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ABSTRACT: We present data which, to the best of our knowledge,
includes all known nontrivial values and bounds for specific graph,
hypergraph and multicolor Ramsey numbers, where the avoided
graphs are complete or complete without one edge. Many results per-
taining to other more studied cases are also presented. We give refer-
ences to all cited bounds and values, as well as to previous similar
compilations. We do not attempt complete coverage of asymptotic
behavior of Ramsey numbers, but rather we concentrate on their
specific values.
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1. Scope and Notation

There is vast literature on Ramsey type problems starting in 1930 with the original paper
of Ramsey [Ram]. Graham, Rothschild and Spencer in their book [GRS] present an exciting
development of Ramsey Theory. The subject has grown amazingly, in particular with regard
to asymptotic bounds for various types of Ramsey numbers (see the survey papers [GrRö,
Nes̆, ChGra2, Ros2]), but the progress on evaluating the basic numbers themselves has been
unsatisfactory for a long time. In the last three decades, however, considerable progress has
been obtained in this area, mostly by employing computer algorithms. The few known exact
values and several bounds for different numbers are scattered among many technical papers.
This compilation is a fast source of references for the best results known for specific numbers.
It is not supposed to serve as a source of definitions or theorems, but these can be easily
accessed via the references gathered here.

Ramsey Theory studies conditions when a combinatorial object contains necessarily some
smaller given objects. The role of Ramsey numbers is to quantify some of the general existen-
tial theorems in Ramsey Theory.

Let G 1, G 2, . . . , Gm be graphs or s -uniform hypergraphs (s is the number of vertices
in each edge). R ( G 1, G 2, . . . , Gm ; s ) denotes the m -color Ramsey number for s -uniform
graphs/hypergraphs, avoiding Gi in color i for 1 ≤ i ≤ m . It is defined as the least integer n
such that, in any coloring with m colors of the s -subsets of a set of n elements, for some i
the s -subsets of color i contain a sub-(hyper)graph isomorphic to Gi (not necessarily
induced). The value of R ( G 1, G 2, . . . , Gm ; s ) is fixed under permutations of the first m
arguments. If s = 2 (standard graphs) then s can be omitted. If Gi is a complete graph Kk ,
then we may write k instead of Gi , and if Gi = G for all i we may use the abbreviation
Rm (G ; s ) or Rm (G ). For s = 2, Kk − e denotes a Kk without one edge, and for s = 3, Kk − t
denotes a Kk without one triangle (hyperedge).

The graph nG is formed by n disjoint copies of G , G ∪ H stands for vertex disjoint
union of graphs, and the join G + H is obtained by adding all of the edges between vertices of
G and H to G ∪ H . Pi is a path on i vertices, Ci is a cycle of length i , and Wi is a wheel
with i −1 spokes, i.e. a graph formed by some vertex x , connected to all vertices of the cycle
Ci −1 (thus Wi = K 1 + Ci −1). Kn ,m is a complete n by m bipartite graph, in particular K 1,n is
a star graph. The book graph Bi = K 2 + Ki = K 1 + K 1,i has i + 2 vertices, and can be seen as i
triangular pages attached to a single edge. The fan graph Fn is defined by Fn = K 1 + nK 2.
For a graph G , n (G ) and e (G ) denote the number of vertices and edges, respectively, and
δ(G ) and ∆(G ) minimum and maximum degree of G . Finally, χ(G ) denotes the chromatic
number of G . In general, we follow the notation used by West [West].

Section 2 contains the data for the classical two color Ramsey numbers R (k , l ) for com-
plete graphs, section 3 for the much studied two color cases of Kn − e , K 3, Km , n , and section
4 for numbers involving cycles. Section 5 lists other often studied two color cases for general
graphs. The multicolor and hypergraph cases are gathered in sections 6 and 7, respectively.
Finally, section 8 gives pointers to cumulative data and to other surveys.
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2. Classical Two-Color Ramsey Numbers

2.1. Values and bounds for R (k , l ), k ≤ 10, l ≤ 15

l 3 4 5 6 7 8 9 10 11 12 13 14 15

k

40 47 52 59 66 73
3 6 9 14 18 23 28 36

42 50 59 68 77 87

36 49 58 73 92 98 128 133 141 153
4 18 25

41 61 84 115 149 191 238 291 349 417

43 58 80 101 126 144 171 191 213 239 265
5

49 87 143 216 316 442 633 848 1138 1461 1878

102 113 132 169 179 253 263 317 401
6

165 298 495 780 1171 1804 2566 3703 5033 6911

205 217 241 289 405 417 511
7

540 1031 1713 2826 4553 6954 10578 15263 22112

282 317 817 861
8

1870 3583 6090 10630 16944 27485 41525 63609

565 581
9

6588 12677 22325 38832 64864

798 1265
10

23556 45881 81123

Table I. Known nontrivial values and bounds for two color
Ramsey numbers R (k , l ) = R (k , l ; 2).

l 4 5 6 7 8 9 10 11 12 13 14 15

k

Ka2 GR Ka2 Ex5 Ex20 Ex12 Piw1 Ex8 WW
3 GG GG Kéry

GrY MZ GR GoR1 GoR1 Les GoR1 GoR1 GoR1

Ka1 Ex19 Ex3 Ex20 Ex16 HaKr1 Ex17 SLL 2.3.e XXR XXR
4 GG

MR4 MR5 Mac Mac Mac Mac Spe4 Spe4 Spe4 Spe4 Spe4

Ex4 Ex9 CaET HaKr1 Ex17 Ex17 Gerb Gerb Gerb Gerb Ex16
5

MR5 HZ1 Spe4 Spe4 Mac Mac HW+ HW+ HW+ HW+ HW+

Ka1 Ex16 XSR2 XXER Ex16 XXR XSR2 XXER 2.3.h
6

Mac Mac Mac Mac Mac HW+ HW+ HW+ HW+ HW+

She2 XSR2 XSR2 2.3.h XXER XSR2 XXR
7

Mac Mac HZ1 Mac HW+ HW+ HW+ HW+ HW+

BR XXER XXER 2.3.h
8

Mac Ea1 HZ1 HW+ HW+ HW+ HW+ HW+

She2 XSR2
9

ShZ1 Ea1 HW+ HW+ HW+

She2 2.3.h
10

Shi2 HW+ HW+

References for Table I;
HW+ abbreviates HWSYZH, as enhanced by Boza [Boza5], see 2.1.m.
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We split the data into the table of values and a table with corresponding references. In
Table I, known exact values appear as centered entries, lower bounds as top entries, and upper
bounds as bottom entries. For some of the exact values two references are given when the
lower and upper bound credits are different.

(a) The task of proving R (3, 3) ≤ 6 was the second problem in Part I of the William Lowell
Putnam Mathematical Competition held in March 1953 [Bush].

(b) Greenwood and Gleason [GG] established the initial values R (3, 4) = 9, R (3, 5) = 14 and
R (4, 4) = 18 in 1955.

(c) Kéry [Kéry] proved that R (3, 6) = 18 in 1964, but only in 2007 an elementary and self-
contained proof of this result appeared in English [Car].

(d) All of the critical graphs for the numbers R (k , l ) (graphs on R (k , l ) − 1 vertices without
Kk and without Kl in the complement) are known for k = 3 and l = 3, 4, 5 [Kéry], 6
[Ka2], 7 [RK2, MZ], 8 [BrGS] and 9 [GoR1], and there are 1, 3, 1, 7, 191, 477142, and
1 of them, respectively. All (3, k )-graphs, for k ≤ 6, were enumerated in [RK2], and all
(4,4)-graphs in [MR2]. There exists a unique critical graph for R (4,4) [Ka2]. There are
350904 known critical graphs for R (4, 5) [MR4], but there might be more of them.

(e) In [MR5], strong evidence is given for the conjecture that R (5, 5) = 43 and that there
exist exactly 656 critical graphs on 42 vertices.

(f) The graphs constructed by Exoo in [Ex9, Ex12-Ex20], and some others, are available
electronically from http://ginger.indstate.edu/ge/RAMSEY. Fujita [Fuj1] maintains a website
with some lower bound constructions; in particular, it presents the bound R (4,8) ≥ 58
obtained independently from Exoo.

(g) Cyclic (or circular ) graphs are often used for Ramsey graph constructions. Several
cyclic graphs establishing lower bounds were given in the Ph.D. dissertation by J.G.
Kalbfleisch in 1966, and many others were published in the next few decades (see
[RK1]). Harborth and Krause [HaKr1] presented all best lower bounds up to 102 from
cyclic graphs avoiding complete graphs. In particular, no lower bound in Table I can be
improved with a cyclic graph on less than 102 vertices, except possibly for R (3, k ) for
k ≥ 13. See also item 2.3.k and section 5.16 [HaKr1]. Several best lower bounds from
distance colorings, a slightly more general concept than circular graphs, are presented in
[HaKr2].

(h) The claim that R (5, 5) = 50 posted on the web [Stone] is in error, and despite being
shown to be incorrect more than once, this value is still being cited by some authors.
The bound R (3, 13) ≥ 60 [XieZ] cited in the 1995 version of this survey was shown to
be incorrect in [Piw1]. Another incorrect construction for R (3, 10) ≥ 41 was described
in [DuHu].

(i) There are really only two general upper bound inequalities useful for small parameters,
namely 2.3.a and 2.3.b. Stronger upper bounds for specific parameters were difficult to
obtain, and they often involved massive computations, like those for the cases of (3,8)
[MZ], (3,10) [GoR1], (4,5) [MR4], (4,6) and (5,5) [MR5]. The bound R (6, 6) ≤ 166,
only 1 more than the best known [Mac], is an easy consequence of a theorem in [Walk]
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(2.3.b) and R (4, 6) ≤ 41.

(j) T. Spencer [Spe4], Mackey [Mac], and Huang and Zhang [HZ1], using the bounds for
minimum and maximum number of edges in (4,5) Ramsey graphs listed in [MR3, MR5],
were able to establish new upper bounds for several higher Ramsey numbers, improving
on all of the previous longstanding best results by Giraud [Gi3, Gi5, Gi6].

(k) Only some of the higher bounds implied by 2.3.* are shown, and more similar bounds
could be derived. In general, we show bounds beyond the contiguous small values if
they improve on results previously reported in this survey or published elsewhere. Some
easy upper bounds implied by 2.3.a are marked as [Ea1].

(l) In 2009, we have recomputed the upper bounds in Table I marked [HZ1] using the
method from the paper [HZ1], because the bounds there relied on an overly optimistic
personal communication from T. Spencer. Further refinements of this method are studied
in [HZ2, ShZ1, Shi2]. The paper [Shi2] subsumes the main results of the manuscripts
[ShZ1, Shi2].

(m) In 2013, Boza [Boza5] using the method of [HWSYZH], which is abbreviated as HW+
in Table I, computed the bounds marked HW+ by starting from better upper bounds for
smaller parameters. Most of the currently shown bounds are thus better than those origi-
nally listed in [HWSYZH, HZ2]. Five upper bounds not shown in Table I can be
obtained similarly but they are larger than 105.

2.2. Bounds for R (k , l ), higher parameters

l 15 16 17 18 19 20 21 22 23

k

73 82 92 99 106 111 122 131 139

WW Ex21 W1+ Ex16 W1+ Ex16 W1+ W2+ XWCS

87 98 109 121 132 145 158 171 185
3

GoR1 Back1 Back1 Les Back2 Les Les Back2 Back2

153 164 200 205 213 234 242 314
4

XXR Gerb Lia+ 2.3.e 2.3.g Ex16 SLZL LSLW

265 289 388 396 411 424 441 485 521
5

Ex16 2.3.h XSR2 2.3.g XSR2 XSR2 2.3.h 2.3.h 2.3.h

401 434 548 614 710 878 1070
6

2.3.h SLLL SLLL SLLL SLLL SLLL SLLL

609 711 797 908 1214
7

2.3.h 2.3.g 2.3.h SLLL SLLL

861 961 1045 1236 1617
8

2.3.h XSR2 2.3.g 2.3.g 2.3.h

Table IIa. Known bounds for higher two-color Ramsey numbers R (k , l ), with references.
Lower and upper bounds are given for k = 3, only lower bounds for k ≥ 4;

Lia+, W1+ and W2+ abbreviate LiaWXS, WWY1 and WSLX2, respectively.
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l 24 25 26 27 28 29 30 31

k

143 154 159 167 173 184 190 199
3

W1+ W2+ W1+ W1+ W2+ W2+ W2+ W2+

l 32 33 34 35 36 37 38 39 40

k

214 218 226 231 239 244 256
3

W2+ Ch+ Ch+ Ch+ Ch+ Ch+ Ch+

Table IIb. Known lower bounds for higher Ramsey numbers R (3, l ) for l ≥ 24;
W1+, W2+ and Ch+ abbreviate WSLX1, WSLX2 and ChWXSL, respectively.

k 11 12 13 14 15 16 17

lower bound 1597 1639 2557 2989 5485 5605 8917

reference 2.2.c XSR2 2.2.c 2.2.c 2.2.c 2.2.c LSL

k 18 19 20 21 22 23 24

lower bound 11005 17885 19069 27077 29941

reference LSL LSL Lia+ Lia+ Lia+

Table IIc. Known lower bounds for diagonal Ramsey numbers R (k , k ) for k ≥ 11;
Lia+ abreviates LiaWXCS, see also 2.2.c below.

(a) The upper bounds in Tables I and IIa marked [GoR1, Les, Back1] were obtained mainly
by deriving lower bounds for several cases of e (3, k , n ), which denotes the minimum
number of edges in n -vertex triangle-free graphs with independence number less than k .
The study of e (3, k , n ) was also the main tool for the results obtained in [GrY, GR,
RK2, RK3, GoR2].

(b) Ramsey Calculus [Back1], is an extensive manuscript by Backelin, which, among other
goals, addresses the derivation of e (3, k , n ) and the corresponding realisers while avoid-
ing reliance on computer assisted results as far as possible. It achieves the derivation of
several lower bounds for e (3, k + 1, n ) better than those in [GoR1, RK3, RK4] for n
close to and above 13k /4.

(c) The construction by Mathon [Mat] and Shearer [She2] (see also items 2.3.i, 6.2.k and
6.2.l), using the data obtained by Shearer [She4] for primes up to 7000, implies the
lower bounds in Table IIc marked 2.2.c. The first two bounds credited in Table IIc to
[LSL] also follow similarly from the data in [She4]. The same approach does not
improve on the bound R (12,12) ≥ 1639 [XSR2]. The bounds in [Lia+] were obtained by
extending data for Payley graphs beyond [Sha4].

(d) The lower bounds marked [XXR], [XXER], [XSR2], 2.3.e and 2.3.h need not be cyclic.
Several of the Cayley colorings from [Ex16] are also non-cyclic. All other lower bounds
listed in Table IIab were obtained by construction of cyclic graphs.
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(e) The graphs establishing lower bounds marked 2.3.g can be constructed by using
appropriately chosen graphs G and H with a common m -vertex induced subgraph, simi-
larly as it was done in several cases in [XXR].

(f) Yu [Yu2] constructed a special class of triangle-free cyclic graphs establishing several
lower bounds for R (3, k ), for k ≥ 61. All of these bounds can be improved by the ine-
qualities in 2.3.c and data from Tables I and II.

(g) Unpublished bound R (4, 22) ≥ 314 [LSLW] improves over 282 given in [SL]. [LSLW]
includes also R (4, 25) ≥ 458. Not yet published bounds R (3, 23) ≥ 139 [XWCS] and
R (4, 17) ≥ 200 [LiaWXS] improve over 137 and 182 obtained in [WSLX2] and [LSS1],
respectively.

(h) Two special cases which improve on bounds listed in earlier revisions: R (9, 17) ≥ 1411
is given in [XXR] and R (10, 15) ≥ 1265 can be obtained using 2.3.h.

(i) One can expect that the lower bounds in Table II are weaker than those in Table I, espe-
cially smaller ones, in the sense that some of them should not be that hard to improve, in
contrast to the bounds in Table I.

2.3. General results on R (k , l )

(a) R (k , l ) ≤ R (k −1, l ) + R (k , l −1), with strict inequality when both terms on the right hand
side are even [GG]. There are obvious generalizations of this inequality for avoiding
graphs other than complete.

(b) R (k , k ) ≤ 4R (k , k − 2) + 2 [Walk].

(c) Explicit construction for R (3, 3k + 1) ≥ 4R (3, k + 1) − 3, for all k ≥ 2 [CleDa],
explicit construction for R (3, 4k + 1) ≥ 6R (3, k + 1) − 5, for all k ≥ 1 [ChCD].

(d) Explicit triangle-free graphs with independence k on Ω(k 3/ 2 ) vertices [Alon2, CPR].
For other constructive results in relation to R (3, k ) see [BBH1, BBH2, Fra1, Fra2, FrLo,
GoR1, Gri, KlaM1, Loc, RK2, RK3, RK4, Stat, Yu1]. See also 2.3.(3) and 2.3.(4) below.

(e) The study of bounds for the difference between consecutive Ramsey numbers was ini-
tiated in [BEFS], where the bound R (k , l ) ≥ R (k , l − 1) + 2k − 3 , for k , l ≥ 3, was esta-
blished by a construction. In 1980, Erdős and Sós (cf. [Erd2,ChGra2]) asked: If we set
∆ k , l = R (k , l ) − R (k , l − 1), then is it true that ∆ k , k + 1 / k → ∞ as k → ∞ ? Only easy
bounds on ∆ k , l are known, in particular 3 ≤ ∆ 3, l ≤ l for k = 3. For some discussion
of the latter see [XSR2, GoR2].

(f) By taking a disjoint union of two critical graphs one can easily see that R (k , p ) ≥ s and
R (k , q ) ≥ t imply R (k , p + q −1) ≥ s + t −1. Xu and Xie [XX1] improved this construction
to yield better general lower bounds, in particular R (k , p + q −1) ≥ s + t + k − 3.

(g) For 2 ≤ p ≤ q and 3 ≤ k , if (k , p )-graph G and (k , q )-graph H have a common induced
subgraph on m vertices without Kk −1, then R (k , p + q − 1) > n (G ) + n (H ) + m . In partic-
ular, this implies the bounds R (k , p + q − 1) ≥ R (k , p ) + R (k , q ) + k − 3 and
R (k , p + q − 1) ≥ R (k , p ) + R (k , q ) + p − 2 [XX1, XXR], with further small
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improvements in some cases, such as using the term k − 2 instead of k − 3 in the previ-
ous bound [XSR2].

(h) R (2k − 1, l ) ≥ 4R (k , l − 1) − 3 for l ≥ 5 and k ≥ 2, and in particular for k = 3 we have
R (5, l ) ≥ 4R (3, l − 1) − 3 [XXER].

(i) If the quadratic residues Paley graph Qp of prime order p = 4t + 1 contains no Kk , then
R (k , k ) ≥ p + 1 and R (k + 1, k + 1) ≥ 2p + 3 [She2, Mat]. Data for larger p was
obtained in [LSL]. See also 3.1.c, and items 6.2.k and 6.2.l for similar multicolor results.

(j) Study of Ramsey numbers for large disjoint unions of graphs [Bu1, Bu9], in particular
R (nKk , nKl ) = n (k + l − 1) + R (Kk −1, Kl −1) − 2, for n large enough [Bu8].

