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Plan of Talk

I On the most wanted Folkman number
(16 min)

Aleksander Soifer
The Mathematical Coloring Book, first edition 2009.
second edition in making, 2021, with expanded Folkman theme.

I Chromatic vertex Folkman problems
(32 min)

XLR
The Electronic Journal of Combinatorics, 27(3) (2020) P3.53.
first draft 2015, hick-ups, revisions, out 9/4/2020.
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Erdős and Hajnal
Research Problem 2-5, JCT 2, p. 105, 1967

Construct a graph G which does not contain a complete hexagon
such that for every coloring of the edges by two colors there is a
triangle all of whose edges have the same color.

done by R.L. Graham, 1968

The proposers expect that for every cardinal m there is a graph G
which contains no complete quadrilateral such that for every coloring
of the edges by m colors there is a triangle all of whose edges have
the same color.

proved for m = 2 by Folkman, 1970
generalized by Nešetřil and Rödl, 1976
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53 Years of the Most Wanted Folkman Number
What is the smallest order n of a K4-free graph
which is not a union of two triangle-free graphs?

year lower/upper
bounds who/what

1967 any? Erdős-Hajnal
1970 exist Folkman
1972 10 – Lin
1975 – 1010? Erdős offers $100 for proof
1986 – 8× 1011 Frankl-Rödl (almost won)
1988 – 3× 109 Spencer (won $100)
1998 – 106? Chung-Graham offer $100 for the answer
1999 16 – Piwakowski-R-Urbański (implicit)
2007 19 – R-Xu
2008 – 9697 Lu
2008 – 941 Dudek-Rödl
2012 – 786 Lange-R-Xu
2016 20 – Bikov-Nenov
2020 21 – Bikov-Nenov
2023 – 127 somebody?
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Most Wanted Folkman Number: Fe(3, 3; 4)
and how to earn $100 from RL Graham

The best known bounds:

21 ≤ Fe(3, 3; 4) ≤ 786.

I Upper bound 786 from a modified residue graph via SDP.
I Ronald Graham Challenge for $100 (2012):

Determine whether Fe(3, 3; 4) ≤ 100.

Conjecture (Exoo, around 2004):
I G127 → (3, 3)e, moreover
I removing 33 vertices from G127 gives graph G94,

which still looks good for arrowing, if so, worth $100.

I Lower bound: very hard, crawls up slowly 10 (Lin 1972),
16 (PUR 1999), 19 (RX 2007), 20, 21 (Bikov-Nenov 2016, 2020).
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Graph G127
Hill-Irving 1982, a cool K4-free graph studied as a Ramsey graph

G127 = (Z127,E)
E = {(x, y)|x− y = α3 (mod 127)}

Exoo conjectured that G127 → (3, 3)e.

I resists direct backtracking
I resists eigenvalues method
I resists semi-definite programming methods
I resists state-of-the-art 3-SAT solvers
I amazingly rich structure,

hence perhaps will not resist a proof by hand ...
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Folkman Graphs and Numbers

For graphs F,G,H and positive integers s, t
I F → (s, t)e iff in every 2-coloring of the edges of F

there is a monochromatic Ks in color 1 or Kt in color 2
I F → (G,H)e iff in every 2-coloring of the edges of F

there is a copy of G in color 1 or a copy of H in color 2

I variants: coloring vertices, arrowing general graphs, more colors

Edge Folkman graphs
Fe(s, t; k) = {F | F → (s, t)e, Kk 6⊆ F}

Edge Folkman numbers
Fe(s, t; k) = the smallest order of graphs in Fe(s, t; k)
on the previous slide we discussed Fe(3, 3; 4)

Theorem (Folkman 1970)
If k > max(s, t), then Fe(s, t; k) and Fv(s, t; k) exist.
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Linking edge- and vertex- Ramsey arrowing

