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Abstract

Given three graphs G, H and K we write K → (G,H), if in any red/blue
coloring of the edges of K there exists a red copy of G or a blue copy of H.
The Ramsey number r(G,H) is defined as the smallest natural number n such
that Kn → (G,H) and the star-critical Ramsey number r∗(G,H) is defined as
the smallest positive integer k such that Kn−1 tK1,k → (G,H), where n is the
Ramsey number r(G,H). When n ≥ 3, we show that r∗(Cn,K4) = 2n except
for r∗(C3,K4) = 8 and r∗(C4,K4) = 9. We also characterize all Ramsey critical
r(Cn,K4) graphs.
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1 Introduction

Let G and H be two finite graphs. If for every 2-coloring (red and blue) of the
edges of a complete graph Kn there exists a copy of G in the first color (red) or a
copy of H in the second color (blue), we denote this by Kn → (G,H). The Ramsey
number r(G,H) is the smallest positive integer n such that Kn → (G,H). The
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classical Ramsey number r(s, t) is defined as r(Ks, Kt). Exact determination of their
values, in particular the diagonal Ramsey numbers r(n, n), (see [10] for a survey)
becomes notoriously difficult for larger parameters. One of the variations of classical
Ramsey numbers, namely star-critical Ramsey numbers, were introduced by Hook
and Isaak in 2010 [6, 7]. They deal with finding r∗(G,H), which is defined as the
smallest positive integer k such that Kn−1 tK1,k → (G,H), where n = r(G,H) and
Kn−1 t K1,k is the graph obtained by identifying the k vertices of degree 1 in K1,k

with any k vertices of the complete graph Kn−1. One of the goals of the study of star-
critical Ramsey numbers can be seen as an enhancement of understanding of classical
cases. For n = r(G,H), we know that Kn → (G,H) but Kn−1 tK1,k 6→ (G,H) for
k < r∗(G,H). Thus, r∗(G,H) is zooming in at what is happening at the classical
case. Several authors studied r∗(G,H) for special pairs of graphs, such as for trees
versus complete graphs, stripes versus stripes, fans versus complete graphs, and others
[5, 6, 7, 13].

In 1973, Bondy and Erdős [1] obtained several interesting results related to
r(Cn, Km). Shortly afterwards, it was conjectured by Erdős and others that r(Cn, Km)
= (n− 1)(m− 1) + 1 for all n ≥ m ≥ 3, except the case r(C3, K3) = 6. Over decades,
many authors proved parts of this conjecture (see [10] for detailed references), and
now it is known to hold for all n ≥ m when m ≤ 7. The problem of determining
r(Cn, Km) becomes much more difficult for fixed n and large m.

The main result of this paper is the determination of r∗(Cn, K4). Determination
of r∗(Cn, Km) for n ≥ 5 is an interesting long-term challenge in itself, however at
the moment looking hopelessly difficult in light of the comments in the previous
paragraph. It is hoped, however, that thorough understanding of critical graphs and
of r∗(Cn, Km) for the cases when r(Cn, Km) is known, may help in obtaining new
results about the still open classical cases for larger parameters.

2 Notation

All graphs G = (V,E) considered in this paper are finite graphs without loops or
multiple edges. A set I ⊆ V (G), is said to be an independent set if no two vertices
of I are connected by an edge in G. That is, in the complement of G the vertices
of I form a clique of order |I|. The independence number of a graph G, denoted by
α (G), is the largest order of an independent set in G. For any subset S of V (G), the
subgraph induced by S, denoted by G[S], is defined as the subgraph formed by S and
all the edges of G connecting pairs of vertices in S. The subgraph G \S is defined as
the graph G[V (G) \ S]. The graph obtained by the disjoint union of n copies of G is
denoted by nG. The Wagner graph illustrated in Figure 5b is denoted by W8.
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The complete graph on n vertices is denoted by Kn, a cycle of length n is denoted by
Cn and a star on n+ 1 vertices is the graph K1,n. For p < r(G,H) a 2-coloring of Kp

that does not contain a red G or a blue H is called a (G,H; p) good coloring [3]. For
p = r(G,H) − 1 such good colorings are called critical. For a red/blue coloring of a
graph G, and vertices u, v ∈ V (G) such that {u, v} ∈ E(G), we say that u is a red
(resp. blue) neighbor of v if {v, u} is colored red (resp. blue). The notation KntK1,k

indicates the operation of identifying the k vertices of degree 1 in K1,k with k vertices
of the complete graph Kn. The notation Kn \K1,k indicates the graph obtained from
removing k edges incident to a vertex in Kn. Notice that Kn tK1,k = Kn+1 \K1,n−k.
The lower size Ramsey number l(G,H) is the smallest integer l such that there exists
a subgraph K of Kr(G,H) with |E(K)| = l and K → (G,H). As observed in [7],

l(G,H)−
(
r(G,H)− 1

2

)
≤ r∗(G,H) ≤ r(G,H)− 1. (1)

