
Homomorphic Proximity Computation in Geosocial
Networks

Peizhao Hu, Tamalika Mukherjee, Alagu Valliappan and Stanisław Radziszowski
Department of Computer Science

Rochester Institute of Technology, USA
Email: ph@cs.rit.edu

Abstract—With the growing popularity of mobile devices
that have sophisticated localization capability, it becomes more
convenient and tempting to give away location data in exchange
for recognition and status in the social networks. Geosocial
networks, as an example, offer the ability to notify a user or
trigger a service when a friend is within geographical proximity.
In this paper, we present two methods to support secure distance
computation on encrypted location data; that is, computing
distance functions without knowing the actual coordinates of
users. The underlying security is ensured by the homomorphic
encryption scheme which supports computation on encrypted
data. We demonstrate feasibility of the proposed approaches by
conducting various performance evaluations on platforms with
different specifications. We argue that the novelty of this work
enables a new breed of pervasive and mobile computing concepts,
which was previously not possible due to the lack of feasible
mechanisms that support computation on encrypted location
data.

I. INTRODUCTION

Emerging geosocial networks have made it easier to stay
connected with friends, especially those who are within close
geographical proximity [1], [2]. These networks are motivated
by the rapid adoption of mobile devices [3], and the sophisti-
cation of localization techniques. For example, social mobile
applications (such as Facebook, Tinder) recommend like-
minded individuals to users based on geographic proximity,
or notify users if a friend is within close vicinity. The growth
in this practice raises concerns about user location privacy
[4], [5]. Similar concerns have been raised in other pervasive
systems, such as participatory sensing and peer-to-peer social
gaming in which location data of the participants should be
protected [2], [6].

Although many service providers support privacy preserving
mechanisms (anonymity, obfuscation, classical cryptography)
when they collect users’ location data, there are limitations
to the existing approaches [2], [7]. In this paper, we will
tackle the challenge of supporting computations on location
data, while preserving user privacy. To balance data privacy
and utility, we propose the use of homomorphic encryption
(HE) [8], which has been recognized as the “holy grail” of
cryptography and cloud computing [9] owing to its ability to
perform computations on encrypted data. This paper presents
a practical construction of secure proximity computation using
HE. Although the performance of this construction should be
still substantially improved, this paper provides motivation for
implementing such a real-world application using HE.

Our work focuses on the NLV2011 [10] Somewhat HE
(SWHE) scheme, which is a practical construction of a well
studied SWHE scheme — BV2011 [11], [12]. A SWHE
scheme supports only limited number of computations before
the ciphertexts become too noisy for decryption. Based on the
NLV2011 scheme, we propose two methods for computing
distance between users over encrypted coordinates. The first
approach converts GPS coordinates into the Universal Trans-
verse Mercator (UTM) coordinates, and computes Euclidean
distance to approximate the actual distance on the Earth’s
surface. The second approach (also known as spatial cloaking
[13]) uses a geo-hashing technique to transform GPS coordi-
nates into their linear representation (as binary strings); the
binary representation preserves the locality of points. Thus,
given two binary strings each representing a point, the longer
the common prefix between two binary strings the closer the
two points are. Based on this property, we develop homomor-
phic string matching operations to compute an encrypted form
of the common prefix over the encrypted coordinates. The
encrypted common prefix is then used to compute a bounding
box that gives the minimum and maximum distance of the two
points, rather than a precise distance value. Throughout the
entire process, precise coordinates are used for computation,
but they are protected by the encryption. The final encrypted
results are sent back to users who then decrypt the results
with a private key. Currently, our prototype uses a single-key
SWHE scheme, but we plan to extend it to incorporate multi-
key schemes in our future work.

In summary, we make three main contributions in this
paper: (i) to our best knowledge, the first practical construction
of secure computation on location data using SWHE, (ii) a
novel construction that combines a geo-hashing technique and
SWHE scheme to achieve privacy preserving distance compu-
tation, and (iii) feasibility study of the proposed approaches
and evaluation on platforms with different specifications.

