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Abstract—At different stages of the Integrated Circuit (IC)
lifecycle there are attacks which threaten to compromise the
integrity of the design through piracy, reverse engineering,
hardware Trojan insertion, side channel analysis, and other
physical attacks. Some of the most notable challenges in this
field deal specifically with Intellectual Property (IP) theft and
reverse engineering attacks. One method by which some of
these concerns can be addressed is by introducing hardware
obfuscation to the design in various forms. In this work we
evaluate the effectiveness of a few different forms of netlist-level
hardware obfuscation of a 16-bit substitution box component of
a customizable cipher MK-3. These obfuscation methods were
attacked using a satisfiability (SAT) attack, which is able to
iteratively rule out classes of keys at once. This has been shown
to be very effective against many forms of hardware obfuscation.
A method to successfully defend against this attack is described
in this paper. This method introduces a modified SIMON block
cipher as a One-way Random Function (ORF) that is used to
generate an obfuscation key. The S-box obfuscated using this
32-bit key and a round-reduced implementation of the SIMON
cipher is shown to be secure against a SAT attack for at least 5
days.
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I. INTRODUCTION

With the continuous growth of cyberinfrastructure in mod-
ern society, secure computing, storage, and communication re-
quire that the underlying framework utilizes both software and
dedicated hardware components. These hardware components
have traditionally been used to enhance overall systems’ per-
formance, cost, and energy efficiency. Unfortunately, adding
specialized hardware into different points of the state-of-the-
art cyberinfrastructure can create new security threats that did
not exist in the past. These threats necessitate development of
new methodologies and approaches for secure hardware design
and manufacturing. The objective is to prevent malicious be-
havior such as insertion of hardware Trojans, overproduction,
manufacturing of counterfeit devices, reverse engineering, or
side-channel analysis [1], [2], [3].

One common technique used to protect hardware IP against
these threats is to obfuscate the implementation itself, such

that necessary design analysis becomes too expensive, in either
time or resources, for an adversary to realistically accomplish.

The purpose of this work was to evaluate the effectiveness
of some of the proposed hardware obfuscation techniques on
a substitution box (S-box) from a customizable, authenticated
encryption (AE) cipher MK-3 [4]–[6]. We utilized satisfia-
bility (SAT) attacks [7] as a method of attacking hardware
obfuscation. The effects which different methods have on
protecting the S-box component from these types of attacks
were evaluated.

II. BACKGROUND

A. MK-3 Algorithm

The MK-3 algorithm is a single pass, customizable, authen-
ticated encryption algorithm supporting 128- and 256-bit key
sizes. The core of the MK-3 cipher is a permutation function
f , which is comprised of 4 transformations: substitution,
permutation, mixing, and add round constant. All of these
transformations are computed on an internal state S of b = 512
bits. The state is split into a rate r = 128 and capacity c = 384,
such that b = r + c [4]. This permutation function f is used
as the core of a duplex sponge construction [8]. This is a
slight modification to the basic sponge, which maintains state
between calls while absorbing and squeezing the data during
each iteration [8]. Figure 1 illustrates this approach in the
context of the MK-3 authenticated encryption scheme. Desired
functionality can be achieved through successive duplexing
calls with the key, initialization vector (IV), additional authen-
ticated data (AAD) and blocks of the plaintext (Mi) provided
as input. Each absorbed r-bit plaintext block Mi is used to
produce one ciphertext block Ci, and the authentication tag T
is produced at the end.
Customized versions of the MK-3 algorithm can be im-
plemented by altering the round function in specific ways
designed to preserve the algorithm’s security while ensuring
that different versions of the algorithm are not interoperable
[6]. One of the components that can be modified in the
MK-3 algorithm is its 16-bit S-box. The S-box is the IP
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Fig. 1. The duplex construction

being obfuscated in this work [5]. Similar to the well-known
Advanced Encryption Standard (AES) S-box, the MK-3 S-box
finds the inverse of the input in the Galois field GF (216) and
passes it through an affine transformation. The default case is
as follows:




0 0 1 0 0 0 0 1 0 0 1 1 1 1 1 0
1 1 0 0 0 0 0 1 0 1 1 0 1 0 1 0
1 1 0 0 1 0 1 1 0 1 0 1 0 0 1 1
1 1 1 0 0 0 1 0 0 1 1 0 0 0 0 0
1 1 0 0 0 1 1 0 0 1 1 1 1 0 1 1
0 1 0 0 0 0 1 1 0 1 1 1 1 1 0 1
0 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0
1 0 1 1 1 0 1 1 0 0 0 1 0 1 1 1
0 1 0 0 0 0 0 0 1 0 0 1 1 1 0 1
1 0 1 1 0 0 0 1 0 0 1 0 1 0 0 0
1 0 1 0 0 1 1 1 0 0 1 1 0 1 0 0
1 0 1 1 1 0 1 1 1 1 0 1 1 0 0 1
1 0 1 0 0 1 0 1 1 0 0 1 0 0 0 1
0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 1
1 0 0 0 1 1 0 1 0 1 1 1 1 0 0 0
1 1 0 1 0 1 1 0 1 0 0 1 1 0 0 0




×




x15
x14
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x2
x1
x0




−1

⊕




0
1
0
0
0
1
0
1
1
0
1
1
0
1
1
1




.

B. Hardware Obfuscation
Hardware obfuscation in the context of this work refers to

different methods by which the functionality of a design is
modified to make it infeasible to understand or use without
the knowledge of a secret key, which is provided to the system
through additional input(s).
Netlist Logic Locking: Netlist-based logic locking describes
several obfuscation methods which rely on inserting additional
combinational logic into a gate level netlist. This additional
logic, usually in the form of Key Programmable Gates (KPGs),
can be added to the circuit randomly [9], based on a number
of different heuristics [10], or by employing methods similar
to those used in fault-analysis of digital circuits [11]. This
additional logic can also take the form of complete circuits
added alongside the original logic being obscured [12]. XOR
and XNOR gates are often used as these KPGs, as they have
the unique characteristic that based on a single bit input they
can act as either a simple buffer or an inverter for the other
input. Several techniques were developed with the specific
intention of preventing particular attacks on obfuscated circuits
such as key sensitization or SAT attacks [7], [13]. For example,
SARLock, or SAT Attack Resistant Logic Locking, aims to
reduce the number of possible keys that the SAT attack is
able to rule out with every iteration [12]. This is done by
introducing a comparator into the design, which compares the
key to the circuit input. For certain combinations of the key
and input, the comparator produces a flip signal, which is
XORed with a primary output, thus inverting it. This ensures

that for each input pattern only a single key will produce
an incorrect value, while only the correct key will produce
the correct output for all inputs. This method on its own
is not enough to fully protect a circuit, though, so it was
recommended to be combined with Strong Logic Locking
(SLL) for additional protection against other attacks. Anti-
SAT is another netlist locking method of hardware obfuscation
designed to thwart the SAT attack [14]. The aim of Anti-SAT
is to include a small additional circuit that greatly increases
the number of iterations the SAT attack will take to break the
function, similar to SARLock. This is achieved by adding two
additional functional blocks, g and g, which share the primary
inputs but have differing keys and whose outputs are either
ANDed or ORed together. These blocks generate a similar flip
signal to that found in SARLock and are also recommended
to be combined with another obfuscation method like SLL.
LUT-Lock [15] describes another algorithm which aims to
place locking logic such that the difficulty of a SAT attack [7]
is greatly increased. LUT-Lock points to several different
ways to utilize Look-Up Tables (LUTs) for stronger logical
obfuscation. In particular, in Field Programmable Gate Arrays
(FPGAs) logic can be placed in larger-than-necessary LUTs,
with the additional inputs being fed by Non-Linear Feedback
Shift Registers (NLFSRs) or Physical Unclonable Functions
(PUFs) to create locks. These can act as internal keys, so that
the bitstream will only function properly on a specific device
that is configured to produce that particular key input.

