
Solving the Cross Domain Problem
with Functional Encryption

Alan Kaminsky
Department of Computer Science
Rochester Institute of Technology

ark@cs.rit.edu

Michael Kurdziel
L3Harris Technologies

Mike.Kurdziel@L3Harris.com

Steve Farris
L3Harris Technologies

Steve.Farris@L3Harris.com

Marcin Łukowiak
Department of Computer Engineering

Rochester Institute of Technology
mxleec@rit.edu

Stanisław Radziszowski
Department of Computer Science
Rochester Institute of Technology

spr@cs.rit.edu

Abstract—A Cross Domain Problem (CDP) is the question of
how to securely access and exchange information between the
domains of varying security levels. A Cross Domain Solution
(CDS) addresses the CDP by designing the framework and
protocols for such access and transfers. Most existing CDS
methods rely on policies and trusted parties to manage different
security levels. A CDS that can function in the presence of
untrusted parties is a challenge.

Functional Encryption (FE) is an encryption scheme in which
a secret key allows one to compute a specific function of
plaintext from the ciphertext. FE is a generalization of identity-
based and attribute-based encryption frameworks. General and
simultaneously practical FE is an emerging area, and only special
types of encryption schemes and functions are effectively handled
within existing systems.

We apply the concepts of FE to explore a new solution to the
CDP, and we argue that our solution does not leak information,
provided that widely accepted assumptions about standard digital
signatures hold. We built a practical software case study applica-
tion using a trusted Key Distribution Center (KDC), a standard
symmetric key block cipher component (like the AES), and using
the Elliptic Curve Digital Signature Algorithm (ECDSA). The
experiments show that the computational overhead introduced
to routing by our method is cost effective, where the additional
cost is equivalent to just a few applications of standard digital
signatures.

Index Terms—Functional Encryption, Cross Domain Problem,
Cross Domain Solution

I. INTRODUCTION

The Cross Domain Problem (CDP) refers to the need for
systems and processes which allow the transfer of information
that is classified at different security levels to be securely
communicated between domains at different classification
levels [1]. Most current solutions are based on a system of
risk management that usually relies on trusted actors. A fully
automated CDS is desired which allows an information source
to transfer data across a heterogenous network of security
domains, in a secure manner, to an appropriate destination.
End to end encryption offers a potential solution. However, a
method is required that allows encrypted traffic to be routed
over a network to an end destination without revealing sensi-

tive information. For example, revealing source and destination
IP addresses will make the system vulnerable to traffic flow
analysis. An adversary could also use the addresses to spoof
the information source or destination. One potential solution
is Content-Based Routing (CBR) [2]. A Content-Based Router
examines the message content and routes the message to a
different channel or destination based on data contained in the
message. However, CBR cannot be used as a basis for a CDS
because gateways and routers in different domains cannot have
access to the data. Homomorphic Encryption (HE) schemes
offer another potential solution to the CDP. HE schemes
allow computations to be performed on encrypted data without
the need to decrypt it. This could allow untrusted or semi-
trusted routers and gateways to determine limited information
to operate on the encrypted data without first decrypting the
data. A CDS was proposed in [3] that was based on the
Yet Another Somewhat-Homomorphic Encryption (YASHE)
scheme [4]. This CDS was prototyped and proved feasible,
however practical limitations such as high data expansion, high
latency and significant processing requirements were observed.

Functional Encryption (FE) is a generalization of public-key
encryption where a secret key enables the user to evaluate a
single function on a piece of encrypted data [5]. Application
of FE to the CDP offers a potentially limited but more feasible
solution. The objective of the investigation described in this
paper was to explore and assess the viability of using func-
tional encryption to create a CDS that ensures security while
transferring information across different security domains with
routing decisions determined by untrusted or semi-trusted
gateways and routers.

This paper is organized as follows: The CDP and the past
approaches to it are reviewed in Section II. Our proposed FE
scheme for a CDS is described in Section III. The case study
describing the framework and its implementation for achieving
a CDS using FE are presented in Section IV and Section V.
The experimentation results and conclusions are provided in
Section VI and Section VII, respectively.