The remainder of this paper is organized as follows. Section
II gives a brief introduction to homomorphic encryption, in
particular we discuss the construction of the NLV2011 scheme.
This is followed by the design of two proposed methods of
secure distance computation using SWHE in Section III. We
present a performance evaluation of the proposed solutions in
Section IV. Section V provides an overview of related work
on HE and other privacy preserving techniques. Section VI
concludes the paper and discusses possible future work.

II. HOMOMORPHIC ENCRYPTION

Homomorphic encryption (HE) [8] is a cryptographic tech-
nique that preserves privacy through encryption while sup-
porting computations over encrypted data. In a nutshell, for
messages m and m� we want the following properties to hold
for encryption using a key k.

Enc(m, k) + Enc(m�, k) = Enc(m+m�, k),

Enc(m, k) ∗ Enc(m�, k) = Enc(m ∗m�, k),

where applying addition + and multiplication ∗ to ciphertexts
has the same effect as applying these operations to plaintexts
and then encrypting the results. Since all functions can be bro-
ken down into these basic operations, we could theoretically
construct Fully Homomorphic Encryption (FHE) schemes that
perform arbitrary computations on encrypted data. In this
paper, we base our discussion on Ring-Learning With Errors
(Ring-LWE) schemes, in particular NLV2011 [10]. The Ring-
LWE assumption is stated as follows:

If we uniformly sample s and ai from a ring Rq =
Zq[x]/(Φ(x)) and ei from a Gaussian distribution χ, such
that bi = ais + ei for i ∈ N, then the pairs (ai, bi) are
computationally indistinguishable from (ai, b

�
i), where both

ai, b
�
i are uniformly sampled from Rq . Here Φ(x) = xn + 1

is a cyclotomic polynomial and n is a power of 2.
A cryptographic system typically consists of three main

components: key generation, encryption and decryption. Since
we want to support computations over ciphertexts, we have
homomorphic operations as well.

1) Key Generation: We focus on the asymmetric scheme,
hence we need a secret key and the corresponding public key.
For a secret key SK = s, we sample its coefficients from χ,
denoted by s ← χ, a random element a1 ∈ Rq and an error
e ← χ. We set the public key to be PK = (a0, a1), where
a0 = −(a1 · s + t · e) and t is the modulus of the plaintext
space. Note that s, a0, a1 and e are all elements of a ring of
polynomials.

2) Encryption: Given a plaintext m ∈ Rt = Zt[x]/(Φ(x))
and a public key PK = (a0, a1), we construct an encryption
function Enc(m,PK) = (c0, c1) = (a0u+tg+m, a1u+th) ∈
(Rq)

2, where u, g and h are noises sampled independently
from the Gaussian distribution χ.

3) Decryption: While any fresh encryption will produce
a ciphertext with two components C = (c0, c1) ∈ (Rq)

2,
homomorphic multiplication (described below) will increase
the number of elements in the ciphertext beyond two. Hence,
we represent the ciphertext as C = (c0, . . . , cξ) ∈ (Rq)

ξ+1.
The decryption function is defined as Dec(C, SK) = m̃ =�ξ

i=0 cis
i ∈ Rq .

To understand its correctness, we show the following proof
for a ciphertext with two elements C = (c0, c1):

1�

i=0

cis
i = (a0u+ tg +m) + (a1u+ th)s

= −a1us− tue+ tg +m+ a1us+ ths

= t(−ue+ g + hs) +m.

Fig. 1. Privacy preserving geosocial apps.

The coefficients of the resulting expression must be converted
from (0, q] to (−q/2, q/2] in order to properly represent the
error terms, since they are drawn from Gaussian distribution
χ. We should then be able to decrypt the plaintext m by
performing a (mod t), given that the noise terms are small.