3 Properties of (Cn, K4) Ramsey critical graphs

It is known that r(Cn, K4) = 3n − 2 for n ≥ 4 and r(C3, K4) = 9 (see [12] for
the general case, and [10] for pointers to partial contributions). In this section we
characterize all Cn-free graphs without K4 on r(Cn, K4)− 1 vertices, i.e. all Ramsey
critical graphs for these parameters. We will make use of some external lemmas which
we include below for the sake of completeness.

Lemma 1 ([8], Lemma 4) Any C5-free graph of order 12 with no independent set
of 4 vertices is isomorphic to one of the graphs R12,1, R12,2, R12,3, R12,4, R12,5 (Figure
1) or R12,6

∼= 3K4.

Lemma 2 ([4], Corollary 1.14(a)) Let n ≥ 5. Then G is a (Cn, C3)-critical col-
oring if and only if Gblue = Kn−1,n−1 or Kn−1,n−1 − e for some edge e.

The next lemma is a direct consequence of a result by Bollobás et al. [2].

Lemma 3 Suppose G contains the cycle U = (u1, u2, ..., un−1, u1) of length n− 1 but
no cycle of length n. Let X = V (G)\{u1, u2, ..., un−1}, α(G) = m−1 where m ≤ n+3

2
,

and suppose that I = {x1, x2, ..., xm−1} ⊆ X is an independent set. Then no member
of I is adjacent to m− 2 or more vertices in the cycle U .

Lemma 4 For n ≥ 6, any Cn-free graph of order 3(n − 1) with no independent set
of 4 vertices contains 3Kn−1.
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R12,1 R12,2 R12,3

R12,4 R12,5

Figure 1: R12,k, 1 ≤ k ≤ 5.

Proof. Suppose that G is a Cn-free graph on 3(n− 1) vertices with no independent
set of 4 vertices. Then, as r(Cn−1, K4) = 3n − 5 (cf. [5, 10]), there exists a cycle
U = (u1, u2, ..., un−1, u1) of length n− 1. Define H = G \ U as the induced subgraph
of G not containing the vertices of the cycle, so |V (H)| = 2(n− 1).

Suppose that there exists an independent set X in H of order 3, hence α(G) = 3.
From Lemma 3, as 4 ≤ n+3

2
, every vertex X is incident to at most one vertex in U .

Then, as n − 1 > 3, we have an independent set of order 4 containing X, which is
a contradiction. Hence H contains no independent set of order 3 and H is a Cn-free
graph of order 2(n − 1). By Lemma 2, we conclude that H is equal to 2Kn−1 or
2Kn−1 +e since n ≥ 5. In the case H contains a 2Kn−1 +e, let a and b be the vertices
such that {a, b} represents the only edge e joining the two Kn−1’s. In the case H
doesn’t contain a 2Kn−1 + e, let a and b be any two vertices of H, belonging to the
two disjoint Kn−1’s. Now consider any two vertices of U , say u and v, and suppose
that {u, v} 6∈ E(G). Since there is no Cn in G, each of the vertices u and v must be
adjacent to at most one vertex of each copy of Kn−1 in H. Therefore, as n > 3, we
can select vertex x1 in the first Kn−1 and vertex x2 in the second Kn−1, such that x1
and x2 are not adjacent to u or v. This gives us that {u, v, x1, x2} is an independent
set of order 4, which is a contradiction. Therefore, {u, v} ∈ E(G). Since u, v are
arbitrary vertices in U , we can conclude that U induces a Kn−1 as required. �
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u

v

Figure 2: A coloring of K9 − e which contains no red C3 and no blue K4. In this
figure the red edges are indicated by solid lines and the blue edges by dashed lines.
Notice that the edge between the nodes labeled u and v is missing.

4 Main result

Theorem 1 If n ≥ 3, then

r∗(Cn, K4) =



8 if n = 3,

9 if n = 4,

2n if n ≥ 5.

Proof. We break up the proof into three cases.