II. BACKGROUND

A. The Cross Domain Problem

Multiple data sources produce data of varying classifications
that need to be routed to specific endpoints. The encrypted
data is multi-casted onto an untrusted network to multiple
network untrusted gateways. The gateways will process the
data and determine only if the data is intended for its network
endpoints. If true, then the gateway will forward the encrypted
data. If not true, the gateway will drop the data assuming
it is intended for another gateway. No gateway will learn
anything about the type of data, the classification of the actual
endpoint or the ultimate destination of data. This prevents
a rogue gateway and network from searching for specific
information and gathering data not intended for its endpoint.
The system can include multiple types of classification, such
as: Top Secret, Secret, Confidential, Restricted, Official, or
Unclassified. An endpoint network may have one or more
associated users. A figure that represents the concept of the
problem is shown in Fig. 1 from [1]. This figure illustrates a
system whereby each data source encrypts the data it produces
with a secret symmetric key that is only shared between the
data source and the ultimate end point. Next, the data source
concatenates an attribute which identifies the subnetwork of
the endpoint. The attribute is bound to the encrypted data
packet by signing the entire packet with a private “concealing
key” associated with a specific gateway. That gateway will
hold a corresponding public “revealing key”. Then the data
source multicasts the packet using a library of IP addresses to
all the gateways that sit on the network. Each gateway will
use its “revealing key” to check the attribute of the incoming
packet. If the gateway is able to verify the attribute, then
it broadcasts the packet to its endpoints, otherwise it drops
the packet. Only the endpoint that shares the symmetric key
with the data source will be able to decrypt the payload
of the packet. Note that the revealing key only permits a
gateway to determine that a packet is intended for one of its
endpoints. It is not able to determine any other gateway that
the packet might be intended for. The gateway also cannot
access the plaintext data. As such, the gateway is considered
to be partially or semi-trusted.

In summary, a successful CDS must guarantee its resistance
against unauthorized gateway’s action and that the intruders
cannot learn anything, namely:

• Gateway cannot:
– Determine plaintext (lacks symmetric key)
– Determine any attribute value which is not its own

(lacks revealing keys)
– Forge or alter ciphertext or concealed attributes

(lacks symmetric key and concealing keys)
– Deduce concealing key (digital signature property)

• Intruder cannot:
– Determine plaintext (lacks symmetric key)
– Determine any attribute value (lacks revealing keys)
– Forge or alter ciphertext or concealed attributes

(lacks symmetric key and concealing keys)

Fig. 1: The Cross Domain Network Case Study [1]

The difficulty of designing a CDS is that, in order to
operate on the plaintext data, any party on the network
must be protected and trusted [1]. The National Institute of
Standards and Technology (NIST) provides a large catalog
of security frameworks. These include a number of non-
mutually exclusive scenarios for CDS, in the information flow
enforcement section, from which one can select to fulfill their
requirements [6]. However, the methods and policies used
are primarily determined by the implementing organization.
Many such CDS related definitions focus on security policy
and risk management using protected domains with authorized
human personnel to manually evaluate and control the flow of
information. Therefore, a system that is able to automatically
use information while maintaining security inside an untrusted
domain is a challenging problem.

The use of homomorphic or functional encryption to achieve
this objective is a mostly unexplored research area. In our
previous work we proposed and confirmed as feasible a
solution based on homomorphic encryption using YASHE
for HE and SIMON-encrypted headers of data blocks being
transferred [3]. The overhead of this solution, however, was
very substantial. In this work we present a simple yet appealing
solution using functional encryption.

B. Functional Encryption

Functional Encryption (FE) is an encryption scheme in
which a secret function key allows one to compute a specific
function of plaintext from the ciphertext (see Fig. 2). FE is a
generalization of identity-based and attribute-based encryption
frameworks [5].

General but also practical FE is an emerging area, and only
special types of encryption schemes and functions are effec-
tively handled within existing systems. The general solutions
to FE schemes tend to be computationally expensive, and thus
not widely adopted. Here, however, we use FE to conceal only
a few bit-attributes, and the FE restricted this way can be



Fig. 2: Starting Functional Encryption

effectively implemented with just somewhat adjusted classical
mechanism borrowed from digital signatures.

III. PROPOSED FE-CDS SOLUTION

A. The Setting

Parties known as senders generate sensitive messages (plain-
texts PT). A sender encrypts a plaintext with a secret en-
cryption key K using a symmetric cipher, which yields a
ciphertext CT. The sender attaches one or more Boolean-
valued attributes Ai to the ciphertext and conceals the attribute
values as described below in part B, The Protocol.