4) Homomorphic Operations: Given two ciphertexts C =
(c0, . . . , cξ) and C � = (c�0, . . . , c

�
η), the homomorphic addition

is a straightforward component-wise addition.

C + C � = (c0 + c�0, . . . , cξ + c�η) ∈ (Rq)
max(ξ,η)+1,

where we might need to pad ciphertexts by 0’s in order to
match the length of the longer ciphertext.

Homomorphic multiplication is more difficult, because of
the growth of elements,

C ∗ C � = (ĉ0, . . . , ĉξ+η).

There is a technique, called relinearization, to reduce the
number of ciphertext elements. In a nutshell, homomorphic
multiplication introduces terms with si, for i > 1. Take the
case of multiplying two ciphertexts of length two: C = (c0, c1)
and C � = (c�0, c

�
1). We want C∗C � = mm�+temult so that we

get back mm� (mod t) where m and m� are the corresponding
messages and emult is the error resulting from multiplying
two ciphertexts. Interested readers can find more information
in [10].

III. SECURE PROXIMITY COMPUTATION WITH SWHE

In the current system, we use the NLV2011 [10] scheme
to implement all the required HE operations. To illustrate
the working of the proposed system, we use the following
application scenario, as shown in Fig. 1. Bob wants to compute
his proximity from his friends subscribed to the service and
uses encryption to hide the exact coordinates from the service
provider.

A. Computing the Euclidean distance with UTM coordinates

The first approach is to directly compute the distance
between two coordinates. However, GPS coordinates are com-
monly encoded in the WGS84 form (latitude and longitude,
we ignore altitude for clarity), which require complex compu-
tations like the haversine formula [14]. Implementing these
functions as HE operations will significantly increase the
computation time, making the system impractical. Instead, we

map the WGS84 coordinates into the Universal Transverse
Mercator (UTM) coordinate system so that the Euclidean
distance of two UTM points is an approximation of the
distance on the Earth surface. The UTM projection is a
type of Cartesian coordinate system, which divides the Earth
surface into 60 zones, each 6◦ of longitude in width. Within
each zone, (x, y) refers to a point in the projection. Given
two UTM points P1 = (x1, y1) and P2 = (x2, y2), we
approximate the distance using the Euclidean distance function
d(P1, P2) =

�
(x1 − x2)2 + (y1 − y2)2. This projection typi-

cally works well if the two points are relatively close, but the
error increases as the actual distance between the two points
increases.

We compute the square of encryption of Euclidean distance
(Cx−C �

x)
2+(Cy−C �

y)
2, where all Ci terms are ciphertexts. To

speed-up the computation, we apply the Chinese Remainder
Theorem (CRT) to breakdown large integers. The result of this
HE computation is sent back to the user, who will decrypt
it with a private key and apply the square root operation to
obtain the approximate distance in meters. Due to the use of
the polynomial ring structure, the square-root operation is not
supported in SWHE and this operation is applied by users after
decryption [15].

B. Approximating distance with geo-hashing

For some applications, we do not need or want precise dis-
tance value. This subsection describes a method for answering
the “nearby” query, or to compute an appropriate bounding
box, which contains the two given points. We can compute the
maximum and minimum distance between the two points from
the bounding box, without revealing the actual geographical
position of the two points.

This approach uses a geo-hashing technique known as Z-
order curve [16], which can reduce the dimension of data
while preserving locality of points. In this case, we are
mapping two dimensional coordinates into an array of concate-
nated indexing keys. Figure 2 shows the first three levels of
mapping of geographic regions to the corresponding indexing
keys (represented in base 4, hence quadkey) in Microsoft’s
Bing Maps tile system. Every time we increase one level
of detail, we divide each bounding box into four equal sub-
boxes, with each assigned a new quadkey appended to the
existing quadkey string, as illustrated. Essentially, in this linear
representation the longer the common prefix between the
quadkeys of two points, the closer they are. Also, the longer
the indexing key, the more precise reference to the original
point. We will discuss how this property can help to improve
privacy in Section IV. The details of the transformation steps
are described in [17]; for clarity, we focus our discussion on
the string matching processes with homomorphic encryption.

