Memory Protection with
Dynamic Authentication Trees

Matthew Millar
Department of Computer Engineering
Rochester Institute of Technology
mxm1898 @rit.edu

Abstract—As embedded devices increase in use and handle
more critical information and functionalities, the importance of
security grows even greater. Defense against bus attacks such as
spoofing, splicing, and replay attacks is of particular concern.
Traditional memory authentication techniques, such as hashes
and message authentication codes, require significant amounts
of on-chip memory and introduce a large performance impact
when protecting off-chip memory during run-time. Balanced
authentication trees such as the well-known Merkle tree or TEC-
Tree can be used to reduce this cost. This work proposes a
new method of dynamic authentication trees, which updates a
tree structure based on a processor’s memory access pattern.
An HDL model for use in an FPGA has been developed as a
transparent and highly customizable AXI-4 memory controller.
The performance of our tree design is comparable to that of the
TEC-Tree in several memory access patterns. Speedup over the
TEC-Tree is possible to achieve when applied in scenarios that
frequently access previously processed data.

Index Terms—embedded security, memory authentication,
FPGA

I. INTRODUCTION

Embedded devices that process sensitive data and provide
essential services have become increasingly common as mod-
ern digital infrastructures have grown at a rapid pace [1]. This
raises security concerns as there are more reasons than ever
for a malicious party to try to exploit these systems. In an
attempt to provide security, encryption methods are oftentimes
applied to any sensitive data to provide confidentiality [2].
However, data confidentiality itself is not enough to fully
protect a system from an attacker. For example, erroneous data
may be injected into the system in an attempt to disrupt the
normal functionality of the device. In order to protect against
such attacks, it is necessary to verify that any data the device
processes is provided by the expected source. In addition,
there needs to be a method of ensuring that the data has
not been tampered with. Methods of authentication are then
used to confirm the integrity of data processed in the system.
Existing authentication methods, such as hashes and message
authentication codes (MACs), are able to provide the intended
protection; however, some of these methods are costly in terms
of the device resources and performance overhead required to
implement them.

In this paper we present a new method of dynamic authen-
tication trees, which update a tree structure based on a proces-
sor’s memory access patterns. An AXI-4 based framework is
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developed as a transparent and highly customizable memory
controller. This design is then synthesized onto an FPGA and
verified. While this design is motivated by vulnerabilities in
embedded systems, the method presented is scalable and may
be applied to any computing system. Different configuration
options are provided allowing for the design to be used in
applications with different constraints and requirements.

The remainder of this paper is organized as follows. Section
IT details background information on the threat model and
current authentication techniques. Section III outlines the
proposed design. Section IV analyses the design and presents
the results of the implementation. Section V provides overall
conclusions.

II. BACKGROUND
A. Threat Model

In many applications, the physical security of the computing
device is either too costly or too difficult to properly achieve.
This is especially true of applications that require the use
of small-scale embedded systems. In our threat model, it is
assumed that the CPU in such a system is secure and trusted
as presented in Figure 1. Additionally, it is expected that the
OS running on the processor is trusted and that the on-chip
caches cannot be monitored or tampered with.

Attacks on memory are performed when an adversary has
the capability to read or modify any data traveling between
the processor and off-chip memory. All data and addresses
sent on this memory bus are exposed to examination and
modification. Of particular concern are hardware man-in-the-
middle (MITM) attacks such as spoofing, splicing, and replay
attacks [3]. In the simplest of attacks, an adversary may probe
the memory bus, reading and writing data as it is transmitted
to and from RAM.
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B. Authentication

Protection against the previously mentioned MITM attacks
requires the additional step of data authentication as well
as encryption. A summary of a few existing authentication
techniques is presented in Table 1.

Table 1
AUTHENTICATION METHODS
| Hashes MACs AREA Auth Trees
Performance Overhead | High High High Medium
Off-chip Overhead | None High Medium  High
On-chip Overhead | High High None Low
Provides Encryption | No No Yes Varies

Hashes. One of the simplest forms of data authentication can
be performed using cryptographic hashes. A hash function
creates a unique fixed-size output given a unique variable-
sized input [4]. A block of data can be hashed, and that hash
can be stored securely on-chip in order to prevent attackers
from accessing it. Every time data is read, a newly computed
hash of the data can then be compared with the hash stored
on-chip.

Message Authentication Codes. Message Authentication
Codes are an authentication technique that utilizes a keyed
hash function. This is very similar to the previous technique,
with the difference that only a secret key needs to be stored
securely from the attacker [5].