These senders are data sources depicted in Fig. 1. The key
K is used with a block cipher like the Advanced Encryption
Standard (AES). Such keys need to be generated and properly
shared between the data sources and users prior to initiating
our proposed CDS, for each sender/user pair which will need
to route some contents in the CDS. The generation, distribution
and use of these symmetric keys is not discussed further in this
paper, though the Key Distribution Center (KDC) outlined in
the Key Setup paragraph in the following part B may be used
for their generation and distribution. Other means than KDC
are possible, like special secured communication channels
used by sources and users for key sharing.

The concealed attributes are as follows:

• PT, sensitive content, plaintext,
• A1, A2, . . . , Boolean attributes,
• CT, encrypted content, ciphertext,
• X1, X2, . . . , concealed attributes Ai.

Parties known as receivers receive ciphertexts along with
their attached concealed attributes (see Fig. 3). A particular
receiver is authorized to learn the true/false value of a particu-
lar attribute or attributes. A receiver cannot learn the true/false
value of any attribute for which the receiver is not authorized.

Fig. 3: Using Functional Encryption

A receiver cannot (correctly) attach any concealed attributes
to any ciphertexts. A receiver cannot learn any plaintext.

Parties known as intruders want to break the system’s secu-
rity. An intruder cannot learn any plaintext. An intruder cannot
(correctly) attach any concealed attributes to any ciphertexts.
An intruder cannot learn the true/false values of any attributes.
If an intruder alters a ciphertext and/or its concealed attributes,
no one will be able to learn the attribute values; this is a denial-
of-service attack, but it does not break the system’s security.

B. The Protocol

The protocol relies on a digital signature algorithm. For
concreteness, let this be the Elliptic Curve Digital Signature
Algorithm (ECDSA) defined in FIPS PUB 186-4 Digital
Signature Standard (DSS) [7] with Curve P-192.
Key Setup. A trusted Key Distribution Center (KDC) gen-
erates a signature key pair for each attribute Ai. The key
pair consists of a signing key SKi and a verifying key V Ki.
Both the signing key and the verifying key are kept secret;
the verifying key is not made public as is usually the case.
The KDC securely sends each attribute’s signing key to each
sender. The KDC securely sends each attribute’s verifying key
to each receiver that is authorized to learn the true/false value
of that attribute.
Sender. A sender generates a ciphertext C, determines the
value of each attribute Ai, and generates each concealed
attribute Xi as follows: If the value of Ai is false, then
Xi = Sign(C‖0, SKi), otherwise Xi = Sign(C‖1, SKi).

The sender attaches all the concealed attributes Xi to the
ciphertext C and sends the message. With ECDSA/P-192, each
concealed attribute (signature) occupies 384 bits (48 bytes).
Receiver. A receiver obtains a ciphertext C along with its
attached concealed attributes Xi. The receiver is authorized to
learn the true/false value of a particular attribute Aj ; thus, the



Fig. 4: Attribute Concealment
Concealed attribute is bound to its ciphertext; signature ECDSA with NIST Curve P-192, Xi is 384 bits (48 bytes)

Fig. 5: Attribute Revelation
If both verifications fail, then CT, Xi, and/or reveal Ai key is invalid

receiver knows the verifying key V Kj . For the receiver the
following holds: If Verify(C‖0, Xj , V Kj) succeeds, then Aj

is false; if Verify(C‖1, Xj , V Kj) succeeds, then Aj is true;
otherwise we have an error of unknown value of Aj .

The details of attribute concealment and revelation are
illustrated in Fig. 4 and Fig. 5, respectively.

Security. Because no receiver or adversary has the symmetric
key used to generate the ciphertexts, no receiver or adversary
can learn the plaintexts. If a receiver (or adversary) is not
authorized to learn the true/false value of Ai, then that party
will not have V Ki, and that party will not be able to carry
out the above computation. If that party nonetheless tries to
learn the attribute’s value using the wrong verifying key, both
signature verifications for Xi will fail. Because no receiver
or adversary has the signing key SKi for any attribute, no
receiver or adversary can generate a correct concealed value
Xi for any attribute. Also, it is not possible to derive the

signing key SKi from the verifying key V Ki. If a party
tries to generate Xi using the wrong signing key, then both
signature verifications for Xi will fail. If an adversary alters a
ciphertext C or a concealed attribute Xi, then both signature
verifications for Xi will also fail. Because ECDSA includes a
random ephemeral value in every signature computation, the
concealed attribute value Xi will be different in every message,
even if the ciphertext C and attribute value Ai are the same.
Thus, no party will be able to correlate the concealed attribute
values with the actual attribute values.

