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History of Fe(3, 3; 4)

What is the smallest order n of a K4-free graph that is not
a union of two triangle-free graphs?

1967 Erdős and Hajnal introduce the problem

1970 Folkman proves existence theorem

1975 Erdős offers $100 for proving whether or not Fe(3, 3; 4) < 1010

1988 Spencer gives a probabilistic proof for the bound 3 × 108. One
year later, Hovey finds mistake and shows the bound to be 3×
109

2007 Lu: Fe(3, 3; 4) ≤ 9697

2008 Dudek and Rödl: Fe(3, 3; 4) ≤ 941

2012 This work: Fe(3, 3; 4) ≤ 786
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Folkman Graphs and Numbers

For graphs F,G,H and positive integers s, t
I F → (s, t)e iff for every 2-coloring of the edges F, there is a

monochromatic Ks in the first color or Kt in the second
I F → (G,H)e iff for every 2-coloring of the edges of F, there is a

copy of G in the first color or a copy of H in the second

edge Folkman graphs
Fe(s, t; k) = {G→ (s, t)e, Kk 6⊆ G}

edge Folkman numbers
Fe(s, t; k) = the smallest n such that an n-vertex graph G is in Fe(s, t; k)

Theorem: (Folkman 1970)
For all k > max(s, t), Fe(s, t; k) and Fv(s, t; k) exist.

Relation to Ramsey Numbers
R(s, t) = min{n | Kn → (s, t)e}
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Counting Triangles

For any blue-red coloring of graph G,
I TBB(v), TRR(v), and TBR(v) counts triangles vuw where (v, u) and

(v,w) are colored blue-blue, red-red, and blue-red
I Tblue, Tred, and Tbluered count the number of blue, red and blue-red

triangles

Then,
I
∑

v∈V(G) TBR(v) = 2Tbluered

I
∑

v∈V(G)

(
TBB(v) + TRR(v)

)
= 3(Tblue + Tred) + Tbluered

G→ (3, 3)e iff, for every coloring,∑
v∈V(G)

TBR(v) < 2
∑

v∈V(G)

(
TBB(v) + TRR(v)

)
(1)
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From Arrowing to Max-Cut

Define graph H

V(H) = E(G)

E(H) = {(e, f ) | e, f ∈ E(G), efg is a 4 in G for some edge g}

Then, |V(H)| = |E(G)| and |E(H)| = 3t4(G)

Let M(H) be the Maximum Cut of H.

Theorem: (Dudek and Rödl, 2008)

G→ (3, 3)e iff M(H) < 2t4(G) (2)
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Max-Cut Problem and Approximations

MAX CUT(H, k)
Given graph H and integer k, is there a cut MS(H) so that Ms(H) ≥ k?

I One of Karp’s original NP-complete problems (Karp 1972)

Based on this decision problem,

G→ (3, 3)e iff MAXCUT (H, 2t4(G)) = NO

Can we approximate an upper bound to show arrowing?
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Approach 1: Minimum Eigenvalue

Proposition: (Alon, 1996)

M(H) ≤ |E(H)|
2
− λmin|V(H)|

4

Dudek-Rödl Technique

1. For graph G, construct graph H where E(G) = V(H) and
E(H) = {(e, f ) | e, f ∈ E(G), efg is a 4 in G for some edge g}

2. Let

α =
|E(H)|

2
− λmin(H)|V(H)|

4
β = 2t4(G)

3. If α < β then G→ (3, 3)e
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Fe(3, 3; 4) ≤ 941

Define circulant graph G(n, r) as
I V(G) = Zn

I E(G) = {(x, y)|x− y = αr mod n}

Closeness ρ = α−β
α

n r ρ
127 3 0.0309
281 4 0.0423
457 4 0.0304
571 5 0.0441
701 5 0.0295
937 6 0.0485
941 5 -0.0127

This Work:

Graph with 860 vertices yields
ρ = −0.000056
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Approach 2: Goemans-Williamson Approximation

I Published in 1995
I Randomized approximation algorithm
I Expected value is at least αGW ≈ .87856 times the optimal value

I First improvement on the 1/2 constant from Sahni-Gonzales
I Relaxes the problem to a semidefinite program

I First use of semidefinite programming in approximation algorithms
I Khot, Kindler and Mossel (2005): Assuming the Unique Games

Conjecture and P 6= NP, Goemans-Williamson approximation
algorithm is optimal
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Main Idea

Given graph with V = {1, . . . , n} and nonnegative weights wi,j for each
pair of vertices (no edge = 0), we can write M(G) as the integer
quadratic program

Maximize
1
2

∑
i<j

wi,j(1− yiyj) (3)

subject to: yi ∈ {−1, 1} ∀ i ∈ V

Cut S = {i | yi = 1}
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We can relax some of the constraints of (3) and, specifically, extend
the function to a larger space

I Extend yi to vi ∈ Rn such that ‖vi‖ = 1
I Replace yiyj with vi · vj

I For matrix Y = XTX, let yii = 1 and the ith column of X = vi.

New semidefinite program for symmetric matrix Y:

Maximize
1
2

∑
i<j

wi,j(1− yij) (4)

subject to: yii = 1 ∀ i ∈ V

Y � 0
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The Algorithm

1. Solve (4) using an SDP solver (This is all we need!)
2. Decompose solution Y into XTX where X = (v1, v2, . . . , vn) using

Cholesky decomposition
3. Choose random, uniformally distributed vector r
4. S = {i | vi · r ≥ 0}
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Fe(3, 3; 4) ≤ 786

Define graph L(n, s) as follows:
I V

(
L(n, s)

)
= Zn

I E
(

L(n, s)
)
=
{
(u, v) | u 6= v and u− v ≡ si mod n for some

i ∈ {0, 1, 2, . . . ,m− 1}
}

, where m is the smallest positive integer
such that sm ≡ 1 mod n.

Let L786 be L(785, 53) with one additional vertex connected to 60 of
the original vertices.

SDPLR-MC, SDPLR, SBmethod, and SpeeDP all give an upper bound
of at most 857753.

M (H (L786)) ≤ 857753 < 2t4(L786) = 857762.

Therefore, L786 → (3, 3)e and Fe(3, 3; 4) ≤ 786.
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Moving Forward
G(127, 3)

Conjecture: G(127, 3)→ (3, 3)e

I Resilient to SAT, Dudek-Rödl and Goemans-Williamson
I Other techniques: MaxSAT approximation, simulated annealing?

Ideas:
I Adding edges to G(127, 3)
I Removing edges from G(127, 3)
I Embedding G(127, 3) multiple times
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Moving Forward

Minimum Eigenvalue vs. Goemans-Williamson
I Testing shows that Goemans-Williamson often provides better

bounds
I However, MATLAB’s eigs can handle larger instances
I Both can fail easy instances (all Fe(3, 3; 5) graphs)

MinEigs SDP
K6 Pass Pass

K3 + C5 Fail Fail
K4 + C5 Fail Pass

Other Max-Cut methods?
I Directly solve integer program
I Rendl, Rinaldi, Wiegele: Solving Max-Cut to Optimality by

Intersecting Semidefinite and Polyhedral Relaxations
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Thank you!
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