Block-level AREA Authentication. Using the diffusion pro-
prieties of block-level encryption [6], the block-level Added
Redundancy Explicit Authentication (AREA) scheme is able
to achieve encryption and authentication [7]. In the AREA
technique, a unique nonce is appended to the end of a plaintext
block, and the entire block is encrypted. On decryption, this
added nonce is checked in order to determine if the data
block has been corrupted. Traditionally, in implementations of
a block-level AREA authentication technique, the nonce and
the secret key must be stored securely while the ciphertext is
visible to an attacker. An encryption mode that has an error
propagation property, such as the AES in the cipher block
chaining (CBC) mode, must be used.

Authentication Trees. Authentication trees are used as an
attempt to limit authentication overhead compared to other
techniques. The fundamental design of this method is a tree
structure that stores additional encrypted metadata [8].
TEC-Trees. A TEC-Tree is a balanced authentication tree
that protects data nodes using the Block-level AREA method.
To ensure data integrity, each node contains a nonce that is
verified after decryption. These nonces are generated using a
secure on-chip counter [9].

Dynamic Authentication Trees. Most authentication tree
methods rely on static balanced tree structures. A balanced
tree approach may result in excessive overhead for access
patterns that access the same address space frequently. A
Dynamically Skewed Authentication Tree attempts to increase
the performance of traditional authentication tree methods by
reorganizing the structure of the tree at runtime. Shifting
frequently accessed nodes to higher levels allows for less

tree traversal time by reducing the number of verification
computations and intermediate node accesses [10].

III. OUR DESIGN
A. Authentication

Modified block-level added redundancy explicit authentica-
tion (block-level AREA) scheme is employed in our ordered
Dynamic Authentication Tree (DAT) method. Utilizing this
approach has the benefit of providing encryption inherently
with the authentication operations [7].

B. Tree Nodes

The leaf nodes of the authentication tree structure contain
the data blocks that are directly protected by the tree. These
nodes are referred to as “data nodes,” and are separated into
two parts: the data that is being protected and the nonce. The
nonce contains the tree metadata required for tree traversal and
a count of the number of times the node has been accessed.
Each data node protects a block of data that can be any length
specified by the application. Intermediate tree nodes contain
the same metadata used for tree traversal, as well as the counts
of each of their child nodes. These intermediate nodes are
referred to as counter nodes. Bottom part of Figure 2 shows
the general structure of a data node and a counter node as
used by our ordered dynamic authentication tree (DAT).
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Figure 2. Ordered Dynamic Authentication Tree

C. Tree Structure

The structure of the tree depends on the weighted frequency
of accesses to each data node. When a memory access is
performed, the entire data block including the nonce, is first
read and decrypted. The corresponding parent node is then
also read and decrypted. This parent node holds the access
count of its children for comparison to apply the block-level
AREA scheme and provide authentication. This authentication
process is repeated recursively until the final root of the tree
is reached. Secure on-chip storage is used to store a master
counter that is incremented on every write operation and used



to generate new nonces. For authentication purposes, the root
counter node’s count is compared to this secure root counter.
If at any point, the authentication fails due to a counter mis-
match, the processor can be alerted to an authentication error.
Otherwise, the requested data operation is performed as usual.
To prevent additional unnecessary performance overhead, data
access frequencies are only updated on a write operation. In
a write operation, the data node’s frequency count itself must
first be updated. As the tree is traversed upwards, each parent
node’s stored left and right counts are updated accordingly to
their child nodes’ weights. In addition, the parent’s frequency
access count is incremented. An example of a tree structure
with additional metadata information is presented in Figure 2.

On a read operation for every level higher a data node
is stored, it requires one less counter node to be read and
compared before it is fully authenticated. This differs from
other authentication tree methods which rely upon a balanced
tree that is agnostic to the number of times a data node has
been accessed. Given most memory access patterns, the more
often a data block is accessed, it is more likely that the node
will be accessed again in the future. Thus weighting data nodes
and restructuring the tree as such should provide a substantial
improvement in performance for data blocks that are accessed
often.