For the signature scheme we use, we have to keep both the
signing and verifying keys secret. Thus, it is important that an
adversary cannot recover the verification key from the message
being signed, C‖0 or C‖1, and the signature Xi.

In some signature schemes, this is an important aspect of
the public verification key. In fact, some of the standards
provide recommendations to prevent the verifying key from



being fully or partially recoverable. This is the case for the
ECDSA, for which partial recovery of the curve point Q is
possible given the signed message, the message signature and
other parameters of the elliptic curve. Here Q = kP , P is
a known curve generator recommended in the standard and
integer k is secret. For the case of the RSA, often the public
key is recommended to be a small number of the form 2m+1,
such as 3 or 17.

For our work, we use the ECDSA and recommend that the
verifying key consist of all curve parameters, including the
number of points and the generator P . If a specific curve
such as P-192 is desired, we can simply replace its standard
generator P with a point mP for a randomly chosen integer
m. If we use the RSA signature scheme, then the verifying
key should be chosen randomly from the full set of possible
keys (an integer co-prime to the modulus).

IV. USE CASE: SENSITIVE DOCUMENT DISTRIBUTION

The ciphertexts are encrypted sensitive documents. There
are four Boolean attributes: A1 - document may be sent on
an Unclassified network, A2 - document may be sent on a
Secret network, A3 - document may be sent on a Top Secret
network, and A4 - document may be sent on a Ludicrously
Secret network. The senders are devices that create documents
(ciphertexts). A sender that creates a document at a particular
secrecy level attaches concealed attributes to the ciphertext as
follows: for Unclassified documents all attributes are true, i.e.
A1 = A2 = A3 = A4 = 1, for Secret documents A1 = 0 and
A2 = A3 = A4 = 1, for Top Secret document A1 = A2 = 0
and A3 = A4 = 1, and for Ludicrously Secret document A1 =
A2 = A3 = 0 and A4 = 1. The first receivers are gateway
devices for networks. Each network has a secrecy level. A
network’s gateway decides whether a particular document is
allowed to be sent on a particular network. The gateway learns
the true/false value of the document’s attribute associated with
the network’s secrecy level, and allows the document to be sent
on the network only if the attribute is true.

The proposed CDS scheme can be extended to attributes
with N possible discrete values (N > 2). To create a
concealed attribute, sign C‖0, C‖1, C‖2, . . . and/or C‖N–1
as appropriate. Determining the actual attribute value from the
concealed attribute value takes longer, as up to N signature
verifications have to be performed.

V. CDS FRAMEWORK USING FE

Fig. 6 shows the test/demonstration setup for a Cross
Domain Solution based on the proposed Functional Encryption
scheme. As previously stated, this approach offers a solution
for specific fully automated use cases, but has the advantage of
being computationally more feasible than HE based methods.
Prior to beginning processing and data transfer, a set of keys
will need to be distributed by the Key Distribution Center
(KDC). First, a set of encryption keys, shown as ek0, ek1 and
ek2 in the figure, are generated and distributed to the data
producer and to the intended end points behind Gateway 0,
1 and 2, respectively. These keys allow the data producer to

secure the payload so that it is only accessible by authorized
endpoints. Secondly, a set of “signing keys”, shown as sk0,
sk1 and sk2 in the figure are generated and distributed to
the data producer. These keys allow the data producer to
cryptographically bind gateway attributes to the data payload.
Finally, a set of “verification keys”, shown as vk0, vk1 and
vk2 in the figure are generated and distributed to Gateway
0, 1 and 2, respectively. To process and transfer information,
the data producer first encrypts the data payload using the
encryption key for the endpoint in the destination domain.
Then the producer appends the set of attributes for the gateway
to that domain and cryptographically binds the attributes to the
payload by using the appropriate signing key. Finally, the data
producer multi-casts the secured data item to all of the network
gateways. When each gateway receives the secured data item,
it can use its verification key to determine if that item is
intended for an endpoint in its domain or not. Depending on
the result of the verification operation, the gateway will either
pass the data item into its domain or it will discard the item.
Each gateway is only capable of determining that a secured
data item is intended for its domain. It cannot determine the
identity of any other destination domain and it cannot access
any aspect of the data item itself. In this way, the gateway is
considered as an untrusted or partially trusted resource.