(k) R (k , l ) ≥ L (k , l ) + 1, where L (k , l ) is the maximal order of any cyclic (k , l ) −graph.
A compilation of many best cyclic bounds was presented in [HaKr1].

(l) The graphs critical for R (k , l ) are (k − 1) −vertex connected and (2k − 4) −edge con-
nected, for k , l ≥ 3 [BePi]. This was improved to vertex connectivity k for k ≥ 5 and
l ≥ 3 in [XSR2].

(m) All Ramsey-critical (k , l ) −graphs are Hamiltonian for k ≥ l − 1 ≥ 1 and k ≥ 3, except
when (k , l ) = (3, 2) [XSR2].

(n) Two-color lower bounds can be obtained by using items 6.2.m, 6.2.n and 6.2.o with
r = 2. Some generalizations of these were obtained in [ZLLS].

In the last seven items (1)-(7) of this section we only briefly mention some pointers to
the literature dealing with asymptotics of Ramsey numbers. This survey was designed mostly
for small, finite, and combinatorial results, but still we wish to give the reader some useful
and representative references to more traditional papers studying the infinite.

(1) In 1947, Erdős gave a simple probabilistic proof that R (k , k ) ≥ ck 2 k / 2 [Erd1]. Spencer
[Spe1] improved the constant c to √ 2 /e . More probabilistic asymptotic lower bounds
for other Ramsey numbers were obtained in [Spe1, Spe2, AlPu].

(2) The limit of R (k , k ) 1 / k , if it exists, is between √ 2 and 4 [GRS, GrRö, ChGra2].

(3) In 1995, Kim obtained a breakthrough result by proving that R (3, k ) = Θ(k 2/ log k )
[Kim]. The best known lower and upper bounds constants are 1/4 [BohK2] and 1 (impli-
cit in [She1]), respectively. An independent proof of the lower bound constant 1/4 and a
conjecture that it is the best possible are presented in [FizGM].

(4) Other asymptotic and general results on triangle-free graphs in relation to R (3, k ) can be
found in [Boh, AlBK, AjKS, Alon2, CleDa, ChCD, CPR, Gri, FrLo, Loc, She1, She3].

(5) Explicit constructions yielded the lower bounds R (4, k ) ≥ Ω(k 8/ 5), R (5, k ) ≥ Ω(k 5/ 3) and
R (6, k ) ≥ Ω(k 2) [KosPR]. For the same cases of k classical probabilistic arguments give
Ω((k / log k )5/ 2), Ω((k / log k )3) and Ω((k / log k )7/ 2), respectively [Spe2]. These were
improved to Ω(k 5/ 2/ (log k )2), Ω(k 3/ (log k )8/ 3) and Ω(k 7/ 2/ (log k )13/ 4), respectively, in
[Boh, BohK1], and in general to R (s , t ) = Ω(t (s +1)/ 2 / (log t )(s 2− s − 4)/(2s − 4)), for fixed s
and large t [BohK1].
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(6) Explicit construction of a graph with clique and independence k on 2 c log2 k / log log k ver-
tices was presented by Frankl and Wilson [FraWi], and further constructions by Chung
[Chu3] and Grolmusz [Grol1, Grol2]. In 2012, the best explicit construction for large k

by Barak et al. [BarRSW] improved over [FraWi] by giving such a graph on 22( log log k )c

vertices for some c > 1, or equivalently, on n vertices, where log log n = ( log log k )c .
Explicit constructions such as these are usually weaker than known probabilistic results.

(7) In 2010, Conlon [Con1] obtained the best until now upper bound for the diagonal case:

R (k + 1, k + 1) ≤


 k
2k 



k − c log k / log log k

Other asymptotic bounds can be found, for example, in [Chu3, McS, Boh, BohK1]
(lower bound) and [Tho] (upper bound), and for many other bounds in the general case
of R (k , l ) consult [Spe2, GRS, GrRö, Chu4, ChGra2, LiRZ1, AlPu, Kriv].
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3. Two Colors: Kn − e , K 3, Km , n

3.1. Dropping one edge from complete graph

This section contains known values and nontrivial bounds for the two color case when the
avoided graphs are complete or have the form Kk − e , but not both are complete.

H K 3 −e K 4 −e K 5 −e K 6 −e K 7 −e K 8 −e K 9 −e K 10 −e K 11 −e

G

K 3 −e 3 5 7 9 11 13 15 17 19

42
K 3 5 7 11 17 21 25 31 37

45

29 34 41
K 4 −e 5 10 13 17 28

38

30 37
K 4 7 11 19

33 52 75 105 139 184

31 40
K 5 −e 7 13 22

39 66

30 43
K 5 9 16

34 67 112 183 277 409 581

31 45 59
K 6 −e 9 17

39 70 135

37
K 6 11 21

53 110 205 373 621 1007 1544

40 59
K 7 −e 11 28

66 135 251

28 51
K 7 13

30 83 193 392 753 1336 2303 3751

K 8 15
42 123 300 657 1349 2558 4722 8200

Table IIIa. Two types of Ramsey numbers R (G , H ),
includes all known nontrivial values.

(a) The exact values in Table IIIa involving K 3 − e are obvious, since one can easily see that
R (K 3 − e , Kk ) = R (K 3 − e , Kk +1 − e ) = 2k − 1 for all k ≥ 2.

(b) More bounds (beyond those shown in Tables IIIa/b) can be easily obtained using Table I,
an obvious generalization of the inequality R (k , l ) ≤ R (k −1, l ) + R (k , l −1), and by
monotonicity of Ramsey numbers, in this case R (Kk −1, G ) ≤ R (Kk − e , G ) ≤ R (Kk , G ).

(c) If the quadratic residues Paley graph Qp of prime order p = 4t + 1 contains no Kk − e ,
then R (Kk +1 − e , Kk +1 − e ) ≥ 2p + 1. In particular, R (K 14 − e , K 14 − e ) ≥ 2987 [LiShen].
This was generalized to Kk − F for some small graphs F instead of an edge e (= K 2)
[WaLi]. See also item 2.3.i.
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H K 4 −e K 5 −e K 6 −e K 7 −e K 8 −e K 9 −e K 10 −e K 11 −e

G

MPR WWY2
K 3 CH2 Clan FRS1 GH Ra1 Ra1

GoR2 GoR2

Ea1 Ex14 Ex14
K 4 −e CH1 FRS2 McR McR

HZ2

Boza6 Ex14
K 4 CH2 EHM1

Boza5 HZ2 BZ2 BZ2 BZ2 Ea1

Ex14 Ex14
K 5 −e FRS2 CE+

Ea1 HZ2

Ex6 Ea1
K 5 BoH

Ex8 HZ2 HZ2 BZ2 BZ2 BZ2 BZ2

Ex14 Ex14 Ex14
K 6 −e McR

Ea1 HZ2 HZ2

McN/ Ex14
K 6 ShWR BZ1 BZ2 ShZ2 BZ2 BZ2 BZ2 BZ2

Ex14 Ex14
K 7 −e McR

HZ2 HZ2 ShZ1

Ea1 Ex14
K 7 BoPo Ea1 Ea1 BZ2 BZ2 BZ2 BZ2 BZ2

K 8 BZ1 BZ1 BZ2 BZ2 BZ2 BZ2 BZ2 BZ2

References for Table IIIa;
CE+ abbreviates CEHMS, for some details on BZ1 and BZ2 see item 3.1.d below.

k 11 12 13 14 15 16

lower 42 47 55 59 69 73

bound WWY2 Ea1 GoR2 Ea1 WWY2 Ea1

upper 45 53 62 71 80 91

bound GoR2 GoR2 GoR2 GoR2 GoR2 GoR2

Table IIIb. Lower and upper bounds for R (K 3, Kk − e ) for 11 ≤ k ≤ 16;
lower bounds for k = 12, 14, 16 are the same as for R (K 3, Kk −1).

(d) This item follows personal communication from Boza [Boza5]. The upper bounds
marked [BZ1] were obtained until 2012, while ones marked [BZ2] are from 2013. They
are implied by [Boza6], the previous work [Boza1, Boza3, BoPo], the method of [HZ2],
and the bounds given in [GoR2]. The enumeration of all (K 6, K 4 − e )-graphs [ShWR] is
used in [BoPo].

(e) All (K 3, Kk − e )-graphs were enumerated for k ≤ 6 [Ra1] and k = 7 [Fid2, GoR2]. Full
sets of (Kl , Kk − e )-graphs were posted for the parameters (K 3, Kk − e ) for k ≤ 7,
(K 4, Kk − e ) for k ≤ 5, and (K 5, Kk − e ) for k ≤ 4 at [Fid2], and other full and res-
tricted families at [BrCGM, Fuj1].
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(f) The number of (K 3, Kl − e )-critical graphs for l = 4, 5 and 8 is 4, 2 and 9, respectively
[MPR]. There are 7 critical graphs for R (K 3, K 9 − e ), and at least 40 such graphs for
R (K 3, K 10 − e ) [GoR2].

(g) The critical graphs are unique for: R (K 3, Kl − e ) for l = 3 [Tr], 6 and 7 [Ra1],
R (K 4 − e , K 4 − e ) [FRS2], R (K 5 − e , K 5 − e ) [Ra3] and R (K 4 − e , K 7 − e ) [McR].

(h) All of the critical graphs for the cases R (K 4 − e , K 4 ) [EHM1], R (K 4 − e , K 5 ) and
R (K 5 − e , K 4 ) [DzFi1] are known, and there are 5, 13 and 6 of them, respectively. The
unpublished value of R (K 4 − e , K 6 ) [McN] was confirmed in [ShWR], where in addition
all 24976 critical graphs were found.

(i) It is known that R (K 4, K 12 − e ) ≥ 128 [Shao] by using one color of the (4,4,4;127)-
coloring defined in [HiIr].

(j) R (Kk − e , Kk − e ) ≤ 4R (Kk −2, Kk − e ) − 2 [LiShen].
For a similar inequality for complete graphs see 2.3.b.

(k) Study of the cases R (Km , Kn − K 1,s ) and R (Km − e , Kn − K 1,s ), with several exact values
for special parameters [ChaMR].

(l) The upper bounds from [ShZ1, ShZ2] are subsumed by a later article [Shi2].

(m) The upper bounds in [HZ2] were obtained by a reasoning generalizing the bounds for
classical numbers in [HZ1]. Several other results from section 2.3 apply, though check-
ing in which situation they do may require looking inside the proofs whether they still
hold for Kn − e .

3.2. Triangle versus other graphs

(a) R (3, k ) = Θ(k 2/ log k ) [Kim].
For more comments on asymptotics see section 2.3 and the item 3.2.o/p below.

(b) Explicit construction for R (3, 3k + 1) ≥ 4R (3, k + 1) − 3, for all k ≥ 2 [CleDa],
explicit construction for R (3, 4k + 1) ≥ 6R (3, k + 1) − 5, for all k ≥ 1 [ChCD].

(c) Explicit triangle-free graphs with independence k on Ω(k 3/2 ) vertices [Alon2, CPR].

(d) R (K 3, K 7 − 2P 2 ) = R (K 3, K 7 − 3P 2 ) = 18 [SchSch2].

(e) R (K 3, K 3 + Km ) = R (K 3, K 3 + Cm ) = 2m + 5 for m ≥ 212 [Zhou1].

(f) R (K 3, K 2 + Tn ) = 2n + 3 for n -vertex trees Tn , for n ≥ 4 [SonGQ].

(g) R (K 3, G ) = 2n (G ) − 1 for any connected G on at least 4 vertices and with at most
(17n (G ) + 1)/15 edges, in particular for G = Pi and G = Ci , for all i ≥ 4 [BEFRS1].

(h) R (K 3, Qn ) = 2n +1 − 1 for large n [FizGMSS], where Qn is the n -dimensional hyper-
cube. For the general case of R (Km , Qn ) see item 5.15.n.

(i) Relations between R (3, k ) and graphs with large χ(G ) [Für],
further detailed study of the relation between R (3, k ) and the chromatic gap [GySeT].
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(j) R (K 3, G ) ≤ 2e (G ) + 1 for any graph G without isolated vertices [Sid3, GoK].

(k) R (K 3, G ) ≤ n (G ) + e (G ) for all G , a conjecture [Sid2].

(l) R (K 3, G ) for all connected G up to 9 vertices [BBH1, BBH2].

(m) R (K 3, G ) for all graphs G on 10 vertices [BrGS], except 10 cases (three of which,
including G = K 10 − e , were solved [GoR2]). See also section 8.1.

(n) Formulas for R (nK 3, mG ) for all G of order 4 without isolates [Zeng].

(o) For every positive constant c , ∆, and n large enough, there exists graph G with
∆(G ) ≤ ∆ for which R (K 3, G ) > cn [Bra3].

(p) R (K 3, Kk ,k ) = Θ(k 2/ log k ) [LinLi2].

(q) For R (K 3, Kn ) see section 2, and for R (K 3, Kn − e ) see section 3.1.

(r) Since B 1 = F 1 = C 3 = W 3 = K 3, other sections apply. See also [Boh, AjKS, BBH1,
BBH2, FrLo, Fra1, Fra2, Für, Gri, GySeT, Loc, KlaM1, LiZa1, RK2, RK3, RK4, She1,
She3, Spe2, Stat, Yu1].

3.3. Complete bipartite graphs

Note: This subsection gathers information on Ramsey numbers where specific bipartite graphs
are avoided in edge colorings of Kn (as everywhere in this survey), in contrast to the often
studied bipartite Ramsey numbers, which are not covered in this survey, where the edges of
complete bipartite graphs Kn , m are colored.

3.3.1. Numbers

The following Tables IVa and IVb gather information mostly from the surveys by Lortz and
Mengersen [LoM3, LoM4]. All cases involving K 1,2 = P 3 are solved by a formula for
R (P 3, G ), which holds for all isolate-free graphs G , derived in [CH2]. All star versus star
numbers are given below in the item 3.3.2.a and in section 5.5.
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p , q 1, 2 1, 3 1, 4 1, 5 1, 6 2, 2 2, 3 2, 4 2, 5 3, 3 3, 4

m , n

4 6 7 8 9 6
2, 2

CH2 CH2 Par3 Par3 FRS4 CH1

5 7 9 10 11 8 10
2, 3

CH2 FRS4 Stev FRS4 FRS4 HaMe4 Bu4

6 8 9 11 13 9 12 14
2, 4

CH2 HaMe3 Stev HaMe4 LoM4 HaMe4 ExRe EHM2

7 9 11 13 14 11 13 16 18
2, 5

CH2 HaMe3 Stev Stev LoM4 HaMe4 LoM3 LoM1 EHM2

8 10 11 14 15* 12 14 17 20
2, 6

CH2 HaMe3 Stev Stev Shao HaMe4 LoM3 LoM3 LoM1

7 8 11 12 13 11 13 16 18 18
3, 3

CH2 HaMe3 LoM4 LoM4 LoM4 Lortz HaMe3 LoM4 LoM4 HaMe3

7 9 11 13 14 11 14 17 ≤ 21 ≤ 25 ≤ 30
3, 4

CH2 HaMe3 LoM4 LoM4 LoM4 Lortz LoM4 Sh1+ LoM4 LoM2 LoM2

9 10 13 15 14 17* ≥21 ≤ 28 ≤ 33
3, 5

CH2 HaMe3 Sh1+ Sh1+ HaMe4 Shao Sh2+ LoM2 LoM2

Table IVa. Ramsey numbers R (Km , n , Kp , q );
unpublished results are marked with a *, and Sh1+, Sh2+ abbreviate ShaXBP, ShaoWX.

m 2 3 4 5 6 7 8 9 10 11

n

12 14 17 20 21
6

HaMe4 LoM3 LoM3 LoM1 EHM2

14 17 19 21 24 26
7

HaMe4 LoM3 LoM3 LoM3 LoM1 EMH2

15 18 20 22* -23 24-25 28 30
8

HaMe4 LoM3 LoM3 LoM3 LoM3 LoM1 EMH2

16 19 22 25* 27* 29* 32 33
9

HaMe4 LoM3 LoM3 Shao Shao Shao LoM1 EHM2

17 21 24 27 27-29 28-31 32-33 36 38
10

HaMe4 LoM3 LoM3 LoM3 LoM3 LoM3 LoM3 LoM1 EHM2

18 ≤ 35 36-37 40 42
11

HaMe4 LoM3 LoM3 LoM1 EHM2

Table IVb. Known Ramsey numbers R (K 2, n , K 2, m ) for 6 ≤ n ≤ 11, 2 ≤ m ≤ 11;
unpublished results improving over [LoM3] are marked with a *.
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(a) The next few easily computed values of R (K 1,n , K 2,2 ), extending data in the first row of
Table IVa, are 13, 14, 21 and 22 for n equal to 9, 10, 16 and 17, respectively. See func-
tion f (n ) in 3.3.2.c of the next subsection below.

(b) Formula for R (K 1, n , Kk 1, k 2, . . . , kt , m ) for m large enough, in particular for t = 1, k 1 = 2

with n ≤ 5, m ≥ 3 and n = 6, m ≥ 11, for example R (K 1,5, K 2,7 ) = 15 [Stev].

(c) The values and bounds for higher cases of R (K 2,2, K 2,n ) are 20, 22, 22, 24, 25, 26,
27/28, 28/29, 30 and 32 for 12 ≤ n ≤ 21 , respectively. All of them were given in
[HaMe4], except those for n = 14, 15 and 18, which were obtained in [Dyb]. More
exact values for prime powers  √ n  and  √ n  + 1 can be found in [HaMe4].

(d) The known values of R (K 2,2, K 3,n ) are 15, 16, 17, 20 and 22 for 6 ≤ n ≤ 10 [Lortz],
and R (K 2,2, K 3,12 ) = 24 [Shao]. See Tables IVa and IVb for the smaller cases, and
[HaMe4] for upper bounds and values for some prime powers  √ n  .

(e) R (K 2,n , K 2,n ) is equal to 46, 50, 54, 57 and 62 for 12 ≤ n ≤ 16, respectively.
The first open diagonal case is 65 ≤ R (K 2,17, K 2,17 ) ≤ 66 [EHM2].
The status of all higher cases for n < 30 is listed in [LoM1].

(f) R (K 1,4, K 4,4 ) = R (K 1,5, K 4,4 ) = 13 [ShaXPB]
R (K 1,4, K 1,2,3 ) = R (K 1,4, K 2,2,2 ) = 11 [GuSL]
R (K 1,7, K 2,3 ) = 13 [Par4, Par6]
R (K 1,15, K 2,2 ) = 20 [La2]
R (K 2,2, K 4,4 ) = 14 [HaMe4]
R (K 2,2, K 4,5 ) = 15 [Shao]
R (K 2,2, K 4,6 ) = 16 [Shao]
R (K 2,2, K 5,5 ) = R (K 2,3, K 3,5 ) = 17 [Shao]

(g) A number of general upper and lower bounds for R (Ks ,t , Ks ,t ), in particular for small
fixed s , and for some slightly off-diagonal cases were obtained in [LoM2]. They can be
used to derive the upper bounds for the cases listed in (h) and (i) below.