ORF Insertion: To provide a barrier between the primary
key inputs to a circuit and a locked netlist, Yasin and his team
proposed inserting an ORF between the primary key inputs
and the key inputs of the locking gates within the locked

Fig. 2. One-way Random Function (ORF) Insertion [16]
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Fig. 3. DIP Miter Circuit [17]

netlist [16]. This is shown in Fig. 2.
The introduction of an ORF prevents attacks that can

determine the key inputs to the locking gates from its outputs
by disassociating the outputs from the primary key inputs.
The researchers discuss using a modified AES block cipher
with a hard-coded key as the ORF for these locking schemes.
The hard-coded key value is implemented to prevent possible
removal attacks. Since the architecture of the AES is well
known, it is possible that an attacker could identify and remove
it; however, by including the key in the design itself, once it
is synthesized it would become much harder to achieve.

C. Satisfiability Attack

Several attacks have been developed with the intention of
determining the secret key that allows unlocking an obfuscated
circuit. The attack which was used in this work is referred to
as the SAT attack. Originally proposed in [7], it rules out
equivalence classes of keys that do not lead to the correct
output. To accomplish this attack, the adversary must have
access to both the locked netlist and a functional unlocked
IC (unobfuscated netlist in the case of simulated attack). By
defining equivalence classes, the SAT attack is able to rule
out sets of keys rather than individual values as it would
be in a simple brute-force approach, thus increasing the
efficiency of the search. Once equivalence classes are defined,
the attack iteratively rules out incorrect keys through the use
of Distinguishing Input Patterns (DIPs). A DIP is defined as
an input vector where, for two different keys �K1 and �K2 the
output is different. This output can then be compared to the
output of the unlocked circuit for that input vector and one
or both equivalence classes can be ruled out. This allows the
attack to rapidly reduce the size of the key space in order to
narrow in on the correct key.

A miter-like circuit is created to find the DIPs, which
compares two copies of the circuit with the same primary
inputs and two different keys [17]. The outputs of these circuits
are compared to form a diff signal, which is asserted high
if any outputs differ, as shown in Fig. 3.

This circuit is converted to its Conjunctive Normal Form
(CNF) and a SAT solver is run on the description of the circuit.
A DIP has been found once there is a satisfiable assignment.
Then the output of the activated IC is checked to rule out
either or both of the keys used — and by extension, those
keys’ equivalence classes. This process is repeated either until
no further DIPs can be found, indicating that the equivalence
class of the key can no longer be narrowed down and the

correct key has been found.
Algorithm 1 describes the full process of the attack.

Algorithm 1 SAT Attack [7]
Inputs: C and eval
Output: �KC

1: function DECRYPT
2: i := 1
3: F1 = C( �X, �K1, �Y1) ∧ C( �X, �K2, �Y2)
4: while sat[Fi ∧ ( �Y1 �= �Y2)] do
5: �Xd

i := sat assignment �X [Fi ∧ ( �Y1 �= �Y2)]

6: �Y d
i := eval( �Xd

i )

7: Fi+1 = Fi ∧ C( �Xd
i ,

�K1,
�Y d
i ) ∧ C( �Xd

i ,
�K2,

�Y d
i )

8: i := i+ 1
9: end while

10: �KC := sat assignment �K1
(Fi)

Once the while condition (line 3) is no longer true,
meaning the miter circuit is unsatisfiable, the correct key value
�KC is output.

III. METHODOLOGY

A. Circuit Obfuscation

A Python software application was implemented that in-
tegrates multiple steps of the obfuscation process as well
as the actual attack framework. If not already provided as
a gate-level netlist, the circuits were first synthesized using
Leodardo Spectrum. For this synthesis a generic Application-
Specific Integrated Circuit (ASIC) standard gate library was
used, and a helper script was written in Python to convert
the gate definitions from that library into standard Verilog
primitives. The locking methods implemented were: 1) the
random locking method proposed in [9], as well as two which
place the locking gates at either 2) the high or 3) the low
stages of the circuit, 4) LUT-Lock — our slightly simplified
version of a more recently proposed locking method made
to specifically defend against SAT attacks [15], 5) a further
modified LUT-Lock, and 6) using block cipher SIMON as an
ORF along with the random logic locking. Our implementation
of LUT-Lock is based on the original NB2-MO-HSC method
from [15], with the only alteration being removal of the timing
considerations. Modified LUT-Lock describes the modified
instance of the NB2-MO-HSC locking scheme where all
outputs are made to be candidates in the initial formation of
the candidate gate list. The flow of using our framework and
the SAT attack tool from [7] is shown in Fig. 4.