Given two GPS coordinates in WGS84 encoding, we use
the geo-hashing technique to compute the corresponding quad-
keys, and subsequently convert them into a binary represen-
tation. As an example, for a GPS point (48.9225,−78.75),
the corresponding quadkey and binary key at level 5 are
03023 and 0011001011 respectively. Once the coordinates are

Fig. 2. Z-order curve used in the Microsoft’s Bing Maps Tile System.

transformed into their binary representations, we can apply
efficient bitwise operations to compute the common prefix.
This common prefix can then be used to compute the bounding
box that contains the two points. Because of the property of
the geo-hashing technique, the longer the prefix, the closer the
two points, and the smaller the bounding box. The highlighted
square (containing 130, 131, 132, 133), as shown in Fig. 2,
is an example of a bounding box. The maximum distance
between any two points in the box is the length of the diagonal
of the bounding box. Thus given the common prefix, we
can approximately compute how far apart the two points are
without giving away their exact locations.

The main task is to find the common prefix of the two
coordinates’ binary representations. The logical way is to
implement a homomorphic equality operation which compares
the encrypted vectors and figures out the matching bits.
However, because HE schemes use random noise to mask
every encryption, it is difficult to implement this operation
on the ciphertexts.

Let us consider the example of Bob and Bob’s friend, Alice,
when they perform a bitwise encryption on their coordinates,
yielding a vector of ciphertexts �C = [Enc(A[i], PK)] and
�C � = [Enc(B[i], PK)] for i being up to the specified level
of detail. To compute the common prefix, we first apply a
coordinate-wise XNOR, which is represented as Ci ∗ C �

i +
C̄i ∗ C̄ �

i in algebraic form. The coordinate-wise XNOR will
return encryption of 1, if the corresponding bit values in the
encrypted coordinates are the same, otherwise it will return
encryption of 0x. Figure 3 shows in plaintext an example of
the bitwise XNOR operation. This yields an intermediate result
T .

To extract the common prefix we need a prefix mask Ť ,
which has all bits after the first 0 bit reset to 0. To convert
from T to Ť , we introduce a prefix mask refinement process.
For a T of n bits, this process involves n − 1 homomorphic
multiplications Ť [i] = T [i] × Ť [i − 1], as illustrated in
Fig. 3. We do not change the value of the first bit, hence
Ť [0] = T [0]. Due to the use of multiple levels of homomorphic

Fig. 3. Technique to extract the plaintext version of prefix mask Ť .

multiplications1, the relinearization step is required to reduce
the size of the ciphertext which increases the computation
time. Once we obtain the prefix mask, we can compute the
common prefix by single-level coordinate-wise homomorphic
multiplications of Ť and A or B.

Finally, the common prefix is used to compute the appro-
priate bounding box (as described in [17]), whose encryption
will be returned as result to the user.

IV. EVALUATION AND DISCUSSION

In this section, we describe the implementation of our
SWHE framework, evaluation results and privacy analysis.

A. Implementation and evaluation platforms

The prototypes of the two approaches were implemented
using our HE framework. We have implemented three re-
cent SWHE schemes: NLV2011 [10], YASHE [18], and FV
[19]. The framework includes implementations of all main
functionalities of the individual schemes. These schemes are
implemented in C++ with the support of polynomial operations
from the Number Theory Library (NTL), which depends
on the GNU Multiple Precision Arithmetic Library (GMP)
to handle large integers. We verified the correctness of our
implementation through extensive validation tests, and we
compared our performance results with the data reported in
the original papers.

We conducted our performance evaluations on three plat-
forms: Raspberry Pi model B+, ODROID-XU3 (as shown in
Fig. 4), and Amazon EC2 Cloud (the basic t2.micro type). All
these platforms run Ubuntu 14.01 with standard installation
of packages. As shown in Fig. 4, the specifications of these
platforms represent three different classes of devices; from
low-end smartphones to resource rich cloud environment. The
ODROID-XU3 board is especially designed for the Android
application development.