(h) Several lower bounds of the form R (Ks ,t , Ks ,t ) ≥ m from distance colorings, a slightly
more general concept than circular graphs, were presented in [HaKr2] for the following
triples (s , t , m ): (3,6,38), (3,7,42), (3,8,43), (3,9,54), (4,5,42), (4,6,43), (4,7,54), (5,5,54).

(i) 30 ≤ R (K 3,5, K 3,5 ) ≤ 38 [HaKr2][LoM2]
30 ≤ R (K 4,4, K 4,4 ) ≤ 62 [HaKr2][LoM2]

3.3.2. General results

(a) R (K 1,n , K 1,m ) = n + m − ε, where ε =1 if both n and m are even and ε =0 otherwise
[Har1]. It is also a special case of multicolor numbers for stars obtained in [BuRo1].

(b) R (K 1,3, Km , n ) = m + n + 2 for m , n ≥ 1 [HaMe3].

(c) R (K 1,n , K 2,2 ) = f (n ) ≤ n + √ n + 1, with f (q 2 ) = q 2 + q + 1 and f (q 2 + 1 ) = q 2 + q + 2
for every q which is a prime power [Par3]. Furthermore, f (n ) ≥ n + √ n − 6n 11 / 40

[BEFRS4]. For more bounds on f (n ) see [Par5, Chen, ChenJ, MoCa, WuSZR].
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(d) R (K 1,n + 1, K 2,2 ) ≤ R (K 1,n , K 2,2 ) + 2 [Chen].

(e) R (K 2,λ+1, K 1,v − k +1 ) is either v + 1 or v + 2 if there exists a (v , k , λ)-difference set. This
and other related results are presented in [Par4, Par5]. See also [GoCM, GuLi].

(f) Formulas and bounds on R (K 2,2, K 2,n ), and bounds on R (K 2,2, Km ,n ). In particular, we
have R (K 2,2, K 2,k ) = n + k √ n + c , for k = 2, 3, 4, some prime powers  √ n  and
 √ n  + 1, and some − 1 ≤ c ≤ 3 [HaMe4]. An improvement of the latter for some spe-
cial cases of n was obtained in [Dyb].

(g) R (K 2,n , K 2,n ) ≤ 4n − 2 for all n ≥ 2, and the equality holds if and only if there exists a
strongly regular (4n − 3, 2n − 2, n − 2, n − 1 )-graph [EHM2].

(h) Conjecture that 4n − 3 ≤ R (K 2,n , K 2,n ) ≤ 4n − 2 for all n ≥ 2. Many special cases are
solved and several others are discussed in [LoM1].

(i) R (K 2,n −1, K 2,n ) ≤ 4n − 4 for all n ≥ 3, with the equality if there exists a symmetric
Hadamard matrix of order 4n − 4. There are only 4 cases in which the equality is still
open for 3 ≤ n ≤ 58, namely 30, 40, 44 and 48 [LoM1].

(j) R (K 2,n −s , K 2,n ) ≤ 4n − 2s − 3 for s ≥ 2 and n ≥ s + 2, with the equality in many cases
involving Hadamard matrices or strongly regular graphs. Asymptotics of R (K 2,n , K 2,m )
for m >>n [LoM3].

(k) Some algebraic lower and upper bounds on R (Ks ,n , Kt ,m ) for various combinations of n ,
m and 1 ≤ t , s ≤ 3 [BaiLi, BaLX]. A general lower bound R (Km ,n ) ≥ 2m (n − n 0.525)
for large n [Dong].

(l) Upper bounds for R (K 2,2, Km ,n ) for m , n ≥ 2 , with several cases identified for which the
equality holds. Special focus on the cases for m = 2 [HaMe4].

(m) Bounds for the numbers of the form R (Kk ,n , Kk ,m ), specially for fixed k and close to the
diagonal cases. Asymptotics of R (K 3,n , K 3,m ) for m >>n [LoM2].

(n) R (nK 1,3, mK 1,3 ) = 4n + m − 1 for n ≥ m ≥ 1, n ≥ 2 [BES].

(o) Asymptotics for K 2,m versus Kn [CaLRZ]. Upper bound asymptotics for Kk ,m versus
Kn [LiZa1] and for some bipartite graphs Kn [JiSa].

(p) Special two-color cases apply in the study of asymptotics for multicolor Ramsey
numbers for complete bipartite graphs [ChGra1].
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4. Two Colors: Numbers Involving Cycles

4.1. Cycles, cycles versus paths and stars

Note: The paper Ramsey Numbers Involving Cycles [Ra4] is based on the revision #12 of this
survey. It collects and comments on the results involving cycles versus any graphs, in two or
more colors. It contains some more details than this survey, but only until 2009.

Cycles

(a) R (C 3, C 3 ) = 6 [GG, Bush],
R (C 4, C 4 ) = 6 [CH1].

(b) R (C 3, Cn ) = 2n − 1 for n ≥ 4, R (C 4, Cn ) = n + 1 for n ≥ 6,
R (C 5, Cn ) = 2n − 1 for n ≥ 5, and R (C 6, C 6 ) = 8 [ChaS].

(c) Result obtained independently in [Ros1] and [FS1], a new simpler proof in [KáRos]:

R (Cm , Cn ) =







max{ n − 1 + m / 2, 2m − 1}
n − 1 + m / 2
2n − 1

for 4 ≤ m < n , m even and n odd.
for 4 ≤ m ≤ n , m and n even, (m , n ) =/ (4,4),
for 3 ≤ m ≤ n , m odd, (m , n ) =/ (3,3),

(d) Characterization of all graphs critical for R (C 4, Cn ) [WuSR].

(e) R (mC 3, nC 3 ) = 3n + 2m for n ≥ m ≥ 1, n ≥ 2 [BES].

(f) R (mC 4, nC 4 ) = 2n + 4m − 1 for m ≥ n ≥ 1, (n , m ) =/ (1,1) [LiWa1].

(g) Formulas for R (mC 4, nC 5 ) [LiWa2].

(h) Formulas and bounds for R (nCm , nCm ) [Den2, Biel1].

(i) Study of R (S 1, S 2), where S 1 and S 2 are sets of cycles [Hans].

(j) Unions of cycles, formulas and bounds for various cases including diagonal, different
lengths, different multiplicities [MiSa, Den2], powers of cycles [AllBS], disjoint cycles
versus Kn [Fuj2], and their relation to 2-local Ramsey numbers [Biel1].

Cycles versus paths

Result obtained by Faudree, Lawrence, Parsons and Schelp in 1974 [FLPS]:

R ( Cm , Pn ) =









m − 1 +  n / 2
max{ m − 1 +  n / 2 , 2n − 1}
n − 1 + m / 2
2n − 1

for 2 ≤ n ≤ m , m even.
for 2 ≤ n ≤ m , m odd,
for 4 ≤ m ≤ n , m even,
for 3 ≤ m ≤ n , m odd,

For all n and m it holds that R ( Pm , Pn ) ≤ R ( Cm , Pn ) ≤ R (Cm , Cn ). Each of the two ine-
qualities can become an equality, and, as derived in [FLPS], all four possible combinations of
< and = hold for an infinite number of pairs (m , n ). For example, if both m and n are

even, and at least one of them is greater than 4, then R ( Pm , Pn ) = R ( Cm , Pn ) = R (Cm , Cn ).
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For related generalizations see [BEFRS2].

Cycles versus stars

Only partial results for Cm versus stars are known. Lawrence [La1] settled the cases for odd
m and for long cycles (see also [Clark, Par6]). The case for short even cycles is open, and it
is related in particular to bipartite graphs. Partial results for C 4 = K 2,2 are pointed to in sub-
sections 3.3.1 and 3.3.2. The most known exact result in [La1] is:

R (Cm , K 1, n ) =


 m

2n + 1
for m ≥ 2n.
for odd m ≤ 2n + 1,

4.2. Cycles versus complete graphs

Since 1976, it was conjectured that R (Cn , Km ) = (n − 1)(m − 1) + 1 for all n ≥ m ≥ 3,
except n = m = 3 [FS4, EFRS2]. Various parts of this conjecture were proved as follows: for
n ≥ m 2 − 2 [BoEr], for n > 3 = m [ChaS], for n ≥ 4 = m [YHZ1], for n ≥ 5 = m [BolJY+],
for n ≥ 6 = m [Schi1], for n ≥ m ≥ 7 with n ≥ m (m − 2) [Schi1], for n ≥ 7 = m
[ChenCZ1], and for n ≥ 4m + 2, m ≥ 3 [Nik]. Open conjectured cases are marked in Table V
by "conj."

C 3 C 4 C 5 C 6 C 7 C 8 C 9 ... Cn for n ≥ m

6 7 9 11 13 15 17 ... 2n −1
K 3 GG-Bush ChaS ... ... ChaS

9 10 13 16 19 22 25 ... 3n −2
K 4 GG CH2 He4/JR4 JR2 YHZ1 ... ... YHZ1

14 14 17 21 25 29 33 ... 4n −3
K 5 GG Clan He2/JR4 JR2 YHZ2 BolJY+ ... ... BolJY+

18 18 21 26 31 36 41 ... 5n −4
K 6 Kéry Ex2-RoJa1 JR5 Schi1 ... ... Schi1

23 22 25 31 37 43 49 ... 6n −5
K 7 Ka2-GrY RT-JR1 Schi2 CheCZN CheCZN JaBa/Ch+ Ch+ ... Ch+

28 26 29-33 36 43 50 57 ... 7n −6
K 8 GR-MZ RT JaAl2 ChenCX ChenCZ1 JaAl1/ZZ3 BatJA ... conj.

36 30 65 ... 8n −7
K 9 Ka2-GR RT-LivLR conj. ... conj.

40-42 36 9n −8
K 10 Ex5-GoR1 LivLR

...
conj.

47-50 39-44 10n −9
K 11 Ex20-GoR1 LivLR

...
conj.

Table V. Known Ramsey numbers R (Cn , Km );
Ch+ abbreviates ChenCZ1, for comments on joint credits see 4.2.b.
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(a) The first column in Table V gives data from the first row in Table I.

(b) Joint credit [He2/JR4] in Table V refers to two cases in which Hendry [He2] announced
the values without presenting the proofs, which later were given in [JR4]. The special
cases of R (C 6, K 5 ) = 21 [JR2] and R (C 7, K 5 ) = 25 were solved independently in
[YHZ2] and [BolJY+]. The double pointer [JaBa/ChenCZ1] refers to two independent
papers, similarly as [JaAl1/ZZ3], except that in the latter case [ZZ3] refers to an unpub-
lished manuscript. For joint credits marked in Table V with "-", the first reference is for
the lower bound and the second for the upper bound.

(c) Erdős et al. [EFRS2] asked what is the minimum value of R (Cn , Km ) for fixed m , and
they suggested that it might be possible that R (Cn , Km ) first decreases monotonically,
then attains a unique minimum, then increases monotonically with n .

(d) There exist constants c 1, c 2 > 0 such that c 1(m 3/ 2/ log m ) ≤ R (C 4, Km ) ≤ c 2(m / log m )2.
The lower bound, recently obtained by Bohman and Keevash ([BohK1], see also 4.2.h
below) improved over an almost 40 years old bound c (m / log m )3/ 2 by Spencer [Spe2],
using the probabilistic method. The upper bound was reported in a paper by Caro, Li,
Rousseau and Zhang [CaLRZ], who in turn give the credit to an unpublished work by
Szemerédi from 1980.

(e) Erdős, in 1981, in the Ramsey problems section of the paper [Erd3] formulated a chal-
lenge by asking for a proof of R (C 4, Km ) < m 2 − ε , for some ε > 0. To date, no such
proof is known.

(f) Let C ≤m be the set of cycles of length at most m , and let the girth g (G ) be the length
of the shortest cycle in graph G . Probabilistic lower bound asymptotics for R (C ≤m , Kk )
[Spe2] currently is the same as for R (Cm , Kk ), for fixed m . However, there are clear
differences already for girth 4 and 5 and small k : Backelin [Back1, Back2] found that
R (C ≤4, Kk ) = 6, 8, 11, 15, 18 for k = 3, 4, 5, 6, 7, and that R (C ≤5, Kk ) = 5, 8, 10, 13,
15, also for k = 3, 4, 5, 6, 7, respectively.

(g) Erdős et al. [EFRS2] proved various facts about R (C ≤m , Kk ), and in particular that it is
equal to 2n − 1 for m ≥ 2n − 1, and to 2n for n < m < 2n − 1. The upper asymptotics for
R (C ≤m , Kk ) is implied in the study of independence number in graphs with odd girth m
[Den1].

(h) The best known lower bound asymptotics R (Cn , Km ) = Ω(m (n −1)/(n −2) / log m ), for fixed
n and large m , was obtained by Bohman and Keevash [BohK1]. Note that for n = 4 it
gives the lower bound in 4.2.d above. See also [Spe2, FS4, AlRö] for previous results.

(i) Upper bound asymptotics [BoEr, FS4, EFRS2, CaLRZ, Sud1, LiZa2, AlRö, DoLL2].
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4.3. Cycles versus wheels

Note: In this survey the wheel graph Wn = K 1 + Cn −1 has n vertices,
while some authors use the definition Wn = K 1 + Cn with n + 1 vertices.
For the cases involving W 3 = C 3 versus Cm see sections 3.2 and 4.2.

C 3 C 4 C 5 C 6 C 7 C 8 Cm for

9 10 13 16 19 22 3m −2 m ≥ 4
W 4 GG CH2 He4 JR2 YHZ1 ... ... YHZ1

11 9 9 11 13 15 2m −1 m ≥ 5
W 5 Clan Clan He2 JR2 SuBB2 ... ... SuBB2

11 10 13 16 19 22 3m −2 m ≥ 4
W 6 BE3 JR3 ChvS SuBB2 ... ... ... SuBB2

13 9 13 11 13 2m −1 m ≥ 10
W 7 BE3 Tse1 LuLL LuLL LuLL ... Ch1

15 11 15 16 19 22 3m −2 m ≥ 6
W 8 BE3 Tse1 LuLL LuLL Ch2 ... ... Ch2

17 12 17 13 17 2m −1 m ≥ 13
W 9 BE3 Tse1 LuLL LuLL LuLL Ch1

19 13 3m −2 m ≥ 9
W 10 BE3 Tse1 Ch2

... cycles

Wn 2n −1 2n −1 2n −1

for n ≥ 6 n ≥ 19 n ≥ 29 large

BE3 Zhou2 Zhou2 wheels

Table VI. Ramsey numbers R (Wn , Cm ) for n ≤ 10, m ≤ 8;
Ch1 abbreviates ChenCMN, Ch2 abbreviates ChenCNZ.

(a) R (C 3, Wn ) = 2n − 1 for n ≥ 6 [BE3]. All critical graphs have been enumerated.
The critical graphs are unique for n = 3, 5, and for no other n [RaJi].

(b) R (C 4, Wn ) = 14, 16, 17 for n = 11, 12, 13, respectively [Tse1],
R (C 4, Wn ) = 18, 19, 20, 21 for n = 14, 15, 16, 17, respectively [DyDz2], and several
higher values and bounds, including 9 cases of n between 18 and 44 [WuSR, WuSZR].

(c) R (C 4, Wn ) ≤ n +  (n − 1) / 3 for n ≥ 7 [SuBUB], which was improved to
R (C 4, Wn ) ≤ n + √n − 2 + 1 for n ≥ 11 [DyDz2].

(d) R (C 4, Wq 2+ 1) = q 2 + q + 1 for prime power q ≥ 4 [DyDz2],
exact values of R (C 4, Wq 2+ 2) and R (C 4, Wq 2− i ) for special q and small i [WuSZR].

(e) R (Wn , Cm ) = 2n − 1 for odd m with n ≥ 5m − 6 [Zhou2].

(f) R (Wn , Cm ) = 3m − 2 for even n ≥ 4 with m ≥ n − 1, m =/ 3, was conjectured by Surahmat
et al. [SuBT1, SuBT2, Sur]. Parts of this conjecture were proved in [SuBT1, ZhaCC1,
Shi5], and the proof was completed in [ChenCNZ].
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(g) Conjecture that R (Wn , Cm ) = 2m − 1 for odd n ≥ 3 and all m ≥ 5 with m > n [Sur].
It was proved for 2m ≥ 5n − 7 [SuBT1], and further for 2m ≥ 3n − 1 [ChenCMN].
See also [Shi5].

(h) Observe apparently four distinct situations with respect to parity of m and n .

(i) Cycles are Ramsey unsaturated for some wheels [AliSur],
see also comments on [BaLS] in subsection 5.16.

(j) Study of cycles versus generalized wheels Wk ,n [Sur, SuBTB, Shi5].

4.4. Cycles versus books

C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 10 C 11 Cm for

7 7 9 11 13 15 17 19 21 2m −1 m ≥ 4
B 2 RS1 Fal6 Cal Fal8 ... ... Fal8

9 9 10 11 13 15 17 19 21 2m −1 m ≥ 6
B 3 RS1 Fal6 Fal8 JR2 Shi5 Fal8 ... ... Fal8

11 11 11 12 13 15 17 19 21 2m −1 m ≥ 7
B 4 RS1 Fal6 Fal8 Sal1 Sal1 Shi5 Shi5 Fal8 ... ... Fal8

13 12 13 14 15 15 17 19 21 2m −1 m ≥ 8
B 5 RS1 Fal6 Fal8 Sal1 Sal1 Sal2 Sal2 Shi5 Shi5 ... Fal8

15 13 15 16 17 18 18 21 2m −1 m ≥ 11
B 6 RS1 Fal6 Fal8 Sal2 Sal2 Sal2 Sal2 Shi5 ... Shi5

17 16 17 16 19 20 21 2m −1 m ≥ 13
B 7 RS1 Fal6 Fal8 Sal2 Sal2 Sal2 Sal2 Shi5

19 17 19 17 19 22 ≥ 23 2m −1 m ≥ 14
B 8 RS1 Tse1 Fal8 Sal2 Sal2 Sal2 Sal2 Shi5

21 18 21 18 ≥ 25 ≥ 26 2m −1 m ≥ 16
B 9 RS1 Tse1 Fal8 Sal2 Sal2 Sal2 Shi5

23 19 23 19 ≥ 28 2m −1 m ≥ 17
B 10 RS1 Tse1 Fal8 Sal2 Sal2 Shi5

25 20 25 2m −1 m ≥ 19
B 11 RS1 Tse1 Fal8 Shi5

... ... cycles

Bn 2n +3 ∼∼ n 2n +3 2n +3 2n +3 2n +3

for n ≥ 2 some n ≥ 4 n ≥ 15 n ≥ 23 n ≥ 31 large

RS1 (c) Fal8 Fal8 Fal8 Fal8 books

Table VII. Ramsey numbers R (Bn , Cm ) for n , m ≤ 11;
et al. abbreviations: Fal/FRS, Cal/CRSPS, Sal1/ShaXBP, Sal2/ShaXB.

(a) For the cases of B 1 = K 3 versus Cm see section 4.2.
The exact values for the cases (3,7), (4,8), (4,9), (5,10), (5,11) were obtained indepen-
dently in [Sal1, Sal2]/[ShaXBP, ShaXB] using computer algorithms.
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(b) R (C 4, B 12 ) = 21 [Tse1], R (C 4, B 13 ) = 22 , R (C 4, B 14 ) = 24 [Tse2].
R (C 4, B 8 ) = 17 [Tse2] (it was reported incorrectly in [FRS7] to be 16).

