
Some Folkman Problems

existence and non-existence of
generalized Folkman numbers,

computational challenges

Stanisław Radziszowski

Department of Computer Science
Rochester Institute of Technology, NY

joint work with Xiaodong Xu and Meilian Liang

GGTW, 16–18 August 2017, Ghent

1/17



Erdős and Hajnal
Research Problem 2-5, JCT 2, p. 105, 1967

Construct a graph G which does not contain a complete hexagon
such that for every coloring of the edges by two colors there is a
triangle all of whose edges have the same color.

done by R.L. Graham, 1968

The proposers expect that for every cardinal m there is a graph G
which contains no complete quadrilateral such that for every coloring
of the edges by m colors there is a triangle all of whose edges have
the same color.

proved for m = 2 by Folkman, 1970
generalized by Nešetřil and Rödl, 1976
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50 Years of the Most Wanted Folkman Number

What is the smallest order n of a K4-free graph
which is not a union of two triangle-free graphs?

year lower/upper
bounds who/what

1967 any? Erdős-Hajnal
1970 exist Folkman
1972 10 – Lin
1975 – 1010? Erdős offers $100 for proof
1986 – 8× 1011 Frankl-Rödl, almost won
1988 – 3× 109 Spencer, probabilistic, won $100
1999 16 – Piwakowski-R-Urbański, implicit
2007 19 – R-Xu
2008 – 9697 Lu, eigenvalues
2008 – 941 Dudek-Rödl, maxcut-SDP
2012 – 100? Graham offers $100 for proof
2014 – 786 Lange-R-Xu, maxcut-SDP
2016 20 – Bikov-Nenov
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Folkman Graphs and Numbers

For graphs F,G,H and positive integers s, t
I F → (s, t)e iff in every 2-coloring of the edges of F

there is a monochromatic Ks in color 1 or Kt in color 2
I F → (G,H)e iff in every 2-coloring of the edges of F

there is a copy of G in color 1 or a copy of H in color 2

I variants: coloring vertices, arrowing general graphs, more colors

Edge Folkman graphs
Fe(s, t; k) = {F | F → (s, t)e, Kk 6⊆ F}

Edge Folkman numbers
Fe(s, t; k) = the smallest order of graphs in Fe(s, t; k)
on the previous slide we discussed Fe(3, 3; 4)

Theorem (Folkman 1970)
If k > max(s, t), then Fe(s, t; k) and Fv(s, t; k) exist.
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Bounds from Chromatic Numbers

Set m = 1 +
∑r

i=1(ai − 1), M = R(a1, · · · , ar).

Theorem (Nenov 2001, Lin 1972, others)

If G→ (a1, · · · , ar)
v, then χ(G) ≥ m.

If G→ (a1, · · · , ar)
e, then χ(G) ≥ M.
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Special Case of Folkman Numbers
is just about graph chromatic number χ(G)

Note: G→ (2 · · ·r 2)v ⇐⇒ χ(G) ≥ r + 1

For all r ≥ 1, Fv(2r; 3) exists and it is equal to
the smallest order of (r + 1)-chromatic triangle-free graph.

Fv(2r+1; 3) ≤ 2Fv(2r; 3) + 1, Mycielski construction, 1955

small cases

Fv(22; 3) = 5, C5, Mycielskian, 1955

Fv(23; 3) = 11, the Grötzsch graph, Mycielskian, 1955

Fv(24; 3) = 22, Jensen and Royle, 1995

Fv(25; 3) ≤ 44, Droogendijk, 2015

32 ≤ Fv(25; 3) ≤ 40, Goedgebeur, 2017
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Generalized Folkman Problems
Arrowing and avoiding general graphs

Fv(H1,H2;H) = smallest n for which there exists
an H-free graph G of order n such that G→ (H1,H2)

v

Fe(H1,H2;H) = smallest n for which there exists
an H-free graph G of order n such that G→ (H1,H2)

e

I When H1, H2, H are complete graphs this is classics

I Some existence questions are discussed in the following

I Some other existence questions seem very difficult

I Fe(K4 − e,K4 − e;K4) ≤ 30193, Lu 2008
side effect of an attack on Fe(3, 3; 4)
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Avoiding Kk − e

Notation: Jk = Kk − e

Theorem
For every integer k ≥ 3,
(a) the edge Folkman number Fe(Kk+1,Kk+1; Jk+2) exists, and
(b) the vertex Folkman number Fv(Kk,Kk; Jk+1) exists.

Proof:
Based on a result by Nešetřil and Rödl (1981), and on our lemma.