Case n = 3

Let W ∗
8 be the graph of order 9 obtained from W8 (i.e., the Wagner graph) by adding a

vertex and connecting it to two non-adjacent vertices in the original graph. Color the
edges of K8 tK1,7

∼= K9 − e with red and blue, so that the red graph is isomorphic
to W ∗

8 , as indicated in Figure 2. This graph has no red C3 and has no blue K4

and thus K8 t K1,7 6→ (C3, K4). Therefore, r∗(C3, K4) ≥ 8. Using (1), we have
r∗(C3, K4) ≤ r(C3, K4)− 1 = 8 and thus r∗(C3, K4) = 8.

Case n = 4

Let x be the vertex in R9,5 (see Figure 6) of degree 2 and let y be a vertex adjacent
to x in this graph. Let R∗9,5 be the graph of order 10 obtained from R9,5 by adding
a vertex v and connecting it to x and y. Color the edges of K9 t K1,8

∼= K10 − e
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v

u

Figure 3: A coloring of K10 − e which contains no red C4 and no blue K4. In this
figure the red edges are indicated by solid lines and the blue edges by dashed lines.
Notice that the edge between the nodes labeled u and v is missing.

using red and blue so that the red graph is isomorphic to R∗9,5, as indicated in Figure
3 This coloring has no red C4 and no blue K4, and thus K9 t K1,8 6→ (C4, K4).
Therefore, r∗(C4, K4) ≥ 9. Using (1), we have r∗(C4, K4) ≤ r(C4, K4) − 1 = 9, and
thus r∗(C4, K4) = 9.

Case n ≥ 5

Color the edges of K3(n−1)+1\K1,n−2 using red and blue so that the red graph consists
of a 2Kn−1 ∪ (Kn−1 tK1,1) as illustrated in Figure 4.

Therefore, r∗(Cn, K4) ≥ 2n. In order to show that r∗(Cn, K4) ≤ 2n, assume by
contradiction that there exists a red/blue coloring of G = K3(n−1)+1 \K1,n−3 with no
red Cn and no blue K4. Let v be a vertex in G of degree 2n and let H be the graph
obtained from G by deleting v.

By Lemmas 1 and 4, we see that H contains a red 3Kn−1. Let us denote the sets
of vertices of its three components by V1, V2 and V3. Since there is no red Cn in
the coloring, v has at most one red neighbor in each of the three sets V1, V2 and V3.
If v is adjacent to exactly two vertices in some Vi (1 ≤ i ≤ 3) then, without loss
of generality, we may assume that v is adjacent to all the vertices in V1 and V2. In
particular, v is adjacent to at least 4 vertices in each Vi (1 ≤ i ≤ 2). Select v1 ∈ V1
and v2 ∈ V2 such that v1 has no red neighbors in G[V2 ∪ V3 ∪ {v}] and v2 has no red
neighbors in G[V1 ∪ V3 ∪ {v}] (this is possible because each Vi can have at most 3
vertices with red neighbors outside Vi). Because there are no red Cn’s in the coloring,
we can find a v3 ∈ V3 such that {v, v3} is colored blue. Then, {v, v1, v2, v3} will induce
a blue K4, a contradiction. Therefore, given any 1 ≤ i ≤ 3, we get that v must be
adjacent to at least 3 of the vertices in Vi. Thus, without loss of generality, we can
assume that v is adjacent to at least 4 vertices in V1, 3 vertices in V2, and 3 vertices
in V3. Because v can have at most one red neighbor in each of V2 and V3, we can
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x1, x2, x3, ... , xn−1 xn, xn+1, xn+2, ... , x2(n−1) x2n−1, x2n, ... , x3(n−1)

red degree 1

blue degree 2(n− 1)

red Kn−1 red Kn−1 red Kn−1

Figure 4: A coloring of K3(n−1)+1 \K1,n−2 which contains no red Cn and no blue K4.

select two vertices v2 ∈ V2 and v3 ∈ V3 such that {v, v2, v3} induces a blue triangle in
G. Next, select v1 ∈ G1 such that it has no red neighbors in G[V2 ∪ V3 ∪ {v}] (this is
possible because V1 can have at most 3 vertices with red neighbors outside V1). But
then {v, v1, v2, v3} will induce a blue K4, a contradiction. �

5 All (Cn, K4) Ramsey critical graphs

In this section we present characterization of all (Cn, K4) Ramsey critical graphs ob-
tained without explicit use of computations. This may help in future extensions of
the main result of this paper to graphs other than K4. We also performed compu-
tations generating all (Cn, K4; v) good colorings for n ≤ 7, obtaining full agreement
on the common part. Full understanding of (Cn, Km; v) good colorings may help in
further progress on both classical and star-critical Ramsey numbers for cycles versus
Km. Once again, we make use of an external lemma which we include here for the
sake of completeness.