(c) q 2 + q + 2 ≤ R (C 4, Bq 2 − q + 1 ) ≤ q 2 + q + 4 for prime power q [FRS7]. Bn is a subgraph
of Bn + 1, hence likely R (C 4, Bn ) = n + O (√ n ) (compare to R (C 4, K 2,n ) in section 3.3).

(d) R (Bn , Cm ) = 2n + 3 for odd m ≥ 5 with n ≥ 4m − 13 [FRS9].

(e) R (Bn , Cm ) = 2m − 1 for n ≥ 1, m ≥ 2n + 2 [FRS9]. The range of m was extended to
m ≥ 2n − 1 ≥ 7 in [ShaXB], and to m > (6n + 7) / 4 in [Shi5].

(f) R (Bn , Cn ) ≥ 3n − 2 and R (Bn − 1, Cn ) ≥ 3n − 4 for n ≥ 3 [ShaXB].

(g) More theorems on R (Bn , Cm ) in [FRS7, FRS9, NiRo4, Zhou1].

(h) Cycles versus some generalized books [Shi5].

4.5. Cycles versus other graphs

(a) C 4 versus stars [Par3, Par4, Par5, BEFRS4, Chen, ChenJ, GoMC, MoCa, WuSZR]. For
several exact results see K 2,2 in Tables IVa and IVb, and for general results see items
3.3.1.a, 3.3.2.c and 3.3.2.d.

(b) C 4 versus unions of stars [HaABS, Has]

(c) C 4 versus trees [EFRS4, Bu7, BEFRS4, Chen]

(d) C 4 versus all graphs on six vertices [JR3]

(e) C 4 versus various types of complete bipartite graphs, see section 3.3

(f) R (C 4, G ) ≤ 2q + 1 for any isolate-free graph G with q edges [RoJa2]

(g) R (C 4, G ) ≤ p + q − 1 for any connected graph G on p vertices and q edges [RoJa2]

(h) R (C 5, K 6 − e ) = 17 [JR4]

(i) R (C 5, K 4 − e ) = 9 [CRSPS]

(j) C 5 versus all graphs on six vertices [JR4]

(k) R (C 6, K 5 − e ) = 17 [JR2]

(l) C 6 versus all graphs on five vertices [JR2]

(m) R (C 2m +1, G ) = 2n − 1 for sufficiently large sparse graphs G on n vertices, in particular
R (C 2m +1, Tn ) = 2n − 1 for all n > 1512m + 756, for n -vertex trees Tn [BEFRS2].

(n) R (Cn , G ) ≤ 2q +  n / 2  − 1, for 3 ≤ n ≤ 5, for any isolate-free graph G with q > 3
edges. It is conjectured that it also holds for other n [RoJa2].

(o) Cycles versus trees [BEFRS2, FSS1]

(p) Monotone paths and cycles [Lef]

(q) Cycles versus Kn ,m and multipartite complete graphs [BoEr]

(r) Cycles versus generalized books and wheels [Shi5, Sur, SuBTB], and versus other spe-
cial graphs of the form Kn + G with small n ≤ 3 and sparse G [Shi5].
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5. General Graph Numbers in Two Colors

This section includes data with respect to general graph results. We tried to include all
nontrivial values and identities regarding exact results, or references to them, but only those
out of general bounds and other results which, in our opinion, may have a direct connection to
the evaluation of specific numbers. If some small value cannot be found below, it may be
covered by the cumulative data gathered in section 8, or be a special case of a general result
listed in this section. Note that P 2 = K 2, B 1 = F 1 = C 3 = W 3 = K 3, B 2 = K 4 − e ,
P 3 = K 3 − e , W 4 = K 4 and C 4 = K 2,2 imply other identities not mentioned explicitly.

5.1. Paths

R (Pm , Pn ) = n +  m / 2  − 1 for all n ≥ m ≥ 2 [GeGy]

Stripes mP 2 [CocL1, CocL2, Lor]

Disjoint unions of paths (also called linear forests) [BuRo2, FS2]

5.2. Wheels

Note: In this survey the wheel graph Wn = K 1 + Cn −1 has n vertices,
while some authors use the definition Wn = K 1 + Cn with n + 1 vertices.

n 3 4 5 6 7

m

6 9 11 11 13
3

GG Clan BE3 BE3

18 17 19
4

GG He3 FM

15 17
5

He2 FM

17
6

FM

Table VIII. Ramsey numbers R ( Wm , Wn ) for m ≤ n ≤ 7.

(a) R (W 3, Wn ) = 2n −1 for all n ≥ 6 [BE3],
All critical colorings for R (W 3, Wn ) for all n ≥ 3 [RaJi].

(b) The value R (W 5, W 5 ) = 15 was given in the Hendry’s table [He2] without a proof.
Later the proof was published in [HaMe2].

(c) All critical colorings (2, 1 and 2) for R (Wn , W 6 ), for n = 4, 5, 6 [FM].

(d) R (W 6, W 6 ) = 17, R (4,4) = 18 and χ(W 6 ) = 4 give a counterexample G = W 6
to the Erdős conjecture (Erd2, see also [GRS]) that R (G , G ) ≥ R (K χ(G ), K χ(G ) ).
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5.3. Books

n 1 2 3 4 5 6 7

m

6 7 9 11 13 15 17
1

CH2 Clan RS1 RS1 RS1 RS1

10 11 13 16 17 18
2

CH1 Clan Rou RS1 Rou BlLR

14 15 17
3

RS1 Sh1+ RS1

18 ≤ 20 22
4

RS1 RS1 RS1

21
5

RS1

26
6

RS1

Table IX. Ramsey numbers R ( Bm , Bn ) for m , n ≤ 7;
Sh1+ abbreviates ShaXBP.

(a) 254 ≤ R (B 37, B 88 ) ≤ 255 [Par6].

(b) Unpublished result R (B 2, B 6 ) = 17 [Rou] was confirmed in [BlLR].

(c) There are 4 Ramsey-critical graphs for R (B 2, B 3 ), a unique graph for R (B 3, B 4 )
[ShaXBP], 3 for R (B 2, B 6 ) and 65 for R (B 2, B 7 ) [BlLR].

(d) R (B 1, Bn ) = 2n + 3 for all n >1 [RS1].

(e) R (Bn , Bm ) = 2n + 3 for all n ≥ cm for some c < 106 [NiRo2, NiRo3].

(f) R (Bn , Bn ) = (4 + o (1))n [RS1, NiRS].

(g) In general, R (Bn , Bn ) = 4n + 2 for 4n + 1 a prime power. Several other specific values
(like R (B 62, B 65 ) = 256) and general equalities and bounds for R (Bn , Bm ) can be found
in [RS1, FRS8, Par6, NiRS, LiRZ2].

5.4. Trees and forests

In this subsection Tn and Fn denote n -vertex tree and forest, respectively.

(a) R (Tn , Tn ) ≤ 4n + 1 [EG].

(b) R (Tn , Tn ) ≥  (4n − 1) / 3 [BE2], see also section 5.15.

(c) Conjecture that R (Tn , Tn ) is at most 2n − 2 for even n and 2n − 3 for odd n [BE2].
Note that this is the same as asking if R (Tn , Tn ) ≤ R (K 1,n −1, K 1,n −1 ). Zhao proved that
R (Tn , Tn ) ≤ 2n − 2 and thus confirmed the conjecture for even n . Independently, Ajtai
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et al. [AjKSS] announced a full proof for large n . This recent progress subsumes some
of the results pointed to in items (d)-(l) below.

(d) For general discussion of related problems see [Bu7, FSS1, ChGra2], in particular of the
conjecture that R (Tm , Tn ) ≤ n + m − 2 holds for all trees [FSS1].

(e) If ∆(Tm ) = m − 2 and ∆(Tn ) = n − 2 then the exact values of R (Tm , Tn ) are known, and
they are between n + m − 5 and n + m − 3 depending on n and m . In particular, for
n = 2k + 1 we have R (T 2k +1, T 2k +1 ) = 2n − 5 [GuoV].

(f) Examples of families Tm and Tn (including Pn ) for which R (Tm , Tn ) = n + m − c ,
c = 3, 4, 5 [SunZ], extending the results in [GuoV].

(g) View tree T as a bipartite graph with parts t 1 and t 2, t 2 ≥ t 1. Define
b (T ) = max{ 2t 1 + t 2 − 1, 2t 2 − 1}. Then the bound R (T , T ) ≥ b (T ) holds always,
R (T , T ) = b (T ) holds for many classes of trees [EFRS3, GeGy], and asymptotically
[HaŁT], but cases for nonequality have been found [GHK].

(h) Comments in [BaLS] about some conjectures on Ramsey saturation of non-star trees,
which would imply that R (Tn , Tn ) ≤ 2n − 2 holds for sufficiently large n .

(i) Formulas for R (Tm , Tn ) for some subcases of when Tm and Tn satisfy ∆(Tm ) = m − 3
and ∆(Tn ) ≤ n − 3 [SunWW].

(j) R (Tm , K 1,n ) ≤ m + n − 1 , with equality for (m − 1) | (n − 1) [Bu1].

(k) R (Tm , K 1,n ) = m + n − 1 for sufficiently large n for almost all trees Tm [Bu1]. Many
cases were identified for which R (Tm , K 1,n ) = m + n − 2 [Coc, ZZ1], see also [Bu1].

(l) R (Tm , K 1,n ) ≤ m + n if Tn is not a star and (m − 1) |/ (n − 1),
some classes of trees and stars for which the equality holds [GuoV].

(m) R (Fn , Fn ) > n + log2n − O (loglog n ) [BE2], forests are tight for this bound [CsKo].

(n) Forests, linear forests (unions of paths) [BuRo2, FS3, CsKo].

(o) Paths versus trees [FSS1], see also other parts of this survey involving special graphs,
in particular sections 5.5, 5.6, 5.10, 5.12 and 5.15.

5.5. Stars, stars versus other graphs

R (K 1,n , K 1,m ) = n + m − ε, where ε =1 for even n and m , and ε =0 otherwise [Har1].
This is also a special case of multicolor numbers for stars 6.6.e obtained in [BuRo1].

R (K 1,n , Km ) = n (m − 1) + 1 by Chvátal’s theorem [Chv].

Stars versus C 4 [Par3, Par4, Par5, BEFRS4, Chen, ChenJ, GoMC, MoCa, WuSZR]
Stars versus K 2,n [Par4, GoMC]
Stars versus Kn , m [Stev, Par3, Par4]
See also section 3.3

R (K 1,4, B 4 ) = 11 [RS2]
R (K 1,4, K 1,2,3 ) = R (K 1,4, K 2,2,2 ) = 11 [GuSL]
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Stars versus paths [Par2, BEFRS2]
Stars versus cycles [La1, Clark], see also [Par6] and section 4.1
Stars versus 2K 2 [MeO]
Stars versus stripes mP 2 [CocL1, CocL2, Lor]

Stars versus W 5 and W 6 [SuBa1]
nK 1,m versus W 5 [BaHA]
Stars versus W 9 [Zhang2, ZhaCZ1]
Stars versus wheels [HaBA1, ChenZZ2, Kor]
Stars versus books [CRSPS, RS2]
Stars versus trees [Bu1, Cheng, Coc, GuoV, SunZ, ZZ1]
Stars versus Kn − tK 2 [Hua1, Hua2]
Union of two stars [Gros2]
Unions of stars versus C 4 and W 5 [HaABS, Has]
Unions of stars versus wheels [BaHA, HaBA2, SuBAU1]

5.6. Paths versus other graphs
Note: for cycles versus Pn see section 4.1.

P 3 versus all isolate-free graphs [CH2]
Paths versus stars [Par2, BEFRS2]
Paths versus trees [FS4, FSS1, SunZ]
Paths versus books [RS2]
Paths versus Kn [Par1]
Paths versus 2Kn [SuAM, SuAAM]
Paths versus Kn ,m [Häg]
Paths versus some balanced complete multipartite graphs [Pokr]
Paths versus W 5 and W 6 [SuBa1]
Paths versus W 7 and W 8 [Bas]
Paths versus wheels [BaSu, ChenZZ1, SaBr3, Zhang1]
R (Pn , mW 4) = 2n + m − 2 [Sudar]
Paths versus beaded wheels [AliBT2]
Paths versus powers of paths [Pokr, AllBS]
Paths versus fans [SaBr2]
Paths versus K 1 + Pm [SaBr1, SaBr4]
Paths and cycles versus trees [FSS1]

Powers of paths [AllBS]
Unions of paths [BuRo2]
Paths and unions of paths versus Jahangir graphs [AliBas, AliBT1, AliSur]
Paths and unions of paths versus K 2m − mK 2 [AliBB]

Sparse graphs versus paths and cycles [BEFRS2]
Graphs with long tails [Bu2, BG]
Monotone paths and cycles [Lef]
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5.7. Fans, fans versus other graphs

R (F 1, Fn ) = R (K 3, Fn ) = 4n + 1 for n ≥ 2 , and bounds for R (Fm , Fn ) [LiR2, GGS]

R (F 2, Fn ) = 4n + 1 for n ≥ 2 and R (Fm , Fn ) ≤ 4n + 2m for n ≥ m ≥ 2 [LinLi1]

R (K 4, Fn ) = 6n + 1 for n ≥ 3 [SuBB3]

Fans versus paths, formulas for a number of cases including R (P 6, Fn ) [SaBr2].
Missing case R (P 6, F 4 ) = 12 solved in [Shao].

Fans versus cycles [Shi5]
Fans versus Kn [LiR2]
Lower bounds on R (F 2, Kn ) from cyclic graphs for n ≤ 9 [Shao]

5.8. Wheels versus other graphs

Notes: In this survey the wheel graph Wn = K 1 + Cn −1 has n vertices,
while some authors use the definition Wn = K 1 + Cn with n + 1 vertices.
For cycles versus Wn see section 4.3.

R (W 5, K 5 − e ) = 17 [He2][YH]
R (W 5, K 5 ) = 27 [He2][RST]
R (W 5, K 6 ) ≥ 33, R (W 5, K 7 ) ≥ 43 [Shao, ShaoWX]
W 5 and W 6 versus stars and paths [SuBa1]
W 5 versus nK 1,m [BaHA]
W 5 versus unions of stars [Has]
W 5 and W 6 versus trees [BaSNM]
W 7 and W 8 versus paths [Bas]

W 7 versus trees Tn with ∆(Tn ) ≥ n − 3, other special trees T ,
and for n ≤ 8 [ChenZZ3, ChenZZ5, ChenZZ6]

W 7 and W 8 versus trees [ChenZZ4, ChenZZ5]
W 9 versus stars [Zhang2, ZhaCZ1, ZhaCC2]
W 9 versus trees of high degree [ZhaCZ2]

Wheels versus stars [HaBA1, ChenZZ2, Kor]
Wheels Wn , for even n , versus star-like trees [SuBB1]
Wheels versus paths [BaSu, ChenZZ1, SaBr3, Zhang1]
Wheels versus books [Zhou3]
Wheels versus unions of stars [BaHA, HaBA2, SuBAU1]
Wheels versus linear forests (disjoint unions of paths) [SuBa2]
Generalized wheels versus cycles [Shi5]
Upper asymptotics for R (Wn , Km ) [Song5, SonBL]
Upper asymptotics for generalized wheels versus Kn [Song9]
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5.9. Books versus other graphs
Note: for cycles versus Bn see section 4.4.

R (B 3, K 4 ) = 14 [He3]
R (B 3, K 5 ) = 20 [He2][BaRT]
R (B 4, K 1,4 ) = 11 [RS2]

Cyclic lower bounds for R (Bm , Kn ) for m ≤ 7, n ≤ 9
and for R (B 3, Kn − e ) for n ≤ 7 [Shao, ShaoWX]

Books versus paths [RS2]
Books versus stars [CRSPS, RS2]
Books versus trees [EFRS7]
Books versus Kn [LiR1, Sud2]
Books versus wheels [Zhou3]
Books versus K 2 + Cn [Zhou3]
Books and (K 1 + tree ) versus Kn [LiR1]
Generalized books K 3 + qK 1 versus cycles [Shi5]
Generalized books Kr + qK 1 versus Kn [NiRo1, NiRo4]

5.10. Trees and forests versus other graphs

In this subsection Tn and Fn denote n -vertex tree and forest, respectively.

R (Tn , Km ) = (n − 1)(m − 1) + 1 [Chv]

R (Tn , C 2m +1 ) = 2n − 1 for all n > 1512m + 756 [BEFRS2]

R (Tn , Bm ) = 2n − 1 for all n ≥ 3m − 3 [EFRS7]

R (Fnk , Km ) = (n − 1)(m − 2) + nk for all forests Fnk consisting of k trees with
n vertices each, also exact formula for all other cases of forests versus Km [Stahl]

Exact results for almost all small (n (G ) ≤ 5) connected graphs G versus all trees [FRS4]

Trees versus stars [Bu1, Cheng, Coc, GuoV, ZZ1]
Trees versus paths [FS4, FSS1]
Trees versus C 4 [EFRS4, Bu7, BEFRSS5, Chen]
Trees versus cycles [FSS1, EFRS6]
Trees versus books [EFRS7]
Trees versus W 5 and W 6 [BaSNM]
Trees versus W 7 and W 8 [ChenZZ4, ChenZZ5]

Trees Tn with ∆(Tn ) ≥ n − 3, other special trees T ,
and for n ≤ 8 versus W 7 [ChenZZ3, ChenZZ5, ChenZZ6]
Trees Tn with ∆(Tn ) ≥ n − 4 versus W 9 [ZhaCZ2]

Star-like trees versus odd wheels [SuBB1, ChenZZ3]
Trees versus Kn + Km [RS2, FSR]
Trees versus bipartite graphs [BEFRS4, EFRS6]
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Trees versus almost complete graphs [GoJa2]
Trees versus multipartite complete graphs [EFRS8, BEFRSGJ]

Linear forests versus 3K 3 and 2K 4 [SuBAU2]
Linear forests versus 2Km [SuAAM]
Linear forests versus wheels [SuBa2]
Forests versus almost complete graphs [ChGP]
Forests versus complete graphs [BE1, Stahl, BaHA]

Study of graphs G for which all or almost all trees are G -good [BF, BEFRSGJ],
see also section 5.15 and 5.16, item [Bu2], for the definition and more pointers.

See also various parts of this survey for special trees, and section 5.4.

5.11. Cases for n (G ), n (H ) ≤ 5

Clancy [Clan], in 1977, presented a table of R (G , H ) for all isolate-free graphs G with
n (G ) = 5 and H with n (H ) ≤ 4, except 5 entries. All five of the open entries have been
solved as follows:

R (B 3, K 4 ) = 14 [He3]
R (K 5, K 4 − e ) = 16 [BoH]
R (W 5, K 4 ) = 17 [He2]
R (K 5 − e , K 4 ) = 19 [EHM1]
R (K 5, K 4 ) = R (4, 5) = 25 [MR4]

An interesting case in [Clan] is

R (K 4, K 5 − P 3) = R (K 4, K 4 + e ) = R (4, 4) = 18.