B. Evaluation results and discussion

In HE, parameter selection is a key process that determines
the correctness, security and performance of the schemes.

1Product of one homomorphic multiplication is used in another homomor-
phic multiplication.

Fig. 4. Hardware evaluation platforms.

TABLE I
PARAMETER SETTINGS FOR DIFFERENT EXPERIMENTS.

Parameter SWHE test Euclidean distance Geo-hashing
t 2 [2, 3, 5, 7, ..., 53] 2
n 64 64 64
�log2 q� 128 128 846
L 1 1 43

Here t is the plaintext space modulus, n is the degree of the polynomial
Φ(x), �log2 q� is the bit-length of q and L is the level of multiplications

required.

Table I shows the parameter settings for the three types of
experiments, which consists of tests for the common SWHE
operations and the two proposed approaches for secure dis-
tance computation. The focus of our evaluation is largely on
the performance and feasibility.

Each experiment was executed 1000 times and a timing
framework was used to record and compute the average
computation time of each operation as well as the standard
error of the mean which was relatively small. Each experiment
was also tested on the various platforms previously mentioned.
In our application scenario, since most of the homomorphic
operations are to be executed in the cloud environment, we
mainly focused our attention on the performance of Amazon’s
EC2. In addition, we can expect better performance if we run
our experiments on faster cloud service configurations, rather
than the restricted service that was used here. The performance
results of the other two platforms are presented to demonstrate
that the proposed approaches are feasible on common off-the-
shelf mobile devices.

1) Common homomorphic operations: Figure 5(a) shows
the computation time of all the common homomorphic op-
erations: keygen, encryption, decryption, addition, multiplica-
tion and multiplication with relinearization. As expected, the
computation times depend mainly on the CPU clock rate of
the respective platform. For the same experiment, Raspberry
Pi takes a significantly longer time than the ODROID-XU3
or the Amazon EC2 environment. Note also that the y-axis
values are in log-scale.

As shown in Fig. 5, our results are consistent with the
expectation that homomorphic multiplication takes more time
(even longer if the relinearization step is included) compared
to other HE operations. However, it should be noted that even
for the Raspberry Pi, the homomorphic multiplication of two
ciphertexts with relinearization still takes less than a second.

2) Computing Euclidean distance: Figure 5(b) shows the
computation time for each operation involved in the first
approach. As expected, the component-wise vector addition
and subtraction of ciphertexts take less time than the vector
multiplication of ciphertexts. The vector-based operations used
in this approach take longer than the basic homomorphic

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

G
en(PK)

Encrypt

D
ecrypt

C
 + C

’

C
 x C

’

C
 x
R
elin C

’

T
im

e
 (

s
)

Homomorphic operations

RaspberryPi
ODROID XU3
Amazon EC2

(a) Common homomorphic operations

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

G
en(Vec(PK))

Enc(Vec)

Vec(C
) + Vec(C

’)

Vec(C
) − Vec(C

’)

Vec(C
) x Vec(C

’)

D
istance

T
im

e
 (

s
)

Homomorphic operations

RaspberryPi
ODROID XU3
Amazon EC2

(b) Computing Euclidean distance

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

G
en(PK)

Enc(Vec)

Vec(C
) + Vec(C

’)

Vec(C
) x Vec(C

’)

Vec(C
) XN

O
R
 Vec(C

’)

Prefix M
ask

C
om

m
on Prefix

T
im

e
 (

s
)

