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Plan of Talk

» On the most wanted Folkman number
(16 min)

Aleksander Soifer
The Mathematical Coloring Book, first edition 20009.

second edition in making, 2021, with expanded Folkman theme.

» Chromatic vertex Folkman problems
(32 min)

XLR
The Electronic Journal of Combinatorics, 27(3) (2020) P3.583.

first draft 2015, hick-ups, revisions, out 9/4/2020.




Erdos and Hajnal
Research Problem 2-5, JCT 2, p. 105, 1967

Construct a graph G which does not contain a complete hexagon
such that for every coloring of the edges by two colors there is a
triangle all of whose edges have the same color.

done by R.L. Graham, 1968

The proposers expect that for every cardinal m there is a graph G
which contains no complete quadrilateral such that for every coloring
of the edges by m colors there is a triangle all of whose edges have
the same color.

proved for m = 2 by Folkman, 1970
generalized by Nesetril and Rodl, 1976
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53 Years of the Most Wanted Folkman Number

What is the smallest order n of a K4-free graph
which is not a union of two triangle-free graphs?

year Iovt\;iL/:]Jgger who/what

1967 any? Erdos-Hajnal

1970 exist Folkman

1972 10 — Lin

1975 — 107 Erdds offers $100 for proof

1986 —8 x 10" | Frankl-Rddl (almost won)

1988 —3x 10° | Spencer (won $100)

1998 —10°? Chung-Graham offer $100 for the answer
1999 16 — Piwakowski-R-Urbanski (implicit)
2007 19 — R-Xu

2008 — 9697 Lu

2008 — 941 Dudek-Rodl

2012 — 786 Lange-R-Xu

2016 20 — Bikov-Nenov

2020 21 — Bikov-Nenov

2023 — 127 somebody?
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Most Wanted Folkman Number: F,(3, 3; 4)

and how to earn $100 from RL Graham

The best known bounds:

21 < F,(3,3;4) < 786.

» Upper bound 786 from a modified residue graph via SDP.

» Ronald Graham Challenge for $100 (2012):
Determine whether F,(3,3;4) < 100.

Conjecture (Exoo, around 2004):

> Gi7 — (3,3)¢, moreover
» removing 33 vertices from Gi,7 gives graph Goq,
which still looks good for arrowing, if so, worth $100.

» Lower bound: very hard, crawls up slowly 10 (Lin 1972),

16 (PUR 1999), 19 (RX 2007), 20, 21 (Bikov-Nenov 2016, 2020).
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Graph G1a7

Hill-Irving 1982, a cool K4-free graph studied as a Ramsey graph

G127 = (2127, E)

E —

{G,y)x —y=a’ (mod 127)}

Exoo conjectured that Gi,; — (3, 3)°.

>

vvyyvyy

resists direct backtracking

resists eigenvalues method

resists semi-definite programming methods
resists state-of-the-art 3-SAT solvers
amazingly rich structure,

hence perhaps will not resist a proof by hand ...
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Folkman Graphs and Numbers

For graphs F, G, H and positive integers s, ¢t

> F — (s,t)° iff in every 2-coloring of the edges of F
there is a monochromatic K, in color 1 or K, in color 2

» F — (G,H)° iff in every 2-coloring of the edges of F
there is a copy of G in color 1 or a copy of H in color 2

» variants: coloring vertices, arrowing general graphs, more colors

Edge Folkman graphs
Feo(s,t;k) ={F | F — (s,1), Ky £ F}

Edge Folkman numbers
F.(s,t; k) = the smallest order of graphs in F,(s, t; k)

on the previous slide we discussed F (3, 3; 4)

Theorem (Folkman 1970)
If kK > max(s, ), then F (s, t; k) and F, (s, t; k) exist.
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Linking edge- and vertex- Ramsey arrowing

> Ge F(R(s—1,0),R(s,t — 1)k — 1) =
G+ x € F.(s,t;k)

IS equivalent to

> G+x A (s,1) =
G4 (R(s—1,1),R(s,t — 1))

Clearly, c/(G + x) = cl(G) + 1
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F.(3,3;5)=15,and F,(3,3;4) = 14

unique 14-vertex bicritical F,(3, 3;4)-graph G pru 1999]
cl(G) =3, x(G) =5, |Aut(G)| =2and G — (3,3)", G+ x — (3,3)°
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A pearl of vertex Folkman numbers

Theorem (ancient folklore)
F,(2,---,2;r)=r+5forr>>5
N——

Sketch of the proof

for the upper bound G = K,_5 + Cs + Cs
n(G)=r+5cG)=r—1,x(G)=r+1

for the lower bound take any
K,—free graph H on r + 4 vertices, then
assemble matchings in H to show y(H) < r
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Bounds from Chromatic Numbers

Setm=1+ Zle(ai — 1), M:R(a1,° . ,Clr).

Theorem (Nenov 2001, Lin 1972, others)

If G — (a1, ,a,)", then x(G) > m.
If G — (a1, - ,a,), then x(G) > M.

( uf"f“‘ ’ :
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Special Case of Folkman Numbers

is just about graph chromatic number x(G)

Note: G — (2---,2) <= x(G)>r+1

Forall r > 1, F,(2"; 3) exists and it is equal to
the smallest order of (» + 1)-chromatic triangle-free graph.