Hendry [He2], in 1989, presented a table of R (G , H ) for all graphs G and H on 5
vertices without isolates, except 7 entries. Five of the open entries have been solved:

R (K 5, K 4 + e ) = R (4, 5) = 25 [Ka1][MR4]
R (K 5, K 5 − P 3 ) = 25 [Ka1][Boza2, CalSR]
R (K 5, B 3 ) = 20 [He2][BaRT]
R (K 5, W 5 ) = 27 [He2][RST]
R (W 5, K 5 − e ) = 17 [He2][YH]

The still open cases for K 5 versus K 5 − e and K 5 are:

30 ≤ R (K 5, K 5 − e ) ≤ 34 [Ex6][Ex8]
43 ≤ R (K 5, K 5 ) ≤ 49 [Ex4][MR5]

All critical colorings for the case R (C 5 + e , K 5 ) = 17 were found by Hendry [He5].
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5.12. Mixed cases

12 ≤ R (Q 3 , Q 3 ), where Q 3 is the 8-vertex 3-dimensional cube graph,
19 ≤ R (P , P ), where P is the 10-vertex Petersen graph,
30 ≤ R (K 2,2,2 , K 2,2,2 ), where K 2,2,2 is the octahedron [HaKr2].

Unicyclic graphs [Gros1, Köh, KrRod]
K 2,m and C 2m versus Kn [CaLRZ]
K 2,n versus any graph [RoJa2]
Union of two stars [Gros2]
Double stars* [GHK, BahS]
Brooms+ [EFRS3]
Graphs with bridge versus Kn [Li1]
Multipartite complete graphs [BFRS, FRS3, Stev]
Multipartite complete graphs versus trees [EFRS8, BEFRSGJ]
Multipartite complete graphs versus sparse graphs [EFRS4]
Graphs with long tails [Bu2, BG]

5.13. Multiple copies of graphs, disconnected graphs

(a) 2K 2 versus all isolate-free graphs [CH2]

(b) nK 2 versus mK 2, in particular R (nK 2, nK 2 ) = 3n − 1 for n ≥ 1 [CocL1, CocL2, Lor]

(c) nK 3 versus mK 3, in particular R (nK 3, nK 3 ) = 5n for n ≥ 2 [BES], see also section 4.1

(d) nK 3 versus mK 4 [LorMu]

(e) nK 1,m versus W 5 [BaHA]

(f) R (nK 4, nK 4 ) = 7n + 4 for large n [Bu8]

(g) Stripes mP 2 [CocL1, CocL2, Lor]

(h) R (G , H ) for all disconnected isolate-free graphs H on at most 6 vertices versus all G on
at most 5 vertices, except 3 cases [LoM5]. Missing cases were completed in [KroMe].

(i) R (F , G ∪ H ) ≤ max{ R (F , G ) + n (H ), R (F , G ) } [Par6]

(j) R (mG , nH ) ≤ (m − 1)n (G ) + (n − 1)n (H ) + R (G , H ) [BES],
Formulas for R (nK 3, mG ) for all isolate-free graphs G on 4 vertices [Zeng],
Variety of results for numbers R (nG , mH ) [Bu1, BES, HaBA2, SuBAU1].

(k) Disjoint unions of paths (linear forests) [BuRo2, FS2]
Linear forests versus 3K 3 ∪ 2K 4 [SuBAU2]

(l) Forests versus Kn [Stahl, BaHA] and Wn [BaHA]. Generalizations to forests versus
other graphs G in terms of χ(G ) and the chromatic surplus of G [Biel4], and for linear
forests versus 2Kn [SuAM].

* double star is a union of two stars with their centers joined by an edge

+ broom is a star with a path attached to its center
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(m) Disconnected graphs versus other graphs [BE1, GoJa1]

(n) See section 4.1 for cases involving unions of cycles

(o) See also [Bu9, BE1, LorMu, MiSa, Den2, Biel1, Biel2]

5.14. General results for special graphs

(a) R (Km
p , Kn

q) = R (Km , Kn ) for m , n ≥ 3, m + n ≥ 8, p ≤ m /(n − 1) and q ≤ n /(m − 1),
where Ks

t is a Ks with additional vertex connected to it by t edges [BEFS]. Some appli-
cations can be found in [BlLR].

(b) R (K 2,k , G ) ≤ kq + 1, for k ≥ 2, for isolate-free graphs G with q ≥ 2 edges [RoJa2].

(c) R (W 6, W 6 ) = 17 and χ(W 6 ) = 4 [FM]. This gives a counterexample G = W 6 to the
Erdős conjecture (see [GRS]) R (G ,G ) ≥ R (K χ(G ), K χ(G ) ), since R (4,4) = 18.

(d) R (G + K 1, H ) ≤ R (K 1, R (G , H ), H ) [BE1].

(e) R (K 2 + G , K 2 + G ) ≤ 4R (G , K 2 + G ) − 2 [LiShen].

(f) Study of R (G + K 1, nH + K 1) [LinLD].

(g) R (Kp + 1, Bq
r ) = p (q + r − 1) + 1 for generalized books Bq

r = Kr + qK 1, for sufficiently
large q [NiRo1].

(h) Study of the cases R (Km , Kn − K 1,s ) and R (Km − e , Kn − K 1,s ), with several exact values
for special parameters [ChaMR].

(i) Study of R (T + K 1, Kn ) for trees T [LiR1]. Asymptotic upper bounds for
R (T + K 2, Kn ) [Song7], see also [SonGQ].

(j) Bounds on R (H + Kn , Kn ) for general H [LiR3]. Also, for fixed k and m , as n → ∞,
R (Kk + Km , Kn ) ≤ (m + o (1)) n k / (log n )k −1 [LiRZ1].

(k) Asymptotics of R (H + Kn , Kn ). In particular, the order of magnitude of R (Km , n , Kn ) is
n m +1/ (log n )m [LiTZ]. Upper asymptotics for R (Ks + Km , n , Kk ) [Song9].

(l) Study of the largest k such that if the star K 1,k is removed from Kr , r = R (G , H ), any
edge 2-coloring of the remaining part still contains monochromatic G or H , as for Kr ,
for various special G and H [HoIs].

(m) Let G ′′ be a graph obtained from G by deleting two vertices with adjacent edges. Then
R (G , H ) ≤ A + B + 2 + 2 √( A 2 + AB + B 2 ) / 3 , where A = R (G ′′ , H ) and B = R (G , H ′′ )
[LiRZ2].

5.15. General results for sparse graphs

(a) R (Kn , Tm ) = (n −1)(m −1) + 1 for any tree Tm on m vertices [Chv].

(b) Graphs yielding R (Kn , G ) = (n −1)(n (G ) − 1) + 1, called Ramsey n -good [BE3], and
related results [EFRS5]. An extensive survey and further study of n -goodness appeared
in [NiRo4].
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(c) R (C 2m +1, G ) = 2n − 1 for sufficiently large sparse graphs G on n vertices, little more
complicated formulas for P 2m +1 instead of C 2m +1 [BEFRS2].

(d) R (G ,G ) ≤ cd n (G ) for all G , where constant cd depends only on the maximum degree
d in G [CRST]. The constant was improved in [GRR1, FoxSu1]. Tight lower and
upper bounds for bipartite G [GRR2, Con2]. Further improvements of the constant cd

in general were obtained in [ConFS4], and for graphs with bounded bandwidth in
[AllBS].

(e) Study of L -sets, which are sets of pairs of graphs whose Ramsey numbers are linear in
the number of vertices. Conjecture that Ramsey numbers grow linearly for d -degenerate
graphs (graph is d -degenerate if all its subgraphs have minimum degree at most d )
[BE1]. Progress towards this conjecture was obtained by several authors, including
[KoRö1, KoRö2, KoSu, FoxSu1, FoxSu2].

(f) R (G ,G ) ≤ cd n for all d -arrangeable graphs G on n vertices, in particular with the same
constant for all planar graphs [ChenS]. The constant cd was improved in [Eaton]. An
extension to graphs not containing a subdivision of Kd [RöTh].

(g) Conjecture that R (G ,G ) ≤ 12n (G ) for all planar G , for sufficiently large n [AllBS].

(h) Ramsey numbers grow linearly for degenerate graphs versus some sparser graphs,
arrangeable graphs, crowns, graphs with bounded maximum degree, planar graphs, and
graphs without any topological minor of a fixed clique [Shi3].

(i) Discussion of various old and new classes of Ramsey linear graphs [NeOs].

(j) Study of graphs G , called Ramsey size linear, for which there exists a constant cG such
that for all H with no isolates R (G , H ) ≤ cG e (H ) [EFRS9]. An overview and further
results were given in [BaSS].

(k) R (G , G ) < 6n for all n -vertex graphs G , in which no two vertices of degree at least 3
are adjacent [LiRS]. This improves the result R (G , G ) ≤ 12n in [Alon1]. In an early
paper by Burr and Erdős [BE1] it was proved that if any two points of degree at least 3
are at distance at least 3 then R (G , G ) ≤ 18n .

(l) R (Ga ,b , Ga ,b ) = (3/ 2 + o (1))ab , where Ga ,b is the rectangular a × b grid graph. Other
similar results follow for bipartite planar graphs with bounded degree and grids of higher
dimension [MoSST].

(m) R (Qn , Qn ) ≤ 2(3 + √5)n / 2 + o (n ), for the n -dimensional hypercube Qn with 2n vertices
[Shi1]. This bound can also be derived from a theorem in [KoRö1]. An improvement
was obtained in [Shi4], and a further one to R (Qn , Qn ) ≤ 22n + 5n in [FoxSu1]. A lower
bound construction for 12 ≤ R (Q 3, Q 3) was presented in [HaKr2].

(n) R (Km , Qn ) = (m − 1)(2n − 1) + 1 for every fixed m and sufficiently large n [FizGMSS].

(o) Conjecture that R (G ,G ) = 2n (G ) − 1 if G is unicyclic of odd girth [Gros1]. Further
support for the conjecture was given in [Köh, KrRod].

(p) See also earlier subsections 5.* for various specific sparse graphs.
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5.16. General results

[CH2] R (G , H ) ≥ ( χ(G ) − 1)(c (H ) − 1) + 1, where χ(G ) is the chromatic number of G , and
c (H ) is the size of the largest connected component of H .

[CH3] R (G , G ) > (s 2 e (G ) − 1) ) 1 / n (G ) , where s is the number of automorphisms of G .
Hence R (Kn ,n , Kn ,n ) > 2 n , see also item 6.7.i.

[BE2] R (G , G ) ≥  (4n (G ) − 1) / 3 for any connected G , and R (G , G ) ≥ 2n − 1 for any
connected nonbipartite G . These bounds can be achieved for all n ≥ 4.

[Bu2] Graphs H yielding R (G , H ) = (χ(G ) − 1)(n (H ) − 1) + s (G ), where s (G ) is a
chromatic surplus of G , defined as the minimum number of vertices in some color
class under all vertex colorings in χ(G ) colors (such H ’s are called G -good). This
idea, initiated in [Bu2], is a basis of a number of exact results for R (G , H ) for large
and sparse graphs H [BG, BEFRS2, BEFRS3, Bu5, FS, EFRS4, FRS3, BEFSRGJ,
BF, LiR4, Biel2, SuBAU3, Song6, AllBS]. Surveys of this area appeared in [FRS5,
NiRo4].

[BaLS] Graph G is Ramsey saturated if R (G + e , G + e ) > R (G , G ) for every edge e in G .
This paper contains several theorems involving cycles, cycles with chords and trees
on Ramsey saturated and unsaturated graphs, and also seven conjectures including
one stating that almost all graphs are Ramsey unsaturated. Some classes of graphs
were proved to be Ramsey unsaturated [Ho]. Special cases involving cycles and
Jahangir graphs were studied in [AliSur].

[Für] Relations between R (3, k ) and graphs with large χ(G ). Further detailed study of the
relation between R (3, k ) and the chromatic gap [GySeT].

[Bra3] R (G , H ) > h (G , d ) n (H ) for all nonbipartite G and almost every d -regular H , for
some h unbounded in d .

[DoLL1] Lower asymptotics of R (G , H ) depending on the average degree of G and the size
of H . This continues the study initiated in [EFRS5], later much enhanced for both
lower and upper bounds in [Sud3].

[LiZa1] Lower bound asymptotics of R (G , H ) for large dense H .

[Erd4] A conjecture posed by Erdős in 1983 that there exists a constant c such that
R (G , G ) ≤ 2 c √ e (G ) for all isolate-free graphs G . Discussion of this conjecture and
partial results, proof for bipartite graphs and progress in other cases are included in
[AlKS]. In 2011, Sudakov [Sud4] completed the proof of this conjecture. An exten-
sion of the latter to some off-diagonal cases is presented in [MaOm], and an
improvement of the constant for bipartite graphs is given in [JoPe]. For the mul-
ticolor case see item 6.7.i.

[Kriv] Lower bound on R (G , Kn ) depending on the density of subgraphs of G . This con-
struction for G = Km produces a bound similar to the best known probabilistic lower
bound by Spencer [Spe2]. Further lower and upper bounds on R (G , Kn ) in terms of
n and e (G ) can be found in [Sud3].
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[Con3] Upper bounds on R (G , Kn ) for dense graphs G .

[BE1] Relations between the cases of G or G + K 1 versus H or H + K 1.

[HaKr1] Study of cyclic graphs yielding lower bounds for Ramsey numbers. Exact formulas
for paths and cycles, and values for small complete graphs and for graphs with up to
five vertices.

[Par3] Relations between some Ramsey graphs and block designs. See also [Par4].

[Li2] Relations between the Shannon capacity of noisy communication channels and graph
Ramsey numbers. See also section 6 in [Ros2], and [XuR3].

[Bu6] Given integer m and graphs G and H , determining whether R (G , H ) ≤ m holds is
NP − hard. Further complexity results related to Ramsey theory were presented in
[Bu10].

[Scha] Ramsey arrowing is Π 2
p − complete, a rare natural example of a problem higher than

NP in the polynomial hierarchy of computational complexity theory.

[-] Special cases of multicolor results listed in section 6.

[-] See also surveys listed in section 8.
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6. Multicolor Ramsey Numbers

The only known value of a multicolor classical Ramsey number:

R 3(3) = R (3,3,3) = R (3,3,3 ; 2) = 17 [GG]

2 critical colorings (on 16 vertices) [KaSt, LayMa]
2 colorings on 15 vertices [Hein]
115 colorings on 14 vertices [PR1]

6.1. Bounds for classical numbers

General upper bound, implicit in [GG]:

R (k 1, ... , kr ) ≤ 2 − r +
i = 1
Σ
r

R (k 1, ... , ki − 1, ki − 1, ki + 1, ... , kr ) (a)

Inequality in (a) is strict if the right hand side is even and at least one of the terms in the
summation is even. It is suspected that this upper bound is never tight for r ≥ 3 and ki ≥ 3,
except for r = k 1 = k 2 = k 3 = 3. However, only two cases are known to improve over (a),
namely R 4(3) ≤ 62 [FKR] and R (3,3,4) ≤ 31 [PR1, PR2], for which (a) produces the bounds
of 66 and 34, respectively.

Diagonal Cases

m 3 4 5 6 7 8 9

r

17 128 417 1070 3214 6079 13761
3

GG HiIr Ex16 Mat XuR1 XSR2 XXER

51 634 3049 15202 62017
4

Chu1 XXER Xu XXER XXER

162 3416 26912
5

Ex10 XXER Xu

538
6

FreSw

1682
7

FreSw

Table X. Known nontrivial lower bounds for diagonal multicolor
Ramsey numbers Rr (m ), with references.

The best published bounds corresponding to the entries in Table X marked as personal com-
munications [Ex16] and [Xu] are 415 ≤ R 3(5), 2721 ≤ R 4(5) and 26082 ≤ R 5(5) [XXER].
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The most studied and intriguing open case is

[Chu1] 51 ≤ R 4(3) = R (3,3,3,3) ≤ 62 [FKR]

The construction for 51 ≤ R 4(3) as described in [Chu1] is correct, but be warned of a typo
found by Christopher Frederick in 2003 (there is a triangle (31,7,28) in color 1 in the
displayed matrix). The inequality 6.1.a implies R 4(3) ≤ 66, Folkman [Fol] in 1974 improved
this bound to 65, and Sánchez-Flores [San] in 1995 proved R 4(3) ≤ 64.

The upper bounds in 162 ≤ R 5(3) ≤ 307, 538 ≤ R 6(3) ≤ 1838, 1682 ≤ R 7(3) ≤ 12861,
128 ≤ R 3(4) ≤ 236 and 634 ≤ R 4(4) ≤ 6474 are implied by 6.1.a (we repeat lower bounds
from Table X just to see easily the ranges). All the latter and other upper bounds obtainable
from known smaller bounds and 6.1.a can be computed with the help of a LISP program writ-
ten by Kerber and Rowat [KerRo].

Off-Diagonal Cases

Three colors:

m 4 5 6 7 8 9 10 11 12 13 14

k

30 45 60 85 103 129 147 162 185 212 233
3

Ka2 Ex2 Rob3 Ex18 Ex18 Ex18 Ex18 Ex18 6.2.f LSS2 6.2.f

55 89 117 145 193 229
4

KLR Ex17 Ex17 Ex17 6.2.f 6.2.f

89 139 181 237
5

Ex17 Ex17 Ex17 6.2.f

Table XI. Known nontrivial lower bounds for 3-color
Ramsey numbers of the form R (3, k , m ), with references.

In addition, the bounds 303 ≤ R (3,6,6), 609 ≤ R (3,7,7) and 1689 ≤ R (3,9,9) were derived in
[XXER] (used there for building other lower bounds for some diagonal cases).

The other most studied, and perhaps the only open case of a classical multicolor Ramsey
number, for which we can anticipate exact evaluation in the not-too-distance future is

[Ka2] 30 ≤ R (3,3,4) ≤ 31 [PR1, PR2]

In [PR1] it is conjectured that R (3,3,4) = 30, and the results in [PR2] eliminate some
cases which could give R (3,3,4) = 31. The upper bounds in 45 ≤ R (3,3,5) ≤ 57,
55 ≤ R (3,4,4) ≤ 79, and 89 ≤ R (3,4,5) ≤ 160 are implied by 6.1.a. We repeat lower bounds
from Table XI to show explicitly the current ranges.
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Four colors:

97 ≤ R (3,3,3,4) ≤ 153 [Ex17], 6.1.a
171 ≤ R (3,3,4,4) ≤ 462 [Ex15, XXER], 6.1.a
381 ≤ R (3,4,4,4) ≤ 1619 6.2.j, 6.1.a

162 ≤ R (3,3,3,5) [XXER]
565 ≤ R (3,3,3,11) 6.2.f
681 ≤ R (3,4,5,5) [XXER]

Lower bounds for higher numbers can be obtained by using general constructive results
from section 6.2 below. For example, the bounds 261 ≤ R (3,3,15) and 247 ≤ R (3,3,3,7) were
not published explicitly but are implied by 6.2.f and 6.2.g, respectively.

6.2. General results for complete graphs

(a) R (k 1, ... , kr ) ≤ 2 − r +
i = 1
Σ
r

R (k 1, ... , ki − 1, ki − 1, ki + 1, ... , kr ) [GG].