D. Dynamic Restructuring

As memory blocks are accessed, the tree structure is dy-
namically updated to relocate memory blocks with a higher
frequency of access closer to the tree’s root. To ensure that
authentication checks function properly, the count of each
node is incremented, and its parent node’s left or right counter
is similarly updated as each node is accessed. When a node
is accessed, it is accessed along with its parent, sibling, and
uncle in order to perform the updates and navigate the tree.
An uncle node refers to a parent’s sibling node. The weight
of the uncle node is compared to the new weight of the
current node. The tree is flagged for rebalancing if the current
node’s new weight is greater than the uncle node’s weight.
There are two approaches to rebalancing. The first method
permits the tree’s leaf nodes to be rearranged, but their order
is not preserved. The second approach adds the restriction of
requiring the leaf node order to remain constant. The ordered
tree design’s rebalancing procedure consists of three different
possible cases that are described below. The first rebalancing
case is described by Algorithm 1.

By shifting the parent node to the side and the uncle node
down a level, the current node being accessed is shifted up
a level. To perform these operations, the parent and sibling
relationship stored in each node is able to be updated with the
new case. It is necessary to read and decrypt the parent, uncle,
sibling, and current node data from memory to access all of the
information required to perform these operations. If it is not
desired to retain the order of the data nodes, this rebalancing
algorithm is the only one necessary to use. However, if the
order of the nodes must remain the same, this case is only
valid if the current node’s left/right position is different than its

Algorithm 1: Ordered Rebalancing Method #1

Data: Parent, Uncle, Sibling, Current

if Current’s LR # Uncle’s LR then

// Shift Uncle down
Uncle’s Parent < Parent;

Uncle’s Sibling <— Sibling;

// Rotate Parent

Parent’s sibling <— Current;
Parent’s LR < — Parent’s LR;

// Update and Rotate Sibling
Sibling’s sibling <— Uncle;
Sibling’s LR < — Sibling’s LR;

// Shift Current Node Up
Current’s Parent < Parent’s Parent;
Current’s Sibling < Parent;

end

Algorithm 2: Ordered Rebalancing Method #2

Data: Parent, Uncle, Sibling, Current, Grand Uncle,
Grand Parent

if (Current’s LR = Uncle’s LR) A (Current’s LR #+
Grand Uncle’s LR) then

// Shift Parent Up with Current

Node

Parent’s Parent <~ Grand Uncle’s Parent;

Parent’s Sibling < Grand Uncle’s Sibling;

// Update Uncle

Uncle’s Sibling < Current Node;

// Shift Grand Uncle Down

Grand Uncle’s Parent < Parent;

Grand Uncle’s Sibling < Sibling;

// Update Grand Parent

Grand Parent’s sibling <— Parent;

// Shift Sibling Up with Current

Node

Sibling’s sibling <— Grand Uncle;

Sibling’s LR - — Sibling’s LR;

// Shift Current Node Up

Current’s Parent < Grand Parent;

Current’s Sibling <— Uncle;

Current’s LR < — Current’s LR;

end

uncle node’s left/right position. If the first rebalancing method
were to be used, the leaf node order would be modified, thus
invalidating the ordered design. Algorithm 2 shows the second
rebalancing method used for handling this additional scenario.
The second rebalancing method requires the information from
the grand uncle and grand parent nodes in addition to the
information from the first method. When the current node is
shifted upwards, the parent node is updated with the grand



Algorithm 3: Ordered Rebalancing Method #3

Data: Parent, Uncle, Sibling, Current, Grand Uncle,
Grand Parent

if (Current’s LR = Uncle’s LR) N (Current’s LR =
Grand Uncle’s LR) then

// Shift Grand Uncle Down

Grand Uncle’s Parent < Grand Parent;

Grand Uncle’s Sibling < Sibling;

// Update Grand Parent

Grand Parent’s sibling <— Parent;

Grand Parent’s LR < — Grand Parent’s LR;
// Update Uncle

Uncle’s Parent < Grand Parent;

Uncle’s Sibling <— Grand Uncle;

Uncle’s LR <+ — Uncle’s LR;

// Shift Parent Up

Parent’s Parent <— Grand Parent’s Parent;

Parent’s Sibling < Grand Parent;

end

uncle node rather than being shifted downwards. The current
node would then be replaced as a child by the grand uncle.
To keep the order of the leaf nodes, the left/right positions
of the grand uncle and sibling are swapped. When the current
node’s left/right value, the uncle node’s left/right value, and the
grand uncle’s left/right value are all equal, neither one of these
methods is able to maintain leaf node order. To address this
final case, a third rebalancing method, as shown in Algorithm
3, is introduced. Methods one and three are very similar, with
the main difference being that the node operations are applied
to a node one level higher than the current node. While the
current node’s information is not updated, the parent node is
shifted upward, causing both the current and sibling nodes to
move up a level. Given that the grand uncle must be accessed
for both this method and method two, an additional qualifier
is required when checking the rebalance condition to ensure
that a great grand uncle exists and that the root has not been
reached.