I G ∈ Fv(R(s− 1, t),R(s, t − 1); k − 1)⇒

G + x ∈ Fe(s, t; k)

is equivalent to

I G + x 6→ (s, t)e ⇒

G 6→ (R(s− 1, t),R(s, t − 1))v

Clearly, cl(G + x) = cl(G) + 1
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Fe(3, 3; 5) = 15, and Fv(3, 3; 4) = 14

unique 14-vertex bicritical Fv(3, 3; 4)-graph G [PRU 1999]

cl(G) = 3, χ(G) = 5, |Aut(G)| = 2 and G→ (3, 3)v, G + x→ (3, 3)e
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A pearl of vertex Folkman numbers

Theorem (ancient folklore)
Fv(2, · · · , 2︸ ︷︷ ︸

r

; r) = r + 5 for r ≥ 5

Sketch of the proof
for the upper bound G = Kr−5 + C5 + C5
n(G) = r + 5, cl(G) = r − 1, χ(G) = r + 1

for the lower bound take any
Kr−free graph H on r + 4 vertices, then
assemble matchings in H to show χ(H) ≤ r
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Bounds from Chromatic Numbers

Set m = 1 +
∑r

i=1(ai − 1), M = R(a1, · · · , ar).

Theorem (Nenov 2001, Lin 1972, others)

If G→ (a1, · · · , ar)
v, then χ(G) ≥ m.

If G→ (a1, · · · , ar)
e, then χ(G) ≥ M.

11/24 Chromatic Folkman Numbers



Special Case of Folkman Numbers
is just about graph chromatic number χ(G)

Note: G→ (2 · · ·r 2)v ⇐⇒ χ(G) ≥ r + 1

For all r ≥ 1, Fv(2r; 3) exists and it is equal to
the smallest order of (r + 1)-chromatic triangle-free graph.

Fv(2r+1; 3) ≤ 2Fv(2r; 3) + 1, Mycielski construction, 1955
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Small Cases of Chromatic Folkman Numbers

Fv(22; 3) = 5, C5, Mycielskian, 1955

Fv(23; 3) = 11, the Grötzsch graph, Mycielskian, 1955

Fv(24; 3) = 22 < 2 ∗ 11 + 1, Jensen and Royle, 1995

Fv(25; 3) ≤ 44, Droogendijk, 2015

32 ≤ Fv(25; 3) ≤ 40, Goedgebeur, 2020

Bounds for the smallest k-chromatic graphs of given girth,
Exoo, Goedgebeur, 2018, 2020
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Chromatic Folkman Graphs and Numbers

Set m = 1 +
∑r

i=1(ai − 1), M = R(a1, · · · , ar)

Theorem (Nenov 2001, Lin 1972, others)
If G→ (a1, · · · , ar)

v, then χ(G) ≥ m.
If G→ (a1, · · · , ar)

e, then χ(G) ≥ M.

Definition. Chromatic vertex/edge Folkman graphs/numbers:

graphs
Fχv (a1, · · · , ar; s) = {G | G ∈ Fv(a1, · · · , ar; s), and χ(G) = m},
Fχe (a1, · · · , ar; s) = {G | G ∈ Fe(a1, · · · , ar; s), and χ(G) = M},

numbers
Fχv (a1, · · · , ar; s) = min{|V(G)| | G ∈ Fχv (a1, · · · , ar; s)},
Fχe (a1, · · · , ar; s) = min{|V(G)| | G ∈ Fχe (a1, · · · , ar; s)}.
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Existence

Edge chromatic Folkman numbers exist. It follows from a construction
by Nešetřil and Rödl, 1976. Their computation looks mostly hopeless.

Vertex chromatic Folkman numbers exist. It follows from some past
and our present work. Their computation can be wrestled a little.

All nice so far, and more ...

Theorem
For all r, we have Fχv (2

r; 3) = Fv(2r; 3)

But things can break ...

Let G be the unique witness to Fv(3, 4; 5) ≤ 13,
we have χ(G) = 7, m = 6, thus

Fχv (3, 4; 5) > 13 = Fv(3, 4; 5), 17 ≤ Fv(4, 4; 5) ≤ 23
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Problem and Conjecture

Problem
For which s > a ≥ 2, it is true that Fχv (a, a; s) = Fv(a, a; s)?