B. SIMON as an ORF

Several variations of the SIMON block cipher [18] were
used as One-way Random Functions (ORFs) in the manner
discussed in [16]. The SIMON configuration used, prior to any
modifications, was the 32/64 implementation of the cipher with
a 32-bit block size and a 64-bit key. The circuit model was
derived from a VHDL implementation of the 64/128 SIMON
block cipher [19]. In an attempt to establish a trend that relates
the number of rounds of SIMON to its strength as an ORF
for this application, several round-reduced implementations of
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the cipher were also created and tested. For the round-reduced
tests, a SAT attack was run on the round-reduced SIMON
implementation, with the “unlocked” IC being an instance of
the SIMON netlist with a fixed key. The goal of the SAT attack
was to determine that fixed key.

Further experiments with this method involved fixing both
the plaintext and the key inputs to the cipher, respectively, as it
was being used as an ORF. Fig. 5 shows one of the main top-
level configurations for these tests. The shown configuration
uses a full implementation of SIMON with no fixed inputs
being used as an ORF to generate the key for obfuscation.
The configurations with a fixed SIMON plaintext and with a
fixed SIMON key were set up in the same manner. The actual
number of locking gates used for the obfuscation here was
fixed at 32 to match the size of the SIMON output, and were
randomly distributed. For each input variation of SIMON: 2,
4, 6, 8, 10, 12, 14, 16, 24, and 32-round instances were tested.

IV. RESULTS & ANALYSIS

A. Test Setup

For each obfuscation method and configuration (key size,
number of SIMON rounds) the attack was executed ten times,
and the amount of time the attack took to complete was
recorded. A timeout was set so that if the attack ran without
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Fig. 6. SAT Attack on MK-3 S-Box obfuscated with Different Methods.
“Timeout” indicates an unsuccessful attack after 5 days (432,000 seconds).

successfully finding the key for more than five days it was
stopped. All tests were conducted on a server with Intel Xeon
Gold 6150 CPUs running at 2.70GHz. Each instance of a test
was run on a single thread and was given access to 24GB of
RAM.

B. Logic Locking, Methods 1 – 5

The first series of tests conducted were applications of
locking methods 1 — 5 with varying key size/number of
locking gates. The results of these tests are shown in Tab. I
and Fig. 6. The timeout condition is first achieved for a 96-
bit key and pure random placement of the locking gates. For
128-bit key none of the implemented methods breaks within
the specified timeout.

To further analyze the effect of a key size, a series of tests
were run with finer granularity as shown in Fig. 7. In this
experiment keys sizes were in the range between 96 and 128
bits, spaced by 4 bits.

As shown in the figure, not all tests consistently reached
the timeout until a 128-bit key was used. The results showed
that the best obfuscation outcomes/security for the S-box is
achieved for random placement of the locking gates.

C. ORF Added Logic Locking, Method 6

Our next tests involved the ORF insertion scheme as
outlined in [16]. In this work it was suggested that the

TABLE I.
AVERAGE SAT ATTACK BREAK TIME (SECONDS) ON MK-3 S-BOX.

“TIMEOUT” INDICATES UNSUCCESSFUL ATTACK AFTER 5 DAYS (432,000
SECONDS).

Key Size

16
32
64
96
128

Random High Stage Low Stage LUT-Lock Mod. LUT-Lock

582 282 165 490 946
692 254 82 24,974 2,676

270,520 32,866 483 281,141 59,993
Timeout 298,616 43,737 414,580 333,862
Timeout Timeout Timeout Timeout Timeout
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ORF was an implementation of the AES with a fixed key.
However, since hardware implementations of the AES require
significant amount of resources and could incur too much
overhead for obfuscating smaller circuits, we chose to use
SIMON, a lightweight hardware-optimized block cipher in our
approach [20].

First, we ran attacks on SIMON and round-reduced im-
plementations of the SIMON cipher itself. This was done to
evaluate the potential of different possible configurations of
SIMON as an ORF. The implementations with 1 – 6 rounds
were broken rather quickly, many in fractions of a second,
but 7 rounds or more were unable to be broken in the given
timeout range of five days with this attack. After those tests,
three base configurations with fixed key, fixed plaintext, and
no fixed inputs were developed as it is shown in Fig. 5. By
fixing one of the cipher inputs before synthesis, the created
implementation has unrecognizable structure and thus may
prevent possible removal attacks. The implementation with no-
fixed input was examined to determine if having the full cipher
can provide additional security against SAT attacks, despite
being more susceptible to removal attacks.