Homomorphic operations

RaspberryPi
ODROID XU3
Amazon EC2

(c) Geo-hashing approach

Fig. 5. Computation times measurement of different homomorphic operations: [Gen(PK)] public key generation; [Gen(Vec(PK))] public key vector generation;
[Encrypt] encryption; [Decrypt] decryption; [C + C’] addition; [C x C’] multiplication; [C xRelin C’] multiplication with relinearization; [Enc(Vec)]
coordinate-wise vector encryption; [Vec(C) + Vec(C’)] vector addition; [Vec(C) x Vec(C’)] coordinate-wise vector multiplication; [Distance] Euclidean distance
computation; [Vec(C) XNOR Vec(C’)] coordinate-wise XNOR operation; [Prefix Mask] prefix mask vector computation; [Common Prefix] identifying the
common prefix.

operations. The distance computation operation involves three
vector-based homomorphic operations: subtraction, followed
by a multiplication with relinearization and an addition, and
results in the square value of the Euclidean distance. The
square root of this value is computed after decryption. The
overall computation time of the Euclidean distance is 0.21s in
the Amazon’s EC2 platform.

3) Approach using geo-hashing technique: As shown in
Fig. 5(c), this approach has a longer computation time than
the first approach because of the complexity involved in the
computations. All the operations for this techniques take a
longer time than the previous approach and the basic homo-
morphic operations because of the larger q value and the vector
computation. The computation of the prefix mask is the most
time consuming process in this approach due to the fact that
it uses 43 levels of homomorphic multiplication with relin-
earization. The common prefix computation uses one level of
multiplication and the computation time is approximately the
same as that of coordinate-wise XNOR operation. The overall
computation time for the geo-hashing approach is 232.36s in
Amazon’s EC2 platform. This is long, but can be significant
improved by leveraging parallel processing techniques. We
investigate the speed-up techniques as future work.

C. Privacy analysis and extension
The security of the system depends on the underlying

HE scheme, but the privacy also depends on the system
design. In the first approach, the accuracy can be improved
by implementing the haversine formula using homomorphic
operations which can provide the actual distance from the
starting point. The privacy threat is that if we know the exact
distance between two points, using one point as the center,
the other point must be on the circle. The adversary can
use heuristics, such as map information, to eliminate unlikely
places to infer the exact location.

In contrast, the final result of the second approach is the
top-left coordinate of the corresponding bounding box. Based
on the geo-hashing technique, we know the two points must be
within two distinct sub-areas of the given bounding box, but

no other information is exposed. For some applications where
an approximate distance is sufficient, this approach provides
better privacy. In addition, the computation of the bounding
box is based on the common prefix. Since we formulate
the problem of distance computation as string matching, the
system can handle string patterns that differ in length. Thus,
we can introduce a privacy control feature with zero overhead
where users decide the level of detail to be revealed to other
users, which is protected by homomorphic encryption. When
a query is received requesting the user’s coordinates, the user
can adjust the level of detail to be released by masking the
binary vector before encryption depending on the relationship
with the requester. For example, only the city for social
encounters, but exact location for family.

V. RELATED WORK

There are different types of privacy preserving mechanisms
[2], including access control, obfuscation, anonymity, cryptog-
raphy and differential privacy.

We see that our second approach is closely related to the
idea of spatial cloaking, which is a technique for transforming
the user’s exact location to a cloaked area (i.e., rectangle
or circle). In [13], Hashem and Kulik proposed the idea of
computing cloaked area by coordinating with nearby peers
over the wireless ad-hoc networks. This distributed approach
leverages the idea of crowdsourcing to compute a cloaked area,
and it depends greatly on the availability of participants within
close vicinity. Our solutions make use of the increasingly
accessible cloud computing resource, thus making it more
practical. Khoshgozaran and Shahabi [20] proposed the use
of Hilbert curves (similar to our Z-order curve) and a one-
way trapdoor function to transform the user’s location into a
cloaked area, which contains places-of-interest (POIs) related
to the user’s query. This solution computes the cloaked area
that contains the user’s location and a precomputed set of POIs
stored in a look-up table. Our second approach is also a type
of spatial cloaking, but the use of SWHE scheme ensures that
the private data is only known to the user.