(b) Rr (3) ≥ 3Rr − 1(3) + Rr − 3(3) − 3 [Chu1].

(c) Rr (m ) ≥ cm (2m − 3)r , and some slight improvements of this bound for small values of
m were described in [AbbH, Gi1, Gi2, Song2]. For m = 3, the best known lower bound
is Rr (3) ≥ (3.199...) r [XXER].

(d) Rr (3) ≤ r !(e − e − 1 + 3 ) / 2 ∼∼ 2.67r ! [Wan], which improves the classical 3r ! [GRS].

(e) The limit L =
r → ∞
lim Rr (3)1/r exists, though it can be infinite [ChGri].

It is known that 3.199 < L , as implied by (c) above. For more related results, mostly on
the asymptotics of Rr (3) , see [AbbH, Fre, Chu2, GRS, GrRö].

(f) R (3, k , l ) ≥ 4R (k , l − 1) − 3 for k ≥ 3, l ≥ 5, and in general for r ≥ 2 and ki ≥ 2 it holds

R (3, k 1, ... , kr ) ≥ 4R (k 1 − 1, k 2, ... , kr ) − 3 for k 1 ≥ 5, and

R (k 1, 2k 2 − 1, k 3, ... , kr ) ≥ 4R (k 1 − 1, k 2, ... , kr ) − 3 for k 1 ≥ 5 [XX2, XXER].

(g) R (3, 3, 3, k 1, ... , kr ) ≥ 3R (3, 3, k 1, ... , kr ) + R (k 1, ... , kr ) − 3 [Rob2].

(h) For r + 1 colors, avoiding K 3 in the first r colors and avoiding Km in the last color,
R (3, ... , 3, m ) ≤ r ! m r + 1 [Sár].

(i) R (k 1, ... , kr ) ≥ S (k 1, ... , kr ) + 2, where S (k 1, ... , kr ) is the generalized Schur number
[AbbH, Gi1, Gi2]. In particular, the special case k 1 = ... = kr = 3 has been widely studied
[Fre, FreSw, Ex10, Rob3].

(j) R (k 1, ... , kr ) ≥ L (k 1, ... , kr ) + 1, where L (k 1, ... , kr ) is the maximal order of any cyclic
(k 1, ... , kr )−coloring, which can be considered a special case of Schur partitions defining
(symmetric) Schur numbers. Many lower bounds for Ramsey numbers were established
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by cyclic colorings. The following recurrence can be used to derive lower bounds for
higher parameters. For ki ≥ 3 [Gi2],

L (k 1, ... , kr , kr + 1 ) ≥ (2kr + 1 − 3)L (k 1, ... , kr ) − kr + 1 + 2.

(k) Rr (m ) ≥ p + 1 and Rr (m + 1) ≥ r ( p + 1) + 1 if there exists a Km −free cyclotomic r − class
association scheme of order p [Mat].

(l) If the quadratic residues Paley graph Qp of prime order p = 4t + 1 contains no Kk , then
R (s , k + 1, k + 1) ≥ 4ps − 6p + 3 [XXER].

(m) Rr ( pq + 1) > (Rr ( p + 1) − 1)(Rr (q + 1) − 1) [Abb1]

(n) Rr ( pq + 1) > Rr ( p + 1)(Rr (q + 1) − 1) for p ≥ q [XXER]

(o) R ( p 1q 1+ 1, ... , pr qr + 1) > (R ( p 1+ 1, ... , pr + 1) − 1)(R (q 1+ 1, ... , qr + 1) − 1) [Song3]

(p) Rr + s (m ) > (Rr (m ) − 1)(Rs (m ) − 1) [Song2]

(q) R (k 1, k 2, ... , kr ) > (R (k 1, ... , ki ) − 1)(R (ki +1, ... , kr ) − 1) in [Song1], see [XXER].

(r) R (k 1, k 2, ... , kr ) > (k 1 + 1)(R (k 2 − k 1 + 1, k 3, ... , kr ) − 1) [Rob4]

(s) Further lower bound constructions, though with more complicated assumptions, were
presented in [XX2, XXER].

(t) Grolmusz [Grol1] generalized the classical constructive lower bound by Frankl and Wil-
son [FraWi] (item 2.3.6) to more colors and to hypergraphs [Grol3] (item 7.4.k).

(u) Exact asymptotics of a very special but important case is known, namely
R (3, 3, n ) = Θ(n 3 poly−log n ) [AlRö]. For general upper bounds and more asymptotics
see in particular [Chu4, ChGra2, ChGri, GRS, GrRö].

All lower bounds in (b) through (t) above are constructive. Item (g) generalizes (b), (o)
generalizes both (m) and (q), and (q) generalizes (p). (n) is stronger than (m). Finally, we
note that the construction in (o) with q 1 = ... = qi = 1 = pi +1 = ... = pr is the same as (q).

6.3. Cycles

Note: The paper Ramsey Numbers Involving Cycles [Ra4] is based on the revision #12 of this
survey. It collects and comments on the results involving cycles versus any graphs, in two or
more colors. It contains some more details than this survey, but only until 2009.

6.3.1. Three colors

(a) One long cycle.

The first larger paper in this area by Erdős, Faudree, Rousseau and Schelp [EFRS1]
appeared in 1976. It gives several formulas and bounds for R (Cm , Cn , Ck ) and
R (Cm , Cn , Ck , Cl ) for large m . For three colors [EFRS1] includes:

R (Cm , C 2p +1, C 2q +1) = 4m − 3 for p ≥ 2, q ≥ 1,

R (Cm , C 2p , C 2q +1) = 2(m + p ) − 3 and

R (Cm , C 2p , C 2q ) = m + p + q − 2 for p , q ≥ 1 and large m .
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m n k R (Cm , Cn , Ck ) references general results

3 3 3 17 GG page 36
3 3 4 17 ExRe
3 3 5 21 Sun1+/Tse3 5k −4 for k ≥ 5, m =n =3 [Sun1+]
3 3 6 26 Sun1+
3 3 7 31 Sun1+

3 4 4 12 Schu
3 4 5 13 Sun1+/Rao/Tse3
3 4 6 13 Sun1+/Tse3
3 4 7 15 Sun1+/Tse3

3 5 5 ≥ 17 Tse3
3 5 6 21 Sun1+
3 5 7 25 Sun1+

3 6 6
3 6 7 21 Sun1+
3 7 7

4 4 4 11 BiaS
4 4 5 12 Sun2+/Tse3
4 4 6 12 Sun2+/Tse3 k +2 for k ≥ 11, m =n =4 [Sun2+]
4 4 7 12 Sun2+/Tse3 values for k =8, 9, 10 are 12, 13, 13 [Sun2+]

4 5 5 13 Tse3
4 5 6 13 Sun1+
4 5 7 15 Sun1+

4 6 6 11 Tse3
4 6 7 13 Sun1+/Tse3
4 7 7

5 5 5 17 YR1
5 5 6 21 Sun1+
5 5 7 25 Sun1+
5 6 6
5 6 7 21 Sun1+
5 7 7

6 6 6 12 YR2 R 3 (C 2q ) ≥ 4q for q ≥ 2 [DzNS]
6 6 7 15 Sun1+ see 6.3.1.a for larger parameters
6 7 7 see 6.3.1.a for larger parameters
7 7 7 25 FSS2 R 3 (C 2q +1 ) = 8q +1 for large q [KoSS1, KoSS2]

8 8 8 16 Sun/SunY R 3 (C 2q ) = 4q for large q [BenSk]

Table XII. Ramsey numbers R (Cm , Cn , Ck ) for m , n , k ≤ 7 and m = n = k = 8;
Sun1+ abbreviates SunYWLX, Sun2+ abbreviates SunYLZ2,

the work in [SunYWLX] and [SunYLZ2] is independent from [Tse3].

(b) Triple even cycles.

R 3 (C 2m ) ≥ 4m for all m ≥ 2 [DzNS], see also 6.3.2.d/e/f. It was proven that
R (Cn , Cn , Cn ) = (2 + o (1)) n for even n [FiŁu1, GyRSS], which was improved to
exactly 2n , for large n , by Benevides and Skokan [BenSk]. In 2005, Dzido [Dzi1] con-
jectured that R 3(C 2m ) = 4m for all m ≥ 3. The first open case is for R 3(C 10), known to
be at least 20. A more general result holds for slightly off-diagonal cases [FiŁu1]:
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R (C 2  α1n  , C 2  α2n  , C 2  α3n  ) =
( α1 + α2 + α3 + max{α1, α2, α3} + o (1)) n , for all α1, α2, α3 > 0.

The conjectured equality R 3(C 2m ) = 4m , whenever true, implies R 3(P 2m +1) = 4m + 1
[DyDR] (see also section 6.4).

(c) Triple odd cycles.

Bondy and Erdős conjectured that R (Cn , Cn , Cn ) ≤ 4n − 3 for all n ≥ 4 (see for example
[Erd2]). If true, then for all odd n ≥ 5 we have R (Cn , Cn , Cn ) = 4n − 3. The first open
case is for R 3(C 9), known to be at least 33. Erdős [Erd3] and other authors credit this
conjecture to Bondy and Erdős, often pointing to a 1973 paper [BoEr]. Interestingly,
however, the conjecture is not mentioned in this paper.

Łuczak proved that R (Cn , Cn , Cn ) ≤ (4 + o (1)) n , with equality for odd n [Łuc]. The
result R 3(C 2m +1 ) = 8m + 1 for all sufficiently large m , or equivalently
R (Cn , Cn , Cn ) = 4n − 3 for large odd n , was announced with an outline of the proof by
Kohayakawa, Simonovits and Skokan [KoSS1], followed by the full proof in [KoSS2].

(d) R (C 3, C 3, Ck ) = 5k − 4 for k ≥ 5 [SunYWLX], and R (C 4, C 4, Ck ) = k + 2 for k ≥ 11
[SunYLZ2]. All exceptions to these formulas for small k are listed in Table XII.

(e) Asymptotics for triples of cycles of mixed parity similar in form to (b) [FiŁu2].

(f) Almost all of the off-diagonal cases in Table XII required the use of computers.

6.3.2. More colors

m 3 4 5 6 7 8

k

3 17 11 17 12 25 16

51 33 18 49 20
4

62
18

158 20

162 27 65 97 28
5

307 29
26

538 32 129 193
6

1838 43

Table XIII. Known values and bounds for Rk (Cm ) for small k , m ;

(a) For the entries in the row k = 3 and in the column m = 3 in Table XIII, more details
and all corresponding references are in sections 6.3.1 and 6.1, respectively. The lower
bounds for m = 5, 7 are implied by 6.3.2.k, Rk (Cm ) ≤ 158 follows from 6.3.2.j, and
references to other cases with k , m ≥ 4 can be found below in this section.
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R 4(C 4 ) = 18 [Ex2] [SunYLZ1]
18 ≤ R 4(C 6 ) ≤ 20 [SunYJLS][ZhaSW]
27 ≤ R 5(C 4 ) ≤ 29 [LaWo1]

R 5(C 6 ) = 26 [SunYJLS] [SunYW]

24 ≤ R (C 3, C 4, C 4, C 4 ) ≤ 27 [DyDz1] [XuR2]
30 ≤ R (C 3, C 3, C 4, C 4 ) ≤ 36 [DyDz1] [XuR2]
49 ≤ R (C 3, C 3, C 3, C 4 ) 6.7.e

18 ≤ R (C 4, C 6, C 6, C 6 ) ≤ 20 [ZhaSW]
18 ≤ R (C 4, C 4, C 6, C 6 ) ≤ 20 [ZhaSW]

R (C 4, C 4, C 4, C 6 ) = 19 [ZhaSW]

(b) Rk (C 4 ) ≤ k 2 + k + 1 for all k ≥ 1, Rk (C 4 ) ≥ k 2 − k + 2 for all k − 1 which is a prime
power [Ir, Chu2, ChGra1], and Rk (C 4 ) ≥ k 2 + 2 for odd prime power k [LaWo1]. The
latter was extended to any prime power k in [Ling, LaMu].

(c) Formulas for R (Cm , Cn , Ck , Cl ) for large m [EFRS1].

Bounds in (d) through (i) below cover different situations and each is best in some respect.

(d) Rk (C 2m ) ≥ (k + 1)m for odd k and m ≥ 2, and
Rk (C 2m ) ≥ (k + 1)m − 1 for even k and m ≥ 2 [DzNS].

(e) Rk (C 2m ) ≥ 2(k − 1)(m − 1) + 2 [SunYXL].

(f) Rk (C 2m ) ≥ k 2 + 2m − k for 2m ≥ k + 1 and prime power k [SunYJLS].

(g) Rk (C 2m ) = Θ(k m /(m − 1)) for fixed m = 2, 3 and 5 [LiLih].

(h) Rk (C 2m ) ≤ 201km for k ≤ 10 m / 201m [EG].

(i) Rk (C 2m ) ≤ 2km + o (m ) for all fixed k ≥ 2 [ŁucSS].

(j) Rk (C 5 ) < √18k k ! /10 [Li4].

(k) 2k m < Rk (C 2m +1 ) ≤ (k + 2)!(2m + 1) [BoEr].

Better upper bound Rk (C 2m +1 ) < 2(k + 2)!m was obtained in [EG].

Much better upper bound Rk (C 2m +1 ) ≤ (c k k !)1/m , for some positive constant c ,
if all Ramsey-critical colorings for C 2m +1 are not far from regular, was obtained in [Li4].

(l) Conjecture that Rk (C 2m +1 ) = 2k m + 1 for all m ≥ 2 was credited by several authors to
Bondy and Erdős [BoEr], though only lower bound, not the conjecture, is in this paper.

(m) R (Cn , Cl 1
, ... , Clk

) = 2k (n − 1) + 1 for all li ’s odd with li > 2i , and sufficiently large n ,

and support for the conjecture that Rk (Cn ) = 2k −1(n − 1) + 1 for large odd n [AllBS].

(n) Rk (C 2m +1 ) ≤ k 2k (2m + 1) + o (m ) for all fixed k ≥ 4 [ŁucSS].

(o) Asymptotic bounds for Rk (Cn ) [Bu1, GRS, ChGra2, Li4, LiLih, ŁucSS].

(p) Survey of multicolor cycle cases [Li3].
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6.3.3. Cycles versus other graphs

(a) Some cases involving C 4:

20 ≤ R (C 4, C 4, K 4 ) ≤ 22 [DyDz1] [XSR1]
27 ≤ R (C 3, C 4, K 4 ) ≤ 32 [DyDz1] [XSR1]
52 ≤ R (C 4, K 4, K 4 ) ≤ 72 [XSR1]
34 ≤ R (C 4, C 4, C 4, K 4 ) ≤ 50 [DyDz1] [XSR1]
43 ≤ R (C 3, C 4, C 4, K 4 ) ≤ 76 [DyDz1] [XSR1]
87 ≤ R (C 4, C 4, K 4, K 4 ) ≤ 179 [XSR1]

R (K 1,3, C 4, K 4 ) = 16 [KlaM2]
R (C 4, C 4, K 4 − e ) = 16 [DyDz1]
R (C 4, C 4, C 4, T ) = 16 for T = P 4 and T = K 1,3 [ExRe]

(b) Study of R (Cn , K t 1
, ... , K tk

) and R (Cn , K t 1, s 1
, ... , K tk , sk

) for large n [EFRS1].

(c) R (Cn , K t 1
, ... , K tk

) = (n − 1)(r − 1) for n ≥ 4r + 2, where r = R (K t 1
, ... , K tk

) [OmRa2].

(d) Study of asymptotics for R (Cm , ... , Cm , Kn ), in particular for any fixed number of colors
k ≥ 4 we have R (C 4, C 4, ... , C 4, Kn ) = Θ( n 2 / log2n ) [AlRö].

(e) Study of asymptotics for R (C 2m , C 2m , Kn ) for fixed m [AlRö, ShiuLL], in particular
R (C 4, C 4, Kn ) = Θ( n 2 poly−log n ) [AlRö].

(f) Monotone paths and cycles [Lef].

(g) For combinations of C 3 and Kn see sections 2.2, 3.2, 4.2, 6.1 and 6.2.

6.4. Paths, paths versus other graphs

In 2007, Gyárfás, Ruszinkó, Sárközy and Szemerédi [GyRSS] established that for all n large
enough we have

R (Pn , Pn , Pn ) = 2n − 2 + (n mod 2).

Faudree and Schelp [FS2] conjectured that the latter holds for all n ≥ 1. It is true for n ≤ 9
(see (c) below), and the first open case is that for P 10. The conjectured equality
R (C 2m , C 2m , C 2m ) = 4m (see 6.3.1.a), whenever true, implies the above for three paths
P 2m +1 [DyDR].

6.4.1. Three color path and path-cycle cases

(a) R (Pm , Pn , Pk ) = m +  n / 2  +  k / 2  − 2 for m ≥ 6( n + k ) 2 [FS2],

the equality holds asymptotically for m ≥ n ≥ k with an extra term o ( m ) [FiŁu1],
extensions of the range of m , n , k for which (a) holds were obtained in [Biel3].

(b) R (P 3, Pm , Pn ) = m +  n / 2  − 1 for m ≥ n and (m , n ) =/ (3, 3), (4, 3) [MaORS2].
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(c) R 3(P 3) = 5 [Ea1], R 3(P 4) = 6 [Ir],
R (Pm , Pn , Pk ) = 5 for other m −n −k combinations with 3 ≤ m , n , k ≤ 4 [ArKM],
R 3(P 5) = 9 [YR1], R 3(P 6) = 10 [YR1], and R 3(P 7) = 13 [YY],
R 3(P 8) = 14, R 3(P 9) = 17 [DyDR].

(d) R (P 4, P 4, P 2n ) = 2n + 2 for n ≥ 2,
R (P 5, P 5, P 5 ) = R (P 5, P 5, P 6 ) = 9,
R (P 5, P 5, Pn ) = n + 2 for n ≥ 7,
R (P 5, P 6, Pn ) = R (P 4, P 6, Pn ) = n + 3 for n ≥ 6 ,
R (P 6, P 6, P 2n ) = R (P 4, P 8, P 2n ) = 2n + 4 for n ≥ 14 [OmRa1].

(e) R (Pm , Pn , Ck ) = 2n + 2  m / 2  − 3 for large n and odd m ≥ 3 [DzFi2],
improvements on the range of m , n , k [Biel3, Fid1].

(f) R (P 3, P 3, Cm ) = 5, 6, 6, for m = 3, 4 [ArKM], 5,
R (P 3, P 3, Cm ) = m for m ≥ 6 [Dzi2].

R (P 3, P 4, Cm ) = 7 for m = 3, 4 [ArKM] and 5,
R (P 3, P 4, Cm ) = m + 1 for m ≥ 6 [Dzi2].

R (P 4, P 4, Cm ) = 9, 7, 9 for m = 3, 4 [ArKM] and 5 [Dzi2],
R (P 4, P 4, Cm ) = m + 2 for m ≥ 6 [DzKP].

(g) R (P 3, P 5, Cm ) = 9, 7, 9, 7, 9 for m = 3, 4, 5, 6, 7 [Dzi2, DzFi2],
R (P 3, P 5, Cm ) = m + 1 for m ≥ 8 [DzKP].