Rather than modulating the key size in these tests, the
number of rounds of SIMON was changed. This was done to
determine if the full cipher is required or if a round-reduced,
smaller implementation could be used and still provide ade-
quate security. The locking method used for all these tests was
the random scheme with a 32-bit key, which corresponds to the
32-bit ciphertext output of the SIMON selected configuration.
Tab. II shows the results of these tests on the MK-3 S-box.
Fig. 8 presents the same results as a bar chart.

Adding SIMON as an ORF vastly increases security in both
the cases of fixed plaintext and no fixed inputs. Fixing the
plaintext seems to retain the most strength at fewer rounds.
Across all circuits and implementations the tests which used a
fixed key performed worse than the other two methods, though
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Fig. 8. SAT Attack Results on Locked circuits with SIMON Configurations
as ORFs

still offered notable added security over methods 1 – 5 with 32
locking gates/key. Implementations with as few as two rounds
showed a greater resistance to the attack than the average
amount of time the SAT attack took to break the MK-3 S-
box circuit obfuscated with methods 1 – 5.

D. Cost

Including SIMON does incur some significant overhead
which must be accounted for when designing a circuit. Tab. III
gives data on the gate overhead for each configuration of
SIMON that was tested.

Each implementation and number of rounds adds a different
amount of gates to accompany the different amount of security

TABLE II.
AVERAGE SAT ATTACK BREAK TIME (SECONDS) ON MK-3 S-BOX WITH
SIMON AS AN ORF. “TIMEOUT” INDICATES AN UNSUCCESSFUL ATTACK

AFTER 5 DAYS (432,000 SECONDS).

# of Rounds

2
4
6
8

10
12
14
16
24
32

Fixed Key Fixed Plaintext No Fixed Inputs

927 461 832
1,359 934 2,047
4,108 Timeout 1,612
1,683 Timeout 2,462
5,228 Timeout 70,290
7,944 Timeout 416,078

10,679 Timeout Timeout
24,125 Timeout Timeout

313,616 Timeout Timeout
388,227 Timeout Timeout

TABLE III.
SIMON 32/64 OVERHEADS (# OF 2-INPUT GATES)

Rounds: 2 4 6 8 10 12 14 16 24 32

Fixed Key 107 211 320 433 551 659 770 870 1338 1765
Fixed Plaintext 67 200 435 675 919 1155 1391 1628 2583 3540

No Fixed Inputs 128 256 495 717 955 1194 1432 1672 2634 3586
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offered. The fixed key implementation is the smallest but
offered the least security, fixed plaintext is notably larger
but gave much more SAT attack resistance at fewer rounds,
and the no fixed input implementation is just slightly larger
than with fixed plaintext and also offered substantial security
with slightly more rounds. With the non-ORF logic locking
methods, the overhead is one gate per key bit.

V. CONCLUSIONS

The methods explored in this work offered varying levels
of success, with random gate placement and ORF insertion
ultimately offering the most security for the tested configura-
tions, in some cases increasing the attack time from fractions
of a second to several days. Additionally, the MK-3 S-box
showed a much higher resistance to SATs attacks than the
standard ISCAS ’85 benchmarks as reported in [21], which
could indicate that non-linear components like S-boxes are by
design harder to break in this way.

We are convinced that using an ORF to transform key bits
before another locking mechanism is the right approach. With
a sufficient number of key bits we can expect any SAT attack to
fail, if the ORF being used has proper cryptographic strength.
The 32 bits used in our experiments, however, may not be
enough for high security requirements.

Future work might include more detailed analysis of the
effectiveness of different configurations of SIMON (key, plain-
text, and ciphertext sizes) or other lightweight ciphers for use
as ORFs. For example - the National Institute of Standards and
Technology (NIST) competition for lightweight ciphers [22]
is ongoing and several interesting candidates are being con-
sidered for standardization. Further work may also need to be
conducted in preventing possible removal attacks against the
ORF, if its structure is too recognizable.
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