When considering private data release, there is also differ-
ential privacy [21], which introduces small controlled noises
(typically from Laplace distribution) to make individual con-
tributions to the dataset indistinguishable. For example, Mir
et al. [22] applied differential privacy to privatize the human
mobility model that was proposed in [23]. However, due to the
noise that is introduced with each computation, the number of
computations that one can perform on the synthesized data is
limited. Also, unless we only maintain the synthesized data
in storage, security breaches can be any company’s worst
nightmare [4]; such incidents have been reported frequently.
In this regard, homomorphic encryption offers extra protection
against an insider attack.

While performing arbitrary computation with FHE schemes
is still far from practical [10], [24], many applications based
on SWHE schemes have demonstrated their practicality in the
field of biometric authentication [25], medical/genomic data
analysis [15], [26], and private information retrieval [27], [4].
This paper shows how new SWHE schemes can be used to
support secure proximity computations.

VI. CONCLUSION AND FUTURE WORK

In pervasive and mobile computing, location data is one of
the most commonly used, but sensitive, contextual information
that drives many adaptive applications. Despite the potential
benefit, the use of location data is limited, due to privacy
concerns. In this paper, we explored a cryptographic approach
to enable privacy-preserving computation of location data.
Using distance computation as an example, we proposed
methods to compute distance and to perform spatial cloaking
over encrypted coordinate data. Security is guaranteed by
the underlying hardness problem in homomorphic encryption.
We prototyped the two approaches using a recent somewhat
homomorphic encryption scheme. We conducted performance
evaluations on mobile devices with different specifications. We
argue that our work demonstrated a fully working system for
supporting secure computation of location data.

As a future work, we would like to make a number of op-
timizations to improve performance: (i) incorporating Single-
Instruction-Multiple-Data (SIMD) support in both approaches
to parallelize the computation, (ii) exploring different tech-
niques to compute the prefix mask in the geo-hashing approach
and to avoid the use of relinearization after each homomor-
phic multiplication, and (iii) incorporating the homomorphic
encryption schemes that support multiple keys.

REFERENCES

[1] S. Mascetti, D. Freni, C. Bettini, X. S. Wang, and S. Jajodia, “Privacy
in geo-social networks: Proximity notification with untrusted service
providers and curious buddies,” The VLDB Journal, vol. 20, no. 4, pp.
541–566, Aug. 2011.

[2] C. Bettini and D. Riboni, “Privacy protection in pervasive systems: State
of the art and technical challenges,” Pervasive and Mobile Computing,
vol. 17, Part B, pp. 159 – 174, 2015, 10 years of Pervasive Computing’
In Honor of Chatschik Bisdikian.

[3] Cisco, Inc., “Cisco visual networking index: Global mobile data traffic
forecast update, 2014–2019,” May 2015.

[4] R. A. Popa and N. Zeldovich, “How to compute with data you can’t
see,” IEEE Spectrum, July 2015.

[5] J. Krumm, “A survey of computational location privacy,” Personal
Ubiquitous Comput., vol. 13, no. 6, pp. 391–399, Aug. 2009.

[6] ATOCKAR, “Riding with the stars: Passenger privacy
in the nyc taxicab dataset,” Sept 2014. [Online].
Available: http://research.neustar.biz/2014/09/15/riding-with-the-stars-
passenger-privacy-in-the-nyc-taxicab-dataset/

[7] A. Beresford and F. Stajano, “Location privacy in pervasive computing,”
Pervasive Computing, IEEE, vol. 2, no. 1, pp. 46–55, Jan 2003.

[8] C. Gentry, “Computing arbitrary functions of encrypted data,” Commun.
ACM, vol. 53, no. 3, pp. 97–105, 2010.

[9] D. Micciancio, “A first glimpse of cryptography’s holy grail,” Commun.
ACM, vol. 53, no. 3, pp. 96–96, Mar. 2010.