A table of R (P 3, Pk , Cm ) for all 3 ≤ k ≤ 8 and 3 ≤ m ≤ 9 [DzFi2].

(h) R (P 4, P 5, Cm ) = 11, 7, 11, 11, and m + 2 for m = 3, 4, 5, 7 and m ≥ 23 ,

R (P 4, P 6, Cm ) = 13, 8, 13, 13, and m + 3 for m = 3, 4, 5, 7 and m ≥ 18 [ShaXSP].

(i) R (P 3, Pn , C 4 ) = n + 1 for n ≥ 6 [DzFi2],
R (P 3, Pn , C 6 ) = n + 2 for n ≥ 6 ,
R (P 3, Pn , C 8 ) = n + 3 for n ≥ 7 [Fid1],
R (P 3, Pn , Ck ) = 2n − 1, and
R (P 4, Pn , Ck ) = 2n + 1 for odd k ≥ 3 and n ≥ k [DzFi2].

(j) R (P 3, P 6, Cm ) = m + 2 for m ≥ 23,
R (P 6, P 6, Cm ) = R (P 4, P 8, Cm ) = m + 4 for m ≥ 27,
R (P 6, P 7, Cm ) = m + 4 for m ≥ 57,

R (P 4, Pn , C 4 ) = R (P 5, Pn , C 4 ) = n + 2 for n ≥ 5 [OmRa1].

(k) R (P 3, C 3, C 3 ) = 11 [BE3], R (P 3, C 4, C 4 ) = 8 [ArKM], R (P 3, C 6, C 6 ) = 9 [Dzi2],

R (P 3, Cm , Cm ) = R (Cm , Cm ) = 2m − 1 for odd m ≥ 5 [DzKP] (for m = 5, 7 [Dzi2]),

(l) R (P 3, Cn , Cm ) = R (Cn , Cm ) for n ≥ 7 and odd m , 5 ≤ m ≤ n , and
some values and bounds on R (P 3, Cn , Cm ) in other cases [Fid1].

(m) R (P 3, C 3, C 4 ) = 8 [ArKM], R (P 3, C 3, C 5 ) = 9, R (P 3, C 3, C 6 ) = 11,
R (P 3, C 3, C 7 ) = 13, R (P 3, C 4, C 5 ) = 8, R (P 3, C 4, C 6 ) = 8,
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R (P 3, C 4, C 7 ) = 8, R (P 3, C 5, C 6 ) = 11, R (P 3, C 5, C 7 ) = 13 and
R (P 3, C 6, C 7 ) = 11 [Dzi2].

(n) Formulas for R ( pP 3, qP 3, rP 3 ) and R ( pP 4, qP 4, rP 4 ) [Scob].

(o) R (P 3, K 4 − e , K 4 − e ) = 11 [Ex7]. All colorings which can form any color neighbor-
hood for the open case R 3(K 4 − e ) (see section 6.5) were found in [Piw2].

6.4.2. More colors

(a) Rk (P 3 ) = k + 1 + ( k mod 2), Rk (2P 2 ) = k + 3 for all k ≥ 1 [Ir].

(b) Rk (P 4 ) = 2k + ck for all k and some 0 ≤ ck ≤ 2. If k is not divisible by 3 then
ck = 3 − k mod 3 [Ir]. Wallis [Wall] showed R 6(P 4 ) = 13, which already implied
R 3t (P 4 ) = 6t + 1, for all t ≥ 2. Independently, the case Rk (P 4 ) for k =/ 3m was com-
pleted by Lindström in [Lind], and later Bierbrauer proved R 3m (P 4 ) = 2(3m ) + 1 for all
m > 1. R 3(P 4) = 6 [Ir].

(c) Formula for R (Pn 1
, ... , Pnk

) for large n 1 [FS2], and some extensions [Biel3].

Conjectures about R (Pn 1
, ... , Pnk

) when all or all but one of ni ’s are even [OmRa1].

(d) Formulas for R (Pn 1
, ... , Pnk

, Cm ) for some cases, for large m [OmRa1].

(e) Formula for R (n 1P 2, ... , nk P 2 ), in particular R (nP 2, nP 2, nP 2 ) = 4n − 2 [CocL1].
Note how close the latter is to R (C 2n , C 2n , C 2n ) = 4n , see an earlier item 6.3.1b.

(f) Cockayne and Lorimer [CocL1] found the exact formula for R (n 1P 2, ... , nk P 2), and later
Lorimer [Lor] extended it to a more general case of R (Km , n 1P 2, ... , nk P 2). More gen-
eral cases of the latter, with multiple copies of the complete graph, paths, stars and
forests, were studied in [Stahl, LorSe, LorSo, GyRSS]. A special 3-color case
R (P 3, mP 2, nP 2 ) = 2m + n − 1 for m ≥ n ≥ 3 is given in [MaORS2].

(g) Multicolor cases for one large path or cycle involving small paths, cycles, complete and
complete bipartite graphs [EFRS1].

(h) See sections 6.5 and 8.2, especially [ArKM, BoDD], for a number of cases for triples of
small graphs.

6.5. Special cases

R 3(K 3 + e ) = R 3(K 3) [= 17] [YR3, ArKM], where K 3 + e = K 4 − P 3
R (K 3 + e , K 3 + e , K 4 − e ) = 17 [ShWR]

If R 4(K 3) = 51 then R 4(K 3 + e ) = 52, and
if R 4(K 3) > 51 then R 4(K 3 + e ) = R 4(K 3) [ShWR]
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28 ≤ R 3(K 4 − e ) ≤ 30 [Ex7] [Piw2]
R (P 3, K 4 − e , K 4 − e ) = 11 [Ex7], all colorings [Piw2]

472 ≤ R 3(K 6 − e ) [HeDL]
1102 ≤ R 3(K 7 − e ) [HeDL]

21 ≤ R (K 3, K 4 − e , K 4 − e ) ≤ 27 [ShWR]
33 ≤ R (K 4, K 4 − e , K 4 − e ) ≤ 60 [ShWR]
55 ≤ R (K 4, K 4, K 4 − e ) ≤ 113 [Ea1][BoDD]

R (C 4, P 4, K 4 − e ) = 11 [ArKM]
R (C 4, P 4, K 4) = 14 [BoDD]
R (C 4, C 4, K 4 − e ) = 16 [DyDz1]
R (C 4, K 3, K 4 − e ) = 17 [BoDD]
R (C 4, K 4 − e , K 4 − e ) = 19 [BoDD]

28 ≤ R (C 4, K 4, K 4 − e ) ≤ 36 [BoDD]
30 ≤ R (K 3, K 4, K 4 − e ) ≤ 41 [Ea1][BoDD]
33 ≤ R (K 4, K 4 − e , K 4 − e ) ≤ 59 [Ea1][BoDD]

See also section 8.2 for pointers to cumulative data for three colors.

6.6. General results for special graphs

(a) Formulas for Rk (G ), where G is one of the graphs P 3, 2K 2 and K 1,3, for all k , and for
P 4 if k is not divisible by 3 [Ir]. For some details see section 6.4.2b.

(b) tk 2 + 1 ≤ Rk (K 2, t +1) ≤ tk 2 + k + 2, where the upper bound is general, and the lower bound
holds when both t and k are prime powers [ChGra1, LaMu].

(c) (m − 1)  (k +1) / 2 < Rk (Tm ) ≤ 2km +1 for any tree Tm with m edges [EG], see also
[GRS]. The lower bound can be improved for special large k [EG, GRS]. The upper
bound was improved to Rk (Tm ) < (m − 1)(k + √k (k − 1) ) + 2 in [GyTu].

(d) k (√m − 1) / 2 < Rk (Fm ) < 4km for any forest Fm with m edges [EG], see [GRS]. See
also pointers in items (p) and (r) below.

(e) R (S 1, ... , Sk ) = n + ε, where Si ’s are arbitrary stars, n = n (S 1) + ... + n (Sk ) − 2k , and we
set ε = 1 if n is even and some n (Si ) is odd, and ε = 2 otherwise [BuRo1]. See also
[GauST, Par6].

(f) Formula for R (S 1, ... , Sk , Kn ), where Si ’s are arbitrary stars [Jac]. It was generalized to
a formula for R (S 1, ... , Sk , Kk 1

, ... , Kkr
) expressed in terms of R (k 1, ... , kr ) and star ord-

ers [BoCGR]. A much shorter proof of the latter was presented in [OmRa2].

(g) Formula for R (S 1, ... , Sk , nK 2), where Si ’s are arbitrary stars [CocL2], and a formula for
R (n 1K 2, ... , nk K 2) [CocL1]. See also cases involving P 2 in section 6.4.2.
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(h) Formula for R (S 1, ... , Sk , T ), where Si ’s are stars and T is a tree [ZZ1].

(i) Formulas for R (S 1, ... , Sk ), where each Si ’s is a star or mi K 2 [ZZ2, EG],
formula for the case R (S , mK 2, nK 2) [GySá2].

(j) Bounds on Rk (G ) for unicyclic graphs G of odd girth.
Some exact values for special graphs G , for k = 3 and k = 4 [KrRod].

(k) For prime p = 3q + 1, if the cubic residues Paley graph Qp contains no Kk − e , then
R 3(Kk +1 − e ) > 3p [HeDL]. The cases k = 5, 6 give two bounds listed in section 6.5.

(l) Rk (K 3,3 ) = (1 + o (1)) k 3 [AlRóS].

(m) Bounds on Rk (Ks , t ), in particular for K 2,2 = C 4 and K 2, t [ChGra1, AxFM]. Asymptot-
ics of Rk (Ks , t ) for fixed k and s [DoLi, LiTZ]. Upper bounds on Rk (Ks , t ) [SunLi].

(n) Exact asymptotics R (Kt ,s , Kt ,s , Kt ,s , Km ) = Θ(m t / logt m ), for any fixed t > 1 and large
s ≥ (t − 1)! + 1 [AlRö].

(o) Bounds on Rk (G ) for trees, forests, stars and cycles [Bu1].

(p) Bounds for trees Rk (T ) and forests Rk (F ) [EG, GRS, BierB, GyTu, Bra1, Bra2, SwPr].

(q) R 3(Ga ,b ) = (2 + o (1))ab , where Ga ,b is the rectangular a × b grid graph. Lower and
upper bounds on R 3(G ) for graphs G with small bandwidth and bounded ∆(G )
[MoSST].

(r) Study of the case R (Km , n 1P 2, ... , nk P 2) [Lor]. Other similar results include
R (P 3, mK 2, nK 2 ) = 2m + n − 1 for m ≥ n ≥ 3 [MaORS2] and R (Sn , nK 2, nK 2 ) =
3n − 1 [GySá2]. More general cases, with multiple copies of the complete graph, stars
and forests, were investigated in [Stahl, LorSe, LorSo, GyRSS]. See also section 6.4.2.

(s) See section 8.2, especially [ArKM, BoDD], for a number of cases for other small graphs,
similar to those listed in sections 6.3 and 6.4.

6.7. General results

(a) Szemerédi’s Regularity Lemma [Szem] states that the vertices of every large graph can
be partitioned into similar size parts so that the edges between these parts behave almost
randomly. This lemma has been used extensively in various forms to prove the upper
bounds, including those studied in [BenSk, GyRSS, GySS1, HaŁP1+, HaŁP2+, KoSS1,
KoSS2].

(b) R (m 1G 1, ... , mk Gk ) ≤ R (G 1, ... , Gk ) +
i = 1
Σ
k

n (Gi )(mi − 1), exercise 8.3.28 in [West].

(c) If G is connected and R (Kk , G ) = (k − 1)(n (G ) − 1) + 1, in particular if G is any n -
vertex tree, then R (Kk 1

, ... , Kkr
, G ) = (R (k 1, ... , kr ) − 1)(n − 1) + 1 [BE3]. A generaliza-

tion for connected G 1, ... , Gn in place of G appeared in [Jac].

(d) If F , G , H are connected graphs then R (F , G , H ) ≥ (R (F , G ) − 1)(χ(H ) − 1) +
min{ R (F , G ), s (H ) }, where s (G ) is the chromatic surplus of G (see item [Bu2] in sec-
tion 5.16). This leads to several formulas and bounds for F and G being stars and/or
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trees when H = Kn [ShiuLL].

(e) R (Kk 1
, ... , Kkr

, G 1, ... , Gs ) ≥ (R (k 1, ... , kr ) − 1)(R (G 1, ... , Gs ) − 1) + 1 for arbitrary graphs

G 1,... ,Gs [Bev]. This generalizes 6.2.q.

(f) Constructive bound R (G 1, ..., Gt n −1 ) ≥ t n + 1 for decompositions of Kt n [LaWo1, LaWo2].

(g) R (G 1, ... , Gk ) ≤ 32∆ k ∆ n , where n ≥ n (Gi ) and ∆ ≥ ∆(Gi ) for all 1 ≤ i ≤ k ,
R (G 1, ... , Gk ) ≤ k 2 k ∆ q n , where q ≥ χ(Gi ) for all 1 ≤ i ≤ k [FoxSu1].

(h) Rk (G ) ≤ k 6e (G )2/ 3k for all isolate-free graphs G and k ≥ 3 [JoPe].
For the original two-color conjecture, now a theorem, see item [Erd4] in section 5.16.

(i) Rk (G ) > (sk e (G ) − 1) ) 1 / n (G ) , where s is the number of automorphisms of G [CH3].
Other general bounds for Rk (G ) [CH3, Par6].

(j) Study of R (G 1, ... , Gk , G ) for large sparse G [EFRS1, Bu3].

(k) Study of asymptotics for R (Cn , ... , Cn , Km ) [AlRö]. See also sections 6.3.3.d/e.

(l) Relations between the Shannon capacity of noisy communication channels and graph
Ramsey numbers. A lower bound construction for Rk (m ) implying that supremum of the
Shannon capacity over all graphs with bounded independence cannot be achieved by any
finite graph power [XuR3]. For some other links between Shannon capacity and Ramsey
numbers see section 6 in [Ros2], and [Li2].

(m) See surveys listed in section 8.
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7. Hypergraph Numbers

7.1. Values and bounds for numbers

The only known value of a classical Ramsey number for hypergraphs:
R (4,4 ; 3) = 13,
more than 200000 critical colorings [MR1]

The computer evaluation of R (4,4 ; 3) in 1991 consisted of an improvement of the upper
bound from 15 to 13. This result followed an extensive theoretical study of this number by
several authors [Gi4, Isb1, Sid1].

(a) 33 ≤ R (4, 5 ; 3) [Ex13]
58 ≤ R (4, 6 ; 3) [Ex18]
82 ≤ R (5, 5 ; 3) [Ex18]
56 ≤ R (4,4,4 ; 3) [Ex8]
34 ≤ R (5, 5 ; 4) [Ex11]

(b) R (K 4 − t , K 4 − t ; 3) = 7 [Ea2]
R (K 4 − t , K 4 ; 3) = 8 [Sob, Ex1, MR1]
14 ≤ R (K 4 − t , K 5 ; 3) [Ex1]
13 ≤ R (K 4 − t , K 4 − t , K 4 − t ; 3) ≤ 16 [Ex1] [Ea3]

(c) The first bound on R (4, 5 ; 3) ≥ 24 was obtained by Isbell [Isb2]. Shastri [Shas] gave a
weak bound R (5, 5 ; 4) ≥ 19 (now 34 in [Ex11]), nevertheless his lemmas, the stepping-
up lemmas by Erdős and Hajnal (see [GRS, GrRö], also 7.4.a below), and others in
[Ka3, Abb2, GRS, GrRö, HuSo, SonYL] can be used to derive better lower bounds for
higher numbers.

(d) Several lower bound constructions for 3-uniform hypergraphs were presented in [HuSo].
Study of lower bounds on R ( p , q ; 4) can be found in [Song3] and [SonYL, Song4] (the
latter two papers are almost the same in contents). Most of the concrete lower bounds in
these papers can be easily improved by using the same techniques, but starting with
better constructions for small parameters as listed above.

(e) R ( p , q ; 4) ≥ 2R ( p − 1, q ; 4) − 1 for p , q > 4, and
R ( p , q ; 4) ≥ ( p − 1)R ( p − 1, q ; 4) − p + 2 for p ≥ 5, q ≥ 7 [SonYL].
Lower bound asymptotics for R ( p , q ; 4) [SonLi].

(f) R (K 1,1,c , K 1,1,c ; 3) = c + 2 for 2 ≤ c ≤ 4, and
a conjecture that this equality also holds for all c ≥ 5 [MiPal].

7.2. Cycles and paths

Definitions. Pn
r , s is called an s -path in an r -uniform hypergraph H , if it consists of n

hyperedges {e 1, ..., en } in E (H ), such that | ei ∩ ei +1 | = s for all 1 ≤ i < n , and all other ver-
tices in e j ’s are distinct [Peng]. An s -cycle Cn

r , s is defined analogously. Several authors use
the terms of loose paths and loose cycles, which are 1-path and 1-cycles, and tight paths and
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tight cycles, the latter most often for 3-uniform hypergraphs when they are 2-paths and 2-
cycles, respectively. A 3-uniform Berge cycle is formed by n distinct vertices, such that all
consecutive pairs of vertices are in an edge of the cycle, and all of the cycle edges are dis-
tinct. Berge cycles are not determined uniquely.

In the following items (b) to (i), when r = 3 or r is implied by the context, we write Cn and
Pn for the r -uniform loose cycles and paths, Cn

r , 1 and Pn
r , 1, respectively. In other cases spe-

cial comments are added.

(a) Tetrahedron is formed by four triples on the set of four points. The Ramsey number of
tetrahedron is R (4, 4 ; 3) = 13 [MR1].

(b) For loose cycles and paths, R (C 3, C 3 ; 3) = 7, R (C 4, C 4 ; 3) = 9, and for the r -uniform
case we have in general R (P 3, P 3 ; r ) = R (P 3, C 3 ; r ) = R (C 3, C 3 ; r ) + 1 = 3r − 1 and
R (P 4, P 4 ; r ) = R (P 4, C 4 ; r ) = R (C 4, C 4 ; r ) + 1 = 4r − 2, for r ≥ 3. These results and
discussion of several related cases were presented in [GyRa].

(c) R (Pm , Pn ; 3) = R (Cm , Cn ; 3) + 1 = R (Pm , Cn ; 3) = 2m +  (n + 1)/ 2 , for all m ≥ n ,
and R (Cm , Pn ; 3) = 2m +  (n − 1)/ 2 , for m > n [MaORS1, OmSh].

(d) For loose cycles, R (C 2n , C 2n ; 3) > 5n − 2 and R (C 2n +1, C 2n +1; 3) > 5n + 1, and asymp-
totically these lower bounds are tight [HaŁP1+]. Generalizations to r -uniform hyper-
graphs and graphs other than cycles appeared in [GySS1].

(e) For tight cycles, R (C 3n , C 3n ; 3) ∼∼ 4n and R (C 3n + i , C 3n + i ; 3) ∼∼ 6n for i = 1 or 2, and
for tight paths R (Pn , Pn ; 3) ∼∼ 4n / 3 [HaŁP2+]. Some related results are discussed in
[PoRRS].

(f) Exact values for Ramsey numbers involving s -paths for even r and s = r / 2 , in particu-
lar for Pn

r , s versus P 3
r , s and P 4

r , s , when this value is (n + 1)s + 1 [Peng].