E. Encryption and Authentication Pipeline

Aiming to reduce design complexity, our implementation
utilizes a modified version of the AXI-4 transparent memory
encryption pipeline provided in [11]. In order to generate
appropriate requests for new intermediate nodes in dynamic
trees, tree metadata must first be read from memory. As a
result, the pipeline must return the data read from memory to
the component that generates requests. Figure 3 depicts the
modified pipeline, which includes authentication components.
The pipeline is divided into two paths: a read request pipeline
and a write request pipeline. The Tree Request Generator
component possesses a master state machine to determine
which tree nodes must be accessed and updated. The root of
the tree is checked to see if the data node has been accessed

yet. The root is stored in BRAM, which is embedded in the
programmable logic, and can be considered secure against an
attacker with physical access. If the root has not yet been
accessed, the tree’s data must first be initialized. To correctly
populate the initial tree data, a Tree Initializer component has
been added.

IV. ANALYSIS & RESULTS

In this section, we compare the results of the proposed
design’s hardware implementation and two similar designs: the
TEC-Tree and the Dynamically Skewed Tree. All three were
integrated within the previously stated pipeline framework
described by Figure 3.

A. Memory Overhead

The off-chip memory overhead is presented in Equation (1),
where the variables [,, n, and A are the data payload size in
bits, the bit length of nonces, and the arity of the tree respec-
tively. For the arity of 2, the relationship between off-chip
memory costs for our method, TEC-Tree, and Dynamically
Skewed Tree is identical apart from the variation in nonce
sizes [9], [12].

0 l,+nxA
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The nonce sizes n for each method are shown below using
Equations (2), (3), and (4). Where c is the bit length of the
counters used for authentication, and D is the total number of
data nodes used in the tree.

)

nrepc = ¢+ logy N )
Nskewed = C+ 3 X logy N 3)
npar = c+ 3 xlogy N @)

The proposed method’s off-chip memory cost is slightly
increased relative to the TEC-Tree, but remains the same
as the Dynamically Skewed Tree. This increase is due to
additional stored metadata that is needed in order to traverse an
unbalanced tree structure. The size of the counter value used
for authentication and the root of the tree are customizable.
Only a single counter per tree is required to be stored in on-
chip memory. The on-chip memory cost is the same for all
three methods.

B. Dynamic Tree Performance

A dynamic authentication tree requires additional compu-
tational overhead on each write transaction compared to the
TEC-Tree as a recursive check for rebalancing needs to be
applied. A counter node must be read for each level in addition
to the information that the TEC-Tree requires. Generally, a
dynamic tree rebalance does not happen frequently, especially
with memory access patterns that focus on particular ranges
of the whole memory address space. Due to the number of
extra computations performed, it is expected that a memory
access pattern that utilizes writes to memory more frequently
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than reads may perform worse. Performance speedup occurs
when a read or write transaction occurs on an address that has
been shifted higher in the dynamic tree than it would be in the
corresponding balanced tree structure. In order for a dynamic
tree to perform better than the TEC-Tree design, this speedup
must outweigh the slowdown caused by the additional tree
calculations.

C. Implementation Results

The TEC-Tree, the Dynamically Skewed Tree, and our
design were all implemented targeting the ZedBoard de-
velopment kit with Xilinx Zynq xc7z020clg484-1 part, and
Xilinx Vivado version 2020.1 tools. The TEC-Tree design
was provided by [11]. The Dynamically Skewed Tree was
manually developed and modeled in VHDL based on the
framework outlined in [12]. The performance was evaluated
with a clock frequency of 50 MHz. For programmable logic
utilization comparisons, the total number of resources available
for various Xilinx devices is displayed in Table II. Part
xc72z2020 is the SoC used by the ZedBoard. Compared to
some other FPGA parts available, the resources provided by
the Zedboard are relatively small. The resulting utilization is
presented in Table III.

