cryptography is to

enable private communication over an insecure channel in the

presence of adversaries. Two fundamental requirements for

achieving this goal are encryption and authentication. Encryp-

tion provides confidentiality while authentication provides data

integrity and assurance of message origin [1].

Many authenticated encryption algorithms are in existence

today, but they are often unsatisfactory in terms of perfor-

mance, security, or ease of use. Some algorithms require two

passes per block of plaintext to encrypt and authenticate.

This is generally undesirable because it often means a slower

algorithm. Some algorithms have been shown to be insecure

or difficult to use properly. Many algorithms, such as the

ones based on generic composition, require two unique and

unrelated keys. This should be avoided whenever possible

because key management is a difficult problem [2].

Furthermore, new authenticated encryption algorithms are

needed that meet the stringent requirements of government

and military applications. Such algorithms are typically not in

the public domain. The goal of such restriction is to reduce

or eliminate academic interest in cryptanalyzing the algorithm

and publishing results about it [3]. Our previous work con-

sisted of designing the MK-3 authenticated encryption scheme

satisfying all of the above [4], [5].

In this paper, we study randomness of the mapping between

the key, plaintext and cipertext as defined by the MK-3 scheme

using a new array-based statistical method described in the

following.

In the process of checking randomness of cryptographic

primitive functions, various inputs are selected, and then

randomness of the resulting outputs is checked. This task is

computationally intensive, since we want to check a large

number of possible inputs. Hence, it is important to use effi-

cient techniques, which, in turn, increases chances of detecting

non-random behavior. The main purpose of the array-based

approach is to improve the efficiency of this process. This

approach is a follow-up to some ideas presented in [6], [7]

We start with a simple scenario, where a cryptographic

primitive function can be represented as a function of two

inputs, the key and the plaintext, with the ciphertext being

the output of that function. The two inputs will be denoted

as A and B, and the cryptographic function output will be

written as Y = f(A,B). Since Y consists of N bits, we will

treat it as an N -dimensional vector of bits. The inputs A,B
consist of K bits each and will be treated as K-dimensional

vectors. In the array-based approach, we use sequences of

vector inputs Ai, i = 1, . . . , I and Bj , j = 1, . . . , J , and

produce the outputs Yn,i,j , for all possible pairs (i, j) and

n = 1, . . . , N , where Yn,i,j represents the n-th bit of the

output for Ai and Bj . The values of Yn,i,j can be arranged

into a 3-dimensional array, and the statistical testing is done

along various dimensions of that array. For example, we can fix

the value of j and test randomness of the bit-array consisting

of N · I bit positions

[Yn,i,j0 ]n=1,...,N ;i=1,...,I . (1)

This testing would be repeated J times for all possible

values of j0. Due to performing many statistical tests here, the

critical values for randomness detection need to be adjusted

for the multiple inference effect, which we do here using

the Bonferroni approach. When D instances of hypothesis

testing are performed, the probability of type I error of each

individual test needs to be set to α/D in order to obtain the

joint probability of one or more type I errors (in all D instances

of hypothesis testing) that is not larger than α. See [8] for more

details.

In a similar fashion, other dimensions can have a fixed

value, and the corresponding bit-array is tested. Two dimen-



sions can also be fixed, so that the set of bits for testing is

selected based on changing the third dimension. For example,

we could fix i at i0, j at j0 and the bit positions for testing

randomness would become

[Yn,i0,j0 ]n=1,...,N . (2)

One advantage of this array-based approach is that we

have a potential to detect non-randomness in a more selective

fashion. For example, if the non-randomness occurs only for a

certain value of input B being tested, this would be detected.

On the other hand, if the sequence of all bits Yn,i,j is tested,

this non-randomness might not be detected, since it could

potentially be masked by the remaining random data.

In our testing, we focused on the inputs that were non-

random. Using a random selection of inputs is detrimental to

an efficient process of detection of non-randomness. It is not

surprising to see random output from random inputs, even if

the function is non-random. An extreme example is that of

the identity transformation, where the output would be taken

as a concatenation of the two inputs. In this case, the outputs

from random inputs would also be random, even though the

function is highly non-random.