F,(2"+1;3) < 2F,(2";3) + 1, Mycielski construction, 1955
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Small Cases of Chromatic Folkman Numbers

F,(2%;3) =5, Cs, Mycielskian, 1955
F,(2% 3) = 11, the Grotzsch graph, Mycielskian, 1955

F,(2%3) =22 <211 + 1, Jensen and Royle, 1995
F,(2°;3) < 44, Droogendijk, 2015
32 < F,(2°;3) < 40, Goedgebeur, 2020

Bounds for the smallest k-chromatic graphs of given girth,
Exoo, Goedgebeur, 2018, 2020
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Chromatic Folkman Graphs and Numbers

Setm=14+>_,(a;—1),M =R(a1,--- ,a,)

Theorem (Nenov 2001, Lin 1972, others)

If G — (a1, - ,a,)", then x(G) > m.
If G — (a1, ,a,), then x(G) > M.

Definition. Chromatic vertex/edge Folkman graphs/numbers:

graphs

FX(ar, -+ ,ar8) ={G| G e Fay,- - ,a,s), and x(G) = m},
FX(ar, - ,a,;8) ={G| G € Fylay, - ,a,;s), and x(G) = M},
numbers

FX(a, - ,a,;8) = min{|V(G)| | G € FX(ai, - ,a,;s)},
FX(ay, - ,a,;s) =min{|V(G)| | G € FX(ai, - ,a,;s)}.

&4 v
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Existence

Edge chromatic Folkman numbers exist. It follows from a construction
by Nesetril and Rédl, 1976. Their computation looks mostly hopeless.

Vertex chromatic Folkman numbers exist. It follows from some past
and our present work. Their computation can be wrestled a little.

All nice so far, and more ...

Theorem
For all r, we have FX(2";3) = F,(2"; 3)

But things can break ...

Let G be the unique witness to F,(3,4;5) < 13,
we have x(G) =7, m = 6, thus

FX(3,4;5) > 13 =F,(3,4;5), 17 <F,(4,4;5)<23
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Problem and Conjecture

Problem

For which s > a > 2, it is true that FX(a,a;s) = F,(a,a;s)?

Conjecture

For s > 2, we have FX(s,s;5s+ 1) = F,(s,s;5s + 1).

Fors =2: m = 3, yes, Cs is a withess
Fors = 3: m =5, yes, implied by PRU'1999
Fors=4.m =17, open
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Main Theorem

Notation for r-color diagonals FX(r,s,t) = FX(s"; 1).

Theorem
For integersr > 2 ands > 3, letb; = i(s — 1)+ 1 fori € [r — 1], and
B =[Z, bi. Then FX(r,s,s+ 1) exists and

r—1

FX(r,s,s+1) < 1—|—S—|—ZFX(i,S,S—|- 1)+ B-FX(r,s — 1,s).
i=2

In particular, for all s > 3, the chromatic vertex Folkman number
FX(2,s,s+ 1) exists and FX(2,s,s + 1) < 1 + s+ sFX(2,s — 1, ).

Proof: double constructive induction.

17/24 Chromatic Folkman Numbers



Main Theorem

sketch of the proof, construction

» Construct the target graph G(r,s) € FX(r,s,s + 1) given

> Gy =Ky, G =K, Vo = V(Gp), Vi = V(Gy),

» any graphs G; € FX(i,s,s+1)for2 <i<r—1,
G; with vertices |Vi| = FX(i,s,s + 1),

» any graph H in FX(r,s — 1,s).

» G(r,s) has vertices

r—1
veveuvioUvu U V(HGe - )
=2 (os==+ wfr—1)

where 1 <ji, < x(Gy)for0 <k <r—1}, x(G;)=b;=i(s—1)+1,
B=T]-, i(s— 1)+ 1 copies H(jo, - - - ,j-—1) of H are used.

» A proper corona of edges linking all parts is added.
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Main Theorem

sketch of the proof, correctness

» Basis of induction is formed by the sets FX(i, 2, 3).

» Prove the required properties of G(r, s):
> cl(G(r,s)) <s+1,
» G(r,s) = (Ks--++K;)", and
> x(G(r,s))=m=r(s—1)+ 1.

» The second part of the theorem is just an instantiation
of the first part for two colors, r = 2.
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Extension Theorem

Theorem

For any integers a,b and s such that2 < a,b < s,
FX(a,b; s + 1) exists and we have

b—1
FX(a,b;s+1) < a;— . FX(s,8;5 +1).
S_

Proof: constructive.
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Another Sample Theorem

Theorem
For any integer s > 2, we have

FX(2s,25;25 + 1) < (4s — 1)FX(s,s;s + 1).

Proof: constructive.

F,(r,s,s+ 1) < C,s*log” s, Han-RédI-Szabd 2018
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Conjecture

Turan graph T, ; is a complete multipartite graph on n vertices
whose s partite sets have sizes as equal as possible.

For any integer s > 3, letn = F,(s,s;s + 1).

Conjecture (somewhat stronger than one on slide 16)

There exists an n-vertex K, -free subgraph G
of the Turan graph T, »,—1, such that G — (s, s)".

If true, then it implies that

FX(s,8;8+1)=F,(s,s;5+ 1).
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Some references

» Xiaodong Xu, Meilian Liang, SPR
Chromatic Vertex Folkman Numbers
The Electronic Journal of Combinatorics, 27(3) (2020) P3.53

» Xiaodong Xu, Meilian Liang, SPR
On the Nonexistence of Some Generalized Folkman Numbers
Graphs and Combinatorics, 34 (2018) 1101-1110

» Many papers by Bikov, Dudek, Erdds, Folkman, Graham, Li, Lin,
Lu, Nenov, Nesetril, Rédl, Rucinski, Soifer, Xu, and others ...
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Thanks for listening!
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