Table II
REFERENCE RESOURCES AVAILABLE FOR A SAMPLE SET OF XILINX
FPGAs
Part LUTs  Flip Flops DSPs  BRAM Tiles
xc722020 46,200 92,400 160 95
xczu9eg 274,080 548,160 2,520 912
xcvu9p 1,182,240 2,364,480 6,840 2,160
xcu250 1,341,000 2,749,000 11,508 1,766

As the simplest design, the TEC-Tree uses the fewest num-
ber of each component. Most of the differences in utilization
can be accounted for by the added components for the dynamic
tree request generation and initialization. While the TEC-Tree
design can simply generate all necessary requests without
reading data from memory, the other two designs require
logic to both store read data and translate the read data to
appropriate requests for tree traversal and modification. The
Dynamically Skewed Tree design also requires fewer resources

Table IIT
AUTHENTICATION TREE IMPLEMENTATION RESULTS

TEC-Tree  Dynamically Skewed Tree = Ordered DAT
No Encryption
LUTs 3270 8394 11649
Flip Flops 2893 5651 7582
DSPs 0 15 21
BRAM Tile 1 1 1
Encryption

LUTs 9018 11251 14506
Flip Flops 4122 6419 8350
DSPs 0 15 21
BRAM Tiles 1 1 1

to implement than our ordered DAT. This can be attributed to
the additional tree structure and rebalancing complexity that
comes with the added condition of maintaining terminal nodes’
ordering. While there is only one reblancing algorithm used
in the Dynamically Skewed Tree design, the ordered design
requires three different algorithms to be implemented based
on the current state of the tree to be restructured. However,
the overall usage for the ordered DAT is still notably low if
compared to any of the FPGA models listed in Table II.

D. Memory Controller Performance

All three designs were evaluated for correctness and per-
formance using the Xilinx AXI Verification IP (AXI VIP).
The verification IPs ensure signal behavior and timing are
appropriate for the AXI-4 interface. They do not, however,
ensure data written to and read from memory represent proper
values. A wrapper testbench was written in System Verilog to
both control the AXI VIP’s and ensure the memory contained
the correct data on a read and write operation. A master
AXI VIP was used to simulate the processor sending initial
read or write requests to the memory controller. A second
AXI VIP was configured for slave responses in memory-
mapped mode, allowing the IP to simulate a BRAM with
appropriate timings. The designs for all three methods were
evaluated for performance in various conditions with different
memory access patterns. Each designs’ customizations were
standardized to make direct performance comparisons easier.
The master interface of the pipeline was configured to accept a



data length of 32 bits, while the slave interface was configured
for a data length of 64 bits. The size of the memory to be
protected was configured for 256 MB and a data block size
of 64 bytes for each design.

Because of the dynamic nature of the proposed tree designs,
multiple scenarios were required to thoroughly investigate the
various performances of the design. First, the designs were
tested utilizing a fully random test suite. As each memory
address is random, there is a randomly distributed spread of
accesses throughout the entire tree. While this type of memory
access pattern is very unrealistic in practical applications, this
type of access pattern is the worst-case scenario for a dynamic
tree which is important to note.

The second test applied to each authentication tree was
designed to test the best-case scenario for a dynamic tree.
For this test, only a single data node is accessed to allow the
dynamic tree to restructure it to the top of the tree.

The third test was run to provide a realistic memory access
pattern. In this test, contiguous memory was accessed in order
to simulate reading and writing to a large array in memory.
The previous test may provide an accurate representation of
accessing a smaller array in memory, but it would require the
array to remain within the size range of the tree’s data block
configuration. Figures 4 and 5 contain the timing results of
each test.

Authentication Tree Latency
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Figure 4. Summary of 8 Node Timing Results
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Figure 5. Summary of 16 Node Timing Results

Overall, the TEC-Tree outperforms the dynamic tree designs

in scenarios where memory access patterns do not favor
portions of memory over others. The dynamic tree implicitly
contains higher overheads on write operations as there are
more calculations that must be done in order to ensure that
the tree is properly balanced. However, the read and write
performance on nodes that are frequently accessed have the
potential to increase the overall memory operation speed in
certain scenarios.

V. CONCLUSIONS

The necessity of embedded security grows as devices with
crucial functions become more common. In this paper we
presented a new ordered Dynamic Authentication Tree (DAT)
method, which updates the tree structure based on memory
access patterns. As expected, initial performance tests with
simple synthetic benchmarks show that our method is compa-
rable to TEC-Tree in some access patterns and it has potential
to outperform it when it is necessary to frequently access pre-
viously processed data. Our future work will focus on adding
tree caches to avoid high cost computations and memory
accesses for frequently accessed memory cells, development
and adopting verity of additional benchmark applications,
optimizing the design to allow for using higher frequency
clock, and to allow the framework to work with trees that
have arities larger than 2.
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