II. MK-3 AE ALGORITHM

The MK-3 algorithm is a single pass authenticated en-

cryption algorithm designed with hardware implementation in

mind. The core of MK-3 is a permutation function f comprised

of 4 transformations, which are computed on a 512-bit state

split into 16-bit words. This permutation function f is used

as the core of a duplex sponge construction [9]. The sponge

is a relatively new primitive made popular by Keccak, the

winner of the SHA-3 competition [10]. The sponge is unique

in that it can be configured to allow for a variety of different

cryptographic uses. It has an internal state S comprised of b
bits split into a rate r and capacity c, such that b = r+c. Basic

sponge construction consist of two stages. Data is ”absorbed”

into the sponge by passing it through the underlying function

f in r-bit length blocks. It is then ”squeezed” out, generating

output of arbitrary length specified at run time. The duplex

sponge construction is a slight modification of the sponge

which maintains state between calls while absorbing and

squeezing the data during each iteration [9]. Figure 1 illus-

trates this approach in the context of the MK-3 authenticated

encryption scheme, where AE functionality can be achieved

through successive duplexing calls with the key, initialization

vector (IV), additional authenticated data (AAD) and blocks of

the plaintext (Mi). Each absorbed r-bit plaintext block Mi is

used to produce one ciphertext block Ci, and the authentication

tag T is outputed at the end.

Pseudocode of the permutation f is given in Algorithm 1

and an illustration of a round operation is presented in Figure

2. The first transformation of Algorithm 1 is non-linear. It

passes each 16-bit state word through an S-box (line 7). The

S-box returns the modular inverse of the input multiplied by

a transformation matrix and added to an offset vector. After

Algorithm 1 MK3 Permutation f

1: Nr ← 10 (or 16) ⊲ number of rounds

2: Nb ← 512 ⊲ number of bits in state

3: Nw ← 32 ⊲ number of 16-bit words in state

4: function f (S) ⊲ permute state S in place

5: for r ← 1, Nr do

6: for i← 0, Nw − 1 do ⊲ substitution step S
7: S.word[i]← sbox(S.word[i])
8: end for

9: S′ ← S.copy()
10: for b← 0, Nb − 1 do ⊲ permutation step π
11: b′ ← (31b+ 15) mod 512
12: Sb ← S′

b′

13: end for

14: for j ← 0, Nw/2− 1 do ⊲ mix step M
15: i← 2j
16: (S.word[i], S.word[i+ 1])
17: ← mix(S.word[i], S.word[i+ 1])
18: end for

19: S ← S ⊕RC[r] ⊲ add round constant

20: end for

21: end function

substitution, the data is permuted by passing it to the affine

function π(x) = 31x+ 15 mod 512 (lines 11–12). The data

is then mixed, providing local diffusion. Neighboring pairs of

words are mixed together to produce two new words (lines

15–17) which are passed onto the next step. Finally, a round

constant is added to the state (line 19).

The security level of a keyed sponge was shown by Jo-

vanovic et. al [11] to be

min(2(r+c)/2, 2c, 2|K|).

The duplex sponge construction we use is the same as keyed

sponge for the first application of permutation, and thus this

security claim holds for one-block message. For general case

of duplex more thorough argument is needed as in [9].

The MK-3 scheme allows for keys K of length 128 and

256 bits. In both cases the rate r is kept at 128 bits and

c = 384, which permits for simple transitioning between

the two key lengths. The operational difference in MK-3

between key sizes is the number of rounds Nr which are

iterated while computing f , namely using a 128-bit key

requires 10 rounds while 256-bit key requires 16 rounds. The

number of rounds was determined by calculating the linear

and differential complexity over a number of rounds until it

exceeds the generic security of the algorithm [4]. Differential

and linear cryptanalysis of MK-3 showed that 6 and 12 rounds

are required to obtain a level of security above 2128 and 2256,

respectively. The additional 4 rounds for each key size are

used to further increase the security margin.