Conjecture

For s ≥ 2, we have Fχv (s, s; s + 1) = Fv(s, s; s + 1).

For s = 2: m = 3, yes, C5 is a witness
For s = 3: m = 5, yes, implied by PRU’1999
For s = 4: m = 7, open
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Main Theorem

Notation for r-color diagonals Fχ(r, s, t) = Fχv (s
r; t).

Theorem
For integers r ≥ 2 and s ≥ 3, let bi = i(s− 1) + 1 for i ∈ [r − 1], and
B =

∏r−1
i=1 bi. Then Fχ(r, s, s + 1) exists and

Fχ(r, s, s + 1) ≤ 1 + s +
r−1∑
i=2

Fχ(i, s, s + 1) + B · Fχ(r, s− 1, s).

In particular, for all s ≥ 3, the chromatic vertex Folkman number
Fχ(2, s, s + 1) exists and Fχ(2, s, s + 1) ≤ 1 + s + sFχ(2, s− 1, s).

Proof: double constructive induction.
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Main Theorem
sketch of the proof, construction

I Construct the target graph G(r, s) ∈ Fχ(r, s, s + 1) given
I G0 = K1, G1 = Ks, V0 = V(G0), V1 = V(G1),
I any graphs Gi ∈ Fχ(i, s, s + 1) for 2 ≤ i ≤ r − 1,

Gi with vertices |Vi| = Fχ(i, s, s + 1),
I any graph H in Fχ(r, s− 1, s).

I G(r, s) has vertices

V = V0 ∪ V1 ∪
r−1⋃
i=2

Vi ∪
⋃

(j0,··· ,jr−1)

V(H(j0, · · · , jr−1)),

where 1 ≤ jk ≤ χ(Gk) for 0 ≤ k ≤ r − 1}, χ(Gi) = bi = i(s− 1) + 1,
B =

∏r−1
i=1 i(s− 1) + 1 copies H(j0, · · · , jr−1) of H are used.

I A proper corona of edges linking all parts is added.
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Main Theorem
sketch of the proof, correctness

I Basis of induction is formed by the sets Fχ(i, 2, 3).

I Prove the required properties of G(r, s):
I cl(G(r, s)) < s + 1,
I G(r, s)→ (Ks · · ·r Ks)

v, and
I χ(G(r, s)) = m = r(s− 1) + 1.

I The second part of the theorem is just an instantiation
of the first part for two colors, r = 2.
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Extension Theorem

Theorem
For any integers a, b and s such that 2 ≤ a, b ≤ s,
Fχv (a, b; s + 1) exists and we have

Fχv (a, b; s + 1) ≤ a + b− 1
2s− 1

Fχv (s, s; s + 1).

Proof: constructive.
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Another Sample Theorem

Theorem
For any integer s ≥ 2, we have

Fχv (2s, 2s; 2s + 1) ≤ (4s− 1)Fχv (s, s; s + 1).

Proof: constructive.

Fv(r, s, s + 1) ≤ Crs2 log2 s, Hàn-Rödl-Szabó 2018
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Conjecture

Turán graph Tn,s is a complete multipartite graph on n vertices
whose s partite sets have sizes as equal as possible.

For any integer s ≥ 3, let n = Fv(s, s; s + 1).

Conjecture (somewhat stronger than one on slide 16)
There exists an n-vertex Ks+1-free subgraph G
of the Turán graph Tn,2s−1, such that G→ (s, s)v.

If true, then it implies that

Fχv (s, s; s + 1) = Fv(s, s; s + 1).
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Some references

I Xiaodong Xu, Meilian Liang, SPR
Chromatic Vertex Folkman Numbers
The Electronic Journal of Combinatorics, 27(3) (2020) P3.53

I Xiaodong Xu, Meilian Liang, SPR
On the Nonexistence of Some Generalized Folkman Numbers
Graphs and Combinatorics, 34 (2018) 1101-1110

I Many papers by Bikov, Dudek, Erdős, Folkman, Graham, Li, Lin,
Lu, Nenov, Nešetřil, Rödl, Ruciński, Soifer, Xu, and others ...
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Thanks for listening!
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