Lemma 5 ([11], Lemma 4) A C4-free graph G of order 9 and no independent set
of 4 vertices is isomorphic to one of the graphs R9,1, R9,2, R9,3, R9,4, R9,5, R9,6, R9,7

(Figure 6) or R9,8
∼= 3K3.

Lemma 6 The set of r(Cn, K4)-critical graphs consists of:

• Three critical graphs for n = 3, with the red graphs, of the red/blue coloring,
corresponding to R8,1 (Figure 5a), R8,2

∼= W8 (Figure 5b) or R8,3 (Figure 5c).
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(a) R8,1 (b) R8,2
∼= W8

(c) R8,3

Figure 5: Graphs R8,k, 1 ≤ k ≤ 3.

R9,1 R9,2 R9,3

R9,4 R9,5 R9,6

R9,7

Figure 6: Graphs R9,k, 1 ≤ k ≤ 7.
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x1, x2, ... , xn−1

xn, xn+1, ... , x2(n−1)

x2n−1, x2n, ... , x3(n−1)

red Kn−1

red Kn−1 red Kn−1

x1, x2, ... , xn−1

xn, xn+1, ... , x2(n−1)

x2n−1, x2n, ... , x3(n−1)

red Kn−1

red Kn−1 red Kn−1

x1, x2, ... , xn−1

xn, xn+1, ... , x2(n−1)

x2n−1, x2n, ... , x3(n−1)

red Kn−1

red Kn−1 red Kn−1

Figure 7: The red graphs R3n−3,1, R3n−3,2, and R3n−3,3.

• Eight critical graphs for n = 4, with the red graphs, of the red/blue coloring,
given by R9,1, R9,2, R9,3, R9,4, R9,5, R9,6, R9,7 (Figure 6) or R9,8

∼= 3K3.

• Six critical graphs for n = 5, with the red graphs, of the red/blue coloring,
corresponding to K12, given by R12,1, R12,2, R12,3, R12,4, R12,5 (Figure 1) or
R12,6

∼= 3K4.

• Five critical graphs for n ≥ 6, with the red graph, of the red/blue coloring, cor-
responding to K3(n−1), denoted by R3n−3,1, R3n−3,2, R3n−3,3, R3n−3,4 or R3n−3,5,
where R3n−3,4 ∼= 3Kn−1 + e and R3n−3,5 ∼= 3Kn−1. The other three red graphs,
namely R3n−3,1, R3n−3,2, R3n−3,3, are illustrated in Figure 7.

Proof. There are three r(C3, K4) critical graphs which is easily verifiable (one of
them is the Wagner graph). For r(C4, K4) the result follows from Lemma 5 and the
fact that r(C4, K4) = 10 (cf. [10]). For r(C5, K4) the result follows from Lemma 1
and the fact that r(C5, K4) = 13 [8]. When n ≥ 6, for r(Cn, K4) the red graph of the
red/blue coloring corresponding to K3(n−1), must contain a 3Kn−1 by Lemma 4. In
order to avoid a red Cn, as there can be at most one red edge between any two of the
red Kn−1 graphs, we see that there are only 5 distinct colorings and the corresponding
red graphs are given by R3n−3,k for 1 ≤ k ≤ 5. �

Table 1 shows the number of (Cn, K4; v) good colorings for small values of n. This
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n
v

6 7 8 9 10 11 12 13 14 15 16 17 18

3 15 9 3
4 22 30 22 8
5 44 63 81 73 52 19 6
6 72 133 198 259 236 192 138 81 22 5
7 120 302 490 666 868 972 653 463 368 241 127 27 5

Table 1: Number of (Cn, K4; v) good colorings for n ∈ {3, 4, 5, 6, 7}.

dataset was generated by exploiting the fact that all (Cn, K4; v + 1) good colorings
can be obtained from all the (Cn, K4; v) good colorings by adding one vertex and
connecting it to every vertex in the original coloring, then coloring the new edges
avoiding Cn in the first color and K4 in the second color. The initial set (Cn, K4; v) for
v = 6 was generated by enumerating all models of the Boolean formula encoding the
non-arrowing property and then keeping one representative from each isomorphism
class using nauty1 [9].

As discussed in the Introduction and this section, the determination of r∗(Cn, Km)
for all n ≥ 5 is an interesting and very difficult challenge, and any further par-
tial progress on this problem will be welcome. We also expect that new results on
r∗(Cn, Km) could shed some light on still open classical cases of r(Cn′ , Km′), for n′ > n
or m′ > m.
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