VI. RESULTS

For functional verification of the approach, we utilized four
Python scripts that were executed on five Linux worksta-
tions with Internet network connections. These scripts were
designed to mimic the roles of the Key Distribution Center
(KDC), Producer, network Gateways, and destination Do-
mains. Python ecdsa and cryptography.hazmat packages pro-
vided support for key generation and cryptographic operations.
Socket programming was used to send and receive messages
between workstations.

Timing measurements were gathered on a PC with AMD
Ryzen 5 3600X 6-Core Processor 3.80 GHz, 16.0 GB RAM
2133 MHz, PCIe 4.0 SSD. A set of small images was used
as PT data and the number of attributes selected for this
test was four. Nonce (8 bytes), AAD (23 bytes of additional
authenticated data) and plaintext image data (127 kB) were
concatenated and encrypted using AES with GCM (Galois
Counter Mode) and 128-bit secret key. Signing and verification
of the attributes was accomplished using the Elliptic Curve
Digital Signature Algorithm (ECDSA) over NIST Curve P-
192. Sample times are presented in Table I.

Time [µs]
Computation Producer Gateway Domain

AES-GCM encrypt 222
Signing attributes 1929

Verifying attributes 5568
AES-GCM decrypt 521

TABLE I: Sample test times

This method has negligible processing time and memory
overhead compared with our previous HE-CDS work in [3].



Fig. 6: Setup of a test system

Table I shows that this method can provide a CDS with 128
bits of security while requiring approximately 2 ms to process
the data for transmission and 6 ms to evaluate the data. In
addition, memory requirements for all the computations are
negligible. In contrast, for the same level of security, the HE-
CDS based method in [3] requires approximately 35 minutes
to process the data for transmission and 20 hours to evaluate
the data. In addition, the HE-CDS computations require a total
of over 3.5 GB of memory.

VII. CONCLUSIONS

This work demonstrated that a CDS can be achieved us-
ing functional encryption. We demonstrated that a practical
application that securely transfers cross domain information
across an untrusted network can be achieved under a parameter
selection that ensures 128-bit security using AES and ECDSA.
This method requires attributes to be defined a priori and
is therefore less flexible than the HE-CDS based method
presented in [3]. However, the computational requirements are
modest, and the performance is greatly improved.

Table I shows that this method can provide a CDS with 128
bits of security while requiring approximately 2 ms to process
the data for transmission and 6 ms to evaluate the data. In
addition, memory requirements for all the computations are
negligible. In contrast, for the same level of security, the HE-
CDS based method in [3] requires approximately 35 minutes
to process the data for transmission and 20 hours to evaluate
the data. In addition, the HE-CDS computations require a total
of over 3.5 GB of memory.

REFERENCES

[1] Committee on National Security Systems. Committee on National
Security Systems (CNSS) Glossary. (4009):160, 2015.

[2] Pedro Bizarro, Shivnath Babu, David DeWitt, and Jennifer Widom.
Content-based routing: Different plans for different data. In Proceed-
ings of the 31st International Conference on Very Large Data Bases,
Trondheim, Norway, pages 757–768, Sep 2005.

[3] C. Tinker, K. Millar, A. Kaminsky, M. Kurdziel, M. Lukowiak, and
S. Radziszowski. Exploring the application of homomorphic encryption
to a cross domain solution. In MILCOM 2019 - 2019 IEEE Military
Communications Conference (MILCOM), pages 1–6, 2019.

[4] Joppe W. Bos, Kristin Lauter, Jake Loftus, and Michael Naehrig.
Improved security for a ring-based fully homomorphic encryp-
tion scheme. Cryptology ePrint Archive, Report 2013/075, 2013.
https://eprint.iacr.org/2013/075.

[5] Dan Boneh, Amit Sahai, and Brent Waters. Functional Encryption:
Definitions and Challenges. Proceedings of Theory of Cryptography
Conference (TCC), 2011.

[6] NIST. Security and Privacy Controls for Federal Information Systems
and Organizations Security and Privacy Controls for Federal Information
Systems and Organizations. Sp-800-53Ar4, pages 400+, 2014.

[7] NIST Federal Information Processing Standards Publication. Digital
Signature Standard (DSS). FIPS PUB 186-4, pages 130+, 2013.