1) Substitution Step: A substitution box aims to provide a

non-linear operation to a cryptographic function. Generally, an

S-box takes in k bits of input and produces l bits. Although k
and l need not be equal, they are equal in both the AES and



Figure 1: The duplex construction

Figure 2: MK-3 round operation

MK-3, with k = l = 8 and k = l = 16, respectively. MK-3 is

the first cryptographic algorithm to our knowledge to employ

larger than 8-bit S-boxes [4]. The construction of 16-bit S-

boxes for MK-3 was presented by Wood et al. in [12]. These

S-boxes, similarly as the AES S-box, find the inverse of the

input and pass it through an affine transformation. The default

case for MK-3 is:
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A common way of finding the multiplicative inverse is to

use the Extended Euclid Algorithm. This is a fine solution for

software, however it is very complex to implement in hard-

ware, especially over 16-bit elements. To reduce complexity,

a non-standard composite field construction can be used to

directly solve for the inverse [4].

2) Permutation Step: After passing each word of the state

through an S-box, the state bits are permuted by π(x) =
31x+15 mod 512. In hardware this is a reordering of wires

according to π(x).
3) Mixing Step: Mixing functions operate over pairs of

16-bit state words. The mixer’s operation consists of the

multiplication of a 2 × 2 matrix of elements in the Galois

field GF (216) by the vector containing two consecutive state

words (3). The Galois field GF (216) is represented by using

irreducible polynomial q(x) = x16 + x5 + x3 + x2 + 1. The

two output words A′, B′ of the mixing step are given by
[

A′

B′

]

=

[

1 x
x x+ 1

]

×

[

A
B

]

. (3)

After the mixing step, the entire state has a 512-bit constant

added to it with bitwise ⊕ (XOR). The constants are derived

using Keccak, the SHA-3 competition winner. Each round

constant RCi is the output of Keccak calculated for the ASCII

value of the round number [4].

III. MK-3 STATISTICAL ANALYSIS

A. Data Generation Process

For the purpose of checking randomness of MK-3, we used

an approach depicted in Figure 3. The inputs A and B are

as described in the introduction section, and the whole state

C consisting of 512 bits is used as the Y output.

In order to generate a sequence of inputs Ai, i = 1, . . . , I,
we started with a sequence of 128 zero bits as the A1 vector.

Then we defined A2 vector by flipping the first bit of A1 to 1,

defined A3 vector by flipping the second bit of A1 to 1, and

so on, for all 128 bits of A1. This resulted in 129 vectors Ai,

for i = 1, . . . , 129. Note that each Ai for i > 1 has exactly

one bit equal to 1. The inputs B were defined in the same way,

so Bi = Ai, for i = 1, . . . , 129. The f function (see its use in

Figure 3) was calculated using k rounds, for k ranging from



Figure 3: Test setup

1 to 10. To summarize, for each fixed number of rounds k, our

data can be written as an array of bits Yn,i,j = fn(Ai,Bj),
where n = 1, . . . , 512; i, j = 1, . . . , 129 (for simplicity our

notation ignores the dependence on the number of rounds, k).

B. Randomness Checking

The first step in our randomness checking was to test the

frequency of 1’s against the expected statistical variability. The

top panel of Figure 4 shows the frequency of 1’s among

129 · 129 bits of the array

[Yn0,i,j ]i=1,...,129,j=1,...,129,

where n0 is the index shown on the horizontal axis. The

horizontal dashed lines mark the limits of the acceptable

statistical variability, which were calculated as

0.5± s · z(1− 0.05/2D) (4)

for s =
√

0.25/m, where m is the number of bits being tested

for the frequency of 1’s (here m = 129·129), D is the number

of multiple comparisons being performed (here D = 512),

and z(α) is the α level percentile from the standard normal

distribution. The limits in (4) are calculated based on the

normal approximation of the thresholds for rejection of the null

hypothesis that the probability of observing the value 1 is equal

to 0.5. The Bonferroni adjustment was explained in Section

I and more details are given in [8]. Observed frequencies of

1’s out side of the limits defined in (4) point to nonrandom

behavior.