Challenge: compute the following
Fv(K3,K4; J5), perhaps doable
Fe(K3,K3; J5), almost hopeless
Fe(K3,K3;K4), 50 years intro slide, hopeless
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Avoiding Books

Notation: Bk = K1 + K1,k, hence also B2 = J4

Theorem
The edge Folkman number Fe(K3,K3;B3) does not exist.

Problem
Does the edge Folkman number Fe(K3,K3;B4) exist?

Clearly, Fe(K3,K3;Bk) = 6 for all k ≥ 5, hence we
study Bk-free and K4-free graphs arrowing (3, 3)e.
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Existence of Fe(K3,K3;H) for small H ⊃ K4

Notation: Graphs K̂4,i ⊂ K5 for i ∈ [4], where K̂n,s is the graph
obtained by connecting a new vertex v to s vertices of a Kn.

Lemma
15 = Fe(K3,K3;K5) ≤ Fe(K3,K3; J5) ≤ Fe(K3,K3;K4) ≤ 786.
(observe that K̂4,4 = K5, K̂4,3 = J5)

Proof: by monotonicity.

Lemma
Fe(K3,K3; K̂4,2) = Fe(K3,K3; K̂4,1) = Fe(K3,K3;K4).

Proof: short and cool.
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Existence of Fe(K3,K3;H) for small H 6⊃ K4

Theorem
The edge Folkman number Fe(K3,K3;K1 + P4) does not exist.

Theorem
Let H be any connected K4-free graph on 5-vertices containing K3.
Then the edge Folkman number Fe(K3,K3;H) does not exist, except
for two possible cases for H, namely W5 and P2 ∪ P3.

Proofs: some work but not that hard.
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Existence of Fe(K3,K3;H) for small H 6⊃ K4

Problem
Prove or disprove the existence of
(a) the edge Folkman number Fe(K3,K3;P2 ∪ P3), and
(b) the edge Folkman number Fe(K3,K3;K1 + C4).

W5 = K1 + C4 ⊂ J5 = K5 − e, hence
if Fe(K3,K3;W5) exists, then Fe(K3,K3; J5) ≤ Fe(K3,K3;W5).

The analogous statement holds for P2 ∪ P3,
with an extra condition implied by P2 ∪ P3 ⊂ W5.

Future work:
Study Fe(K3,K3;H) for graphs H on at least 6 vertices (beyond B4),
Computational projects: existence and bounds.
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From Edge- to Vertex-Arrowing

Lemma
For k ≥ s ≥ 2, if graph G is H-free, H ⊂ Kk+1, and G→ (Ks,Kk)

e,
then for every vertex u ∈ V(G) and s− 1 colors we have
G− u→ (Kk, · · · ,Kk)

v.

Corollary

For 2 ≤ s ≤ k and graph H ⊂ Kk+1, if Fe(Ks,Kk;H) exists,
then Fs−1

v (Kk;H) also exists and Fe(Ks,Kk;H) ≥ Fs−1
v (Kk;H) + 1.

Special case with s = 3 and H = Kk+1 gives
Fe(3, k; k + 1) > Fv(k, k; k + 1).
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Back to Fe(3, 3; 4)
and how to earn $100 from RL Graham

The best known bounds:

20 ≤ Fe(3, 3; 4) ≤ 786.

I Upper bound 786 from a modified residue graph via SDP.
I Ronald Graham Challenge for $100 (2012):

Determine whether Fe(3, 3; 4) ≤ 100.

Conjecture (Exoo, around 2004):
I G127 → (3, 3)e, moreover
I Removing 33 vertices from G127 (3 indsets of 11)

gives a G94 which still looks good for arrowing,
if so, worth $100.

I Lower bound: very hard, crawls up slowly 10 (Lin 1972),
16 (PUR 1999), 19 (RX 2007), 20 (Bikov-Nenov 2016).
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Graph G127
Hill-Irving 1982, a cool K4-free graph studied as a Ramsey graph

G127 = (Z127,E)
E = {(x, y)|x− y = α3 (mod 127)}

Exoo conjectured that G127 → (3, 3)e.

I resists direct backtracking
I resists eigenvalues method
I resists semi-definite programming methods
I resists state-of-the-art 3-SAT solvers
I amazingly rich structure,

hence perhaps will not resist a proof by hand ...
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Some references

I Xiaodong Xu, Meilian Liang, SPR
On the Nonexistence of Some Generalized Folkman Numbers
arXiv 1705.06268, May 2017

I Xiaodong Xu, Meilian Liang, SPR
Chromatic Vertex Folkman Numbers
arXiv 1612.08136, December 2016

I Many papers by Bikov, Dudek, Erdős, Folkman, Graham, Li, Lin,
Lu, Nenov, Nešetřil, Rödl, Ruciński, Soifer, Xu, and others ...
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Thanks for listening!
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