[10] M. Naehrig, K. Lauter, and V. Vaikuntanathan, “Can homomorphic
encryption be practical?” in Proceedings of CCSW ’11, Chicago, IL,
USA, 2011, pp. 113–124.

[11] Z. Brakerski and V. Vaikuntanathan, “Efficient fully homomorphic
encryption from (standard) lwe,” in Proceedings of FOCS ’11. Wash-
ington, DC, USA: IEEE Computer Society, 2011, pp. 97–106.

[12] ——, “Fully homomorphic encryption from ring-lwe and security for
key dependent messages,” in Proceedings of CRYPTO’11. Santa
Barbara, CA: Springer-Verlag, 2011, pp. 505–524.

[13] T. Hashem and L. Kulik, ““don’t trust anyone”: Privacy protection for
location-based services,” Pervasive and Mobile Computing, vol. 7, no. 1,
pp. 44 – 59, 2011.

[14] MTL, “Calculate distance, bearing and more between latitude/longitude
points,” http://www.movable-type.co.uk/scripts/latlong.html.

[15] J. W. Bos, K. Lauter, and M. Naehrig, “Private predictive analysis
on encrypted medical data,” Tech. Rep. MSR-TR-2013-81, September
2013.

[16] V. Gaede and O. Günther, “Multidimensional access methods,” ACM
Comput. Surv., vol. 30, no. 2, pp. 170–231, Jun. 1998.

[17] J. Schwartz, “Bing maps tile system,” https://msdn.microsoft.com/en-
us/library/bb259689.aspx.

[18] J. Bos, K. Lauter, J. Loftus, and M. Naehrig, “Improved security for
a ring-based fully homomorphic encryption scheme,” in Cryptography
and Coding, ser. LNCS, M. Stam, Ed. Springer Berlin Heidelberg,
2013, vol. 8308, pp. 45–64.

[19] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic
encryption,” https://eprint.iacr.org/2012/144/20120322:031216, March
2012.

[20] A. Khoshgozaran and C. Shahabi, “Blind evaluation of nearest neighbor
queries using space transformation to preserve location privacy,” in
Proceedings of SSTD’07. Boston, MA, USA: Springer-Verlag, 2007,
pp. 239–257.

[21] C. Dwork, “Differential privacy,” in Proceeding of ICALP2006, ser.
LNCS, vol. 4052. Venice, Italy: Springer Verlag, July 2006, pp. 1–
12.

[22] D. Mir, S. Isaacman, R. Caceres, M. Martonosi, and R. Wright, “Dp-
where: Differentially private modeling of human mobility,” in Proceed-
ings of BigData ’13. Santa Clara, CA, USA: IEEE, Oct 2013, pp.
580–588.

[23] S. Isaacman, R. Becker, R. Cáceres, M. Martonosi, J. Rowland, A. Var-
shavsky, and W. Willinger, “Human mobility modeling at metropolitan
scales,” in Proceedings of MobiSys ’12. Low Wood Bay, Lake District,
UK: ACM, 2012, pp. 239–252.

[24] T. Lepoint and M. Naehrig, “A comparison of the homomorphic en-
cryption schemes fv and yashe,” in IACR Cryptology ePrint Archive,
2014:062, 2014.

[25] M. Yasuda, T. Shimoyama, J. Kogure, K. Yokoyama, and T. Koshiba,
“Secure pattern matching using somewhat homomorphic encryption,”
in In Proceedings of CCSW ’13. Berlin, Germany: ACM, 2013, pp.
65–76.

[26] J. H. Cheon, M. Kim, and K. Lauter, “Homomorphic computation
of edit distance,” in Workshop on Encrypted Computing and Applied
Homomorphic Cryptography. Isla Verde, Puerto Rico: ACM, January
2015.

[27] X. Yi, M. G. Kaosar, R. Paulet, and E. Bertino, “Single-database private
information retrieval from fully homomorphic encryption,” IEEE Trans.
Knowl. Data Eng., vol. 25, no. 5, pp. 1125–1134, 2013.