We can see in the top panel of Figure 4 that the majority

of the frequencies are outside of the acceptable limits for the

case of only one round. This points to some non-randomness

when only one round of the algorithm is being used. The

second panel of Figure 4 shows analogous results when two

rounds are being used. Again, we can see a fair amount of non-

randomness in the data. Figure 5 shows analogous results for

cases when three and four rounds are being used, respectively.
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Figure 4: Frequency of 1’s accross all bit positions for 1 and

2 rounds

This time, all frequencies are within the acceptable limits of

variability. We don’t show the results with more rounds, since

they look similar to those in Figure 5, and again no non-

randomness was detected in those cases.

Figure 6 shows the frequency of 1’s among 512 · 129
bits of [Yn,i,j0 ]n=1,...,512,i=1,...,129, where j0 is the column

index (representing the index of the B input) shown on the

horizontal axis. The limits of the acceptable variability are

again calculated based on (4), however here m = 512 · 129
and D = 129. The top panel of Figure 6 shows some non-

random patterns, when only one round is being used. On the

other hand, two rounds are sufficient, in this case, in order

to generate frequencies within the acceptable range. We also

observe it for 3 and 4 rounds (see Figure 7) and for more

rounds up to 10.

Figures analogous to 6 and 7 were also created (but not

shown here) in order to show the frequency of 1’s among 512·
129 bits of [Yn,i0,j ]n=1,...,512,j=1,...,129, where i0 is the row

index (representing the index of the A input) on the horizontal

axis. Those figures are not shown here, since they show results

very similar to those shown in Figures 6 and 7.

We also considered patterns in several consecutive bits. For

example, in random data, we should observe two-bit pattern

00 in approximately 25 percent of cases. The same is true
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Figure 5: Frequency of 1’s accross all bit positions for 3 and

4 rounds

number of rounds

number of bits H 1 2 3-10

2 2006 1804 0

3 4096 2158 0

4 7815 931 0

5 1025 919 0

6 1029 907 0

7 1026 891 0

8 1034 883 0

9 1025 843 0

10 1032 828 0

Table I: Number of non-random cases across a fixed bit

position of the output

for the remaining patterns 01, 10, and 11. We explore here

H consecutive bits, where H = 2, . . . , 10, with 2H possible

patterns in each case. The randomness is assessed based on

staying within the acceptable limits defined in a way similar

to formula (4), which now takes the form

p0 ± s · z(1− 0.05/2D), (5)

for p0 = 2−H and s =
√

p0 · (1− p0)/m, where m is the

number of tested patterns, and the remaining notation is the

same as that for (4). The number of non-random cases is

summarized in Table I for testing across a fixed bit position of

the output. The total number of cases is given by D = 512·2H
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Figure 6: Frequency of 1’s accross B inputs for 1 and 2 rounds

number of rounds

number of bits H 1 2 3-10

2 11 0 0

3 1 0 0

4 0 0 0

5 0 0 0

6 0 0 0

7 0 0 0

8 0 0 0

9 0 0 0

10 0 0 0

Table II: Number of non-random cases across B inputs

and m = ⌊129 ·129/H⌋. We observe non-random cases for up

to two rounds only. Table II shows analogous counts of non-

random cases across columns (B inputs). Here D = 129 · 2H

and m = ⌊512 · 129/H⌋. We observe non-randomness only

for some cases when using one round.

Table III shows analogous counts of non-random cases

across rows (A inputs). Here the values of D and m are

the same as those for the case of Table II. This time, non-

randomness is observed only for up to two rounds.

IV. CONCLUSIONS AND FUTURE WORK

The new array-based statistical analysis approach developed

in this paper confirms the desired randomness properties of

the MK-3 scheme, when at least three rounds are used. This
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Figure 7: Frequency of 1’s accross B inputs for 3 and 4 rounds

number of rounds

number of bits H 1 2 3-10

2 322 61 0

3 564 20 0

4 783 0 0

5 910 0 0

6 487 0 0

7 369 0 0

8 312 0 0

9 183 0 0

10 78 0 0

Table III: Number of non-random cases across A inputs

new array-based approach is very general and can be used

for checking randomness of other cryptographic primitives

in a variety of contexts. However, depending on the type of

the cryptographic primitive and the statistical tests used, this

approach may require some customization. This will be the

subject of our future research.

Independently, further cryptanalysis of the MK-3 scheme

should be performed on its customized versions, including

statistical analysis as in this paper.
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