(g) For 3-uniform Berge cycles and two colors, R (Cn , Cn ; 3) = n for n ≥ 5 [GyLSS].

(h) For loose cycles, R (C 3, C 3, C 3 ; 3) = 8, and in general for k ≥ 4 colors Gyárfás and
Raeisi established the bounds k + 5 ≤ Rk (C 3 ; 3) ≤ 3k [GyRa].

(i) For 3-uniform Berge cycles, R 3(Cn ; 3) = (1 + o (1))5n /4 [GySá1].

(j) Lower and upper asymptotic bounds for R (C 3
3,1 , Km ; 3) and R (C 3

r ,1 , Km ; r ) [KosMV2].

(k) Gyárfás, Sárközy and Szemerédi proved that, for sufficiently large n , every 2-coloring of
the edges of the complete 4-uniform hypergraph Kn contains a monochromatic 3-tight
Berge cycle Cn [GySS2]. Special multicolor cases for r -uniform hypergraphs were stu-
died in [GyLSS].

(l) Study of R (G , nH ; r ) and R (mG , nH ; r ) for loose/tight path, cycles and stars, including
several exact results for large m or n [OmRa3].
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7.3. General results for 3-uniform hypergraphs

(a) 2cn 2
< R ( n , n ; 3) < 22n

is credited to Erdős, Hajnal and Rado (see [ChGra2] p. 30).

(b) For some a , b the numbers R ( m , a , b ; 3) are at least exponential in m [AbbS].

(c) Improved lower and upper asymptotics for R (s , n ; 3) for fixed s and large n , proof of
related Erdős and Hajnal conjecture on the growth of R (4, n ; 3), and the lower bound
2n c ln n

< R (n , n , n ; 3) [ConFS2].

(d) R (G , G ; 3) ≤ cn (H ) for some constant c depending only on the maximum degree of a
3-uniform hypergraph H [CooFKO1, NaORS]. Similar results were proved for r -
uniform hypergraphs in [KüCFO, Ishi, CooFKO2, ConFS1], see also item 7.4.g.

(e) Asymptotic lower bounds for R (Ka ,b ,c , Ka ,b ,c ; 3), where Ka ,b ,c is formed by all abc tri-
ples on sets of orders a , b , c [MiPal].

(f) If G is a 3-uniform H -free hypergraph, then G contains a complete or empty tripartite
subgraph with parts of order (log n (H ))c + 1/ 2, where c > 0 depends only on H . Further-
more, for k ≥ 4 no analogue of it can hold for k -uniform hypergraphs [ConFS5].

(g) Asymptotic or exact values of Rk (H ; 3) when H is a bow {abc , ade }, kite {abc , abd },
tight path P 3

3,2 = {abc , bcd , cde }, or windmill {abc , bde , cef , bce }, and, among others,
a special case R 6(kite ; 3) = 8 [AxGLM].

(h) Rk (K 3 ) ≤ R 4k (K 4 − t ; 3) ≤ R 4k (K 3 ) + 1 [AxGLM].

(i) Upper bounds on Rk (H ; 3) for complete multipartite 3-uniform hypergraphs H , a 4-color
case, and some other general and special cases [ConFS1, ConFS2, ConFS3]. Rk (H ; 3)
ranges from √6k (1 + o (1)) to double exponential in k [AxGLM].

7.4. General results

(a) If R ( n , n ; r ) > m then R (2n + r − 4, 2n + r − 4 ; r + 1) > 2m , for n > r ≥ 3 (see [GRS]
p. 106). This is the so-called stepping-up lemma, usually credited to Erdős and Hajnal.
An improvement of the stepping-up lemma implying better lower bounds for a few types
of hypergraph Ramsey numbers were obtained by Conlon, Fox and Sudakov [ConFS6].

(b) Lower bounds on Rk ( n ; r ) are discussed in [AbbW, DLR].

(c) General lower bounds for large number of colors were given in an early paper by
Hirschfeld [Hir], and some of them were later improved in [AbbL].

(d) Lower and upper asymptotics of R (s , n ; k ) for fixed s [ConFS2].

(e) Exact and asymptotic results generalizing 7.2.d to r -uniform case for cycles, and 2- and
3-color cases for all r -uniform diamond matchings [GySS1].

(f) Study of R (G , nH ; r ) and R (mG , nH ; r ) for loose/tight path and cycles (possibly with
some additions), stars, r -partite hypergraphs, including several exact results for large m
or n [OmRa3].

(g) R (H , H ; r ) ≤ cn (H )1+ ε , for some constant c = c (∆, r , ε ) depending only on the max-
imum degree of H , r and ε > 0 [KoRö3]. The proofs of the linear bound cn (H ) were
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obtained independently in [KüCFO] and [Ishi], the latter including the multicolor case,
and then without regularity lemma in [ConFS1]. More discussion of lower and upper
bounds for various cases can be found in [ConFS1, ConFS2, ConFS3, CooFKO2].

(h) Let Tr be an r -uniform hypergraph with r edges containing a fixed (r − 1)-vertex set S
and the (r + 1)-st edge intersecting all former edges in one vertex outside S . Then
R (Tr , Kt ; r ) = O (t r / log t ) [KosMV1].

(i) Let H r (s , t ) be the complete r -partite r -uniform hypergraph with r − 2 parts of size 1,
one part of size s , and one part of size t (for example, for r = 2 it is the same as Ks , t ).
For the multicolor numbers, Lazebnik and Mubayi [LaMu] proved that

tk 2 − k + 1 ≤ Rk (H r (2, t +1) ; r ) ≤ tk 2 + k + r ,

where the lower bound holds when both t and k are prime powers. For the general case
of H r (s , t ), more bounds are presented in [LaMu].

(j) Rk (H ; r ) is polynomial in k when a fixed r -uniform H is r -partite, otherwise it is at
least exponential in k [AxGLM].

(k) Grolmusz [Grol1] generalized the classical constructive lower bound by Frankl and Wil-
son [FraWi] (item 2.3.6) to more colors and to hypergraphs [Grol3].

(l) Lower and upper asymptotics, and other theoretical results on hypergraph numbers, are
gathered in [GrRö, GRS, ConFS1, ConFS2, ConFS3, Song8].

8. Cumulative Data and Surveys

8.1. Cumulative data for two colors

[CH1] R (G , G ) for all graphs G without isolates on at most 4 vertices.

[CH2] R (G , H ) for all graphs G and H without isolates on at most 4 vertices.

[Clan] R (G , H ) for all graphs G on at most 4 vertices and H on 5 vertices, except five
entries (now all solved, see section 5.11). All critical colorings for the isolate-free
graphs G and H studied in [Clan] were found in [He4].

[Bu4] R (G , G ) for all graphs G without isolates and with at most 6 edges.

[He1] R (G , G ) for all graphs G without isolates and with at most 7 edges.

[HaMe2] R (G , G ) for all graphs G on 5 vertices and with 7 or 8 edges.

[He2] R (G , H ) for all graphs G and H on 5 vertices without isolates, except 7 entries (2
still open, see 5.11 and the paragraph at the end of this section).

[LoM5] R (G , H ) for all disconnected isolate-free graphs H on at most 6 vertices versus all
G on at most 5 vertices, except 3 cases. Missing cases were completed in [KroMe].

[HoMe] R (G , H ) for G = K 1,3 + e and G = K 4 − e versus all connected graphs H on 6 ver-
tices, except R (K 4 − e , K 6 ). The result R (K 4 − e , K 6 ) = 21 was claimed by
McNamara [McN, unpublished], now confirmed in [ShWR].
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[Boza4] R (G , H ) for some graphs G with 4 vertices versus all graphs H with 7 vertices.

[FRS4] R (G , T ) for all connected graphs G with n (G ) ≤ 5, and almost all trees T .

[FRS1] R (K 3, G ) for all connected graphs G on 6 vertices.

[Jin] R (K 3, G ) for all connected graphs G on 7 vertices.
Some errors in [Jin] were found [SchSch1].

[Zeng] Formulas for R (nK 3, mG ) for all G of order 4 without isolates.

[Brin] R (K 3, G ) for all connected graphs G on at most 8 vertices. The numbers for K 3
versus sets of graphs with fixed number of edges, on at most 8 vertices, were
presented in [KlaM1].

[BBH1] R (K 3, G ) for all connected graphs G on 9 vertices. See also [BBH2].

[BrGS] R (K 3, G ) for all graphs G on 10 vertices, except 10 cases (three of which, including
G = K 10 − e , were solved [GoR2]).

[JR3] R (C 4, G ) for all graphs G on at most 6 vertices.

[JR4] R (C 5, G ) for all graphs G on at most 6 vertices.

[JR2] R (C 6, G ) for all graphs G on at most 5 vertices.

[LoM3] R (K 2,n , K 2,m ) for all 2 ≤ n , m ≤ 10 except 8 cases, for which lower and upper
bounds are given. Further data for other complete bipartite graphs are gathered in
section 3.3 and [LoMe4].

[HaKr1] All best lower bounds up to 102 from cyclic graphs. Formulas for best cyclic lower
bounds for paths and cycles, and values for small complete graphs and for graphs
with up to five vertices.

Chvátal and Harary [CH1, CH2] formulated several simple but very useful observations on
how to discover values of some numbers. All five missing entries in the tables of Clancy
[Clan] have been solved (section 5.11). Out of 7 open cases in [He2] 5 have been solved,
including R (4, 5) = R (G 19, G 23 ) = 25 and other cases listed in section 5.11. The 2 cases still
open are for K 5 versus K 5 (section 2.1) and K 5 versus K 5 − e (section 3.1). Many extremal
and other Ramsey graphs for various parameters are available at [BrCGM, McK, Ex18, Fid2,
Fuj1], see section 8.3 below.

8.2. Cumulative data for three colors

[YR3] R 3(G ) for all graphs G with at most 4 edges and no isolates.

[YR1] R 3(G ) for all graphs G with 5 edges and no isolates, except K 4 − e .
The case of R 3(K 4 − e ) remains open (see section 6.5).

[YY] R 3(G ) for all graphs G with 6 edges and no isolates, except 10 cases.

[ArKM] R (F , G , H ) for many triples of isolate-free graphs with at most 4 vertices.
Some of the missing cases completed in [KlaM2].
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[BoDD] Extension of [ArKM] to most triples of graphs with at most 4 vertices.

[DzFi2] R (P 3, Pk , Cm ) for all 3 ≤ k ≤ 8 and 3 ≤ m ≤ 9.

8.3. Electronic Resources

(a) W. Gasarch [Gas] maintains a website gathering over 60 pointers to literature on applica-
tions of Ramsey theory in computer science, http://www.cs.umd.edu/~gasarch/ramsey/

ramsey.html.

(b) Many of the Ramsey graph constructions found by G. Exoo [Ex1-Ex20] are posted at
http://ginger.indstate.edu/ge/RAMSEY.

(c) G. Brinkmann, K. Coolsaet, J. Goedgebeur and H. Mélot, House of Graphs: A database
of interesting graphs [BrCGM], http://hog.grinvin.org.

(d) B.D. McKay, presents some graphs related to classical Ramsey numbers [McK], http://

cs.anu.edu.au/people/bdm/data/ramsey.html.

(e) R. Fidytek, presents some Ramsey graphs of type (Kn , Km − e ) [Fid2], see also 3.1.f,
http://fidytek.inf.ug.edu.pl/ramsey.

(f) H. Fujita, some Ramsey graphs [Fuj1], http://opal.inf.kyushu-u.ac.jp/~fujita/ramsey.html.

(g) Ramsey@Home [RaHo] is a distributed computing project at the University of
Wisconsin-Oshkosh designed to find new lower bounds for various Ramsey numbers.
Join and help! http://www.ramseyathome.com/ramsey.

8.4. Surveys

(1974) A general survey of results in Ramsey graph theory by S.A. Burr [Bu1]

(1978) A general survey of results in Ramsey graph theory by T.D. Parsons [Par6]

(1980) Survey of results and new problems on multiplicities and Ramsey multiplicities by
S.A. Burr and V. Rosta [BuRo3]

(1981) Summary of progress by Frank Harary [Har2]

(1983) A survey of bounds and values by F.R.K. Chung and C.M. Grinstead [ChGri]

(1983) Special volume of the Journal of Graph Theory [JGT]

(1984) A review of Ramsey graph theory for newcomers by F.S. Roberts [Rob1]

(1987) What can we hope to accomplish in generalized Ramsey Theory? [Bu7]

(1987) Survey of asymptotic problems by R.L. Graham and V. Rödl [GrRö]

(1990) Ramsey Theory by R.L. Graham, B.L. Rothschild and J.H. Spencer [GRS]

(1991) Survey by R.J. Faudree, C.C. Rousseau and R.H. Schelp of graph goodness results,
i.e. conditions for the formula R (G , H ) = ( χ(G ) − 1 ) ( n (H ) − 1 ) + s (G ) [FRS5]
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(1996) A chapter in Handbook of Combinatorics by J. Nes̆etr̆il [Nes̆]

(1996) Survey of zero-sum Ramsey theory by Y. Caro [Caro]

(1997) Among 114 open problems and conjectures of Paul Erdős, presented and commented
by F.R.K. Chung, 31 are concerned directly with Ramsey numbers [Chu4]. 216
references are given. An extended version of this work was prepared jointly with
R.L. Graham [ChGra2] in 1998.

(2001) An extensive chapter on Ramsey theory in a widely used student textbook and
researcher’s guide of graph theory by D. West [West]

(2002) Ramsey Theory and Paul Erdős by R.L. Graham and J. Nes̆etr̆il [GrNe]

(2003) Special issue of Combinatorics, Probability and Computing [CoPC]

(2004) Dynamic survey of Ramsey theory applications by V. Rosta [Ros2]. A website
maintained by W. Gasarch [Gas] gathers over 60 pointers to literature on applica-
tions of Ramsey theory in computer science.

(2009) History, results and people of Ramsey theory. The mathematical coloring book,
mathematics of coloring and the colorful life of its creators by A. Soifer [Soi1].

(2011) Ramsey Theory. Yesterday, Today and Tomorrow, a special volume in the series
Progress in Mathematics [Soi2]. A survey of Ramsey numbers involving cycles by
the author is included in this volume [Ra4].

(2013) Problems in Graph Theory from Memphis, "a summary of problems and results com-
ing out of the 20 year collaboration between Paul Erdős and the authors", by R.J.
Faudree, C.C. Rousseau and R.H. Schelp [FRS6].

The surveys by S.A. Burr [Bu1] and T.D. Parsons [Par6] contain extensive chapters on
general exact results in graph Ramsey theory. F. Harary presented the state of the theory in
1981 in [Har2], where he also gathered many references including seven to other early sur-
veys of this area. More than two decades ago, Chung and Grinstead in their survey paper
[ChGri] gave less data than in this work, but included a broad discussion of different
methods used in Ramsey computations in the classical case. S. A. Burr, one of the most
experienced researchers in Ramsey graph theory, formulated in [Bu7] seven conjectures on
Ramsey numbers for sufficiently large and sparse graphs, and reviewed the evidence for them
found in the literature. Three of them have been refuted in [Bra3].

For newer extensive presentations see [GRS, GrRö, FRS5, Nes̆, Chu4, ChGra2], though
these focus on asymptotic theory not on the numbers themselves. A very welcome addition is
the 2004 compilation of applications of Ramsey theory by V. Rosta [Ros2]. This survey could
not be complete without recommending special volumes of the Journal of Graph Theory
[JGT, 1983] and Combinatorics, Probability and Computing [CoPC, 2003], which, besides a
number of research papers, include historical notes and present to us Frank P. Ramsey (1903-
1930) as a person. Finally, read a colorful book by A. Soifer [Soi1, 2009] on history and
results in Ramsey theory, followed by a collection of essays and technical papers based on
presentations from the 2009 Ramsey theory workshop at DIMACS [Soi2, 2011].
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The historical perspective and, in particular, the timeline of progress on prior best
bounds, can be obtained by checking all the previous versions of this survey since 1994 at
http://www.cs.rit.edu/~spr/ElJC/eline.html.

9. Concluding Remarks

This compilation does not include information on numerous variations of Ramsey
numbers, nor related topics, like size Ramsey numbers, zero-sum Ramsey numbers, irredun-
dant Ramsey numbers, induced Ramsey numbers, planar Ramsey numbers, bipartite Ramsey
numbers, on-line Ramsey numbers, mixed Ramsey numbers, local Ramsey numbers, rainbow
Ramsey numbers, connected Ramsey numbers, chromatic Ramsey numbers, avoiding sets of
graphs in some colors, coloring graphs other than complete, or the so called Ramsey multipli-
cities. Interested readers can find such information in some of the surveys listed in section 8
here.

Readers may be interested in knowing that the US patent 6965854 B2 issued on
November 15, 2005 claims a method of using Ramsey numbers in "Methods, Systems and
Computer Program Products for Screening Simulated Traffic for Randomness." Check the ori-
ginal document at http://www.uspto.gov/patft if you wish to find out whether your usage of Ram-
sey numbers is covered by this patent.
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[EFRS1] P. Erdős, R.J. Faudree, C.C. Rousseau and R.H. Schelp, Generalized Ramsey Theory for Multiple
Colors, Journal of Combinatorial Theory, Series B, 20 (1976) 250-264.
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Séries A-B, 268 (1969) A5-A7.

[Gi4] G. Giraud, Majoration du nombre de Ramsey ternaire-bicolore en (4,4), C.R. Acad. Sc. Paris, Séries
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A1175.

[Gi6] G. Giraud, Sur le problème de Goodman pour les quadrangles et la majoration des nombres de Ram-
sey, Journal of Combinatorial Theory, Series B, 27 (1979) 237-253.

[-] A.M. Gleason, see [GG].

[GoK] W. Goddard and D.J. Kleitman, An Upper Bound for the Ramsey Numbers r (K 3, G ), Discrete
Mathematics, 125 (1994) 177-182.

[GoR1]** J. Goedgebeur and S.P. Radziszowski, New Computational Upper Bounds for Ramsey Numbers
R (3, k ), Electronic Journal of Combinatorics, http://www.combinatorics.org, #P30, 20(1) (2013), 28
pages.

[GoR2]** J. Goedgebeur and S.P. Radziszowski, The Ramsey Number R (3, K 10 − e ) and Computational Bounds
for R (3, G ), Electronic Journal of Combinatorics, http://www.combinatorics.org, #P19, 20(4) (2013),
25 pages.

[-] J. Goedgebeur, see also [BrCGM, BrGS].
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Erdős and his mathematics, Combinatorica, 21 (2001) 199-209.

[GRS] R.L. Graham, B.L. Rothschild and J.H. Spencer, Ramsey Theory, John Wiley & Sons, second edition
1990.

[-] R.L. Graham, see also [ChGra1, ChGra2, EG].

[GrY] J.E. Graver and J. Yackel, Some Graph Theoretic Results Associated with Ramsey’s Theorem, Jour-
nal of Combinatorial Theory, 4 (1968) 125-175.

[GG] R.E. Greenwood and A.M. Gleason, Combinatorial Relations and Chromatic Graphs, Canadian Jour-
nal of Mathematics, 7 (1955) 1-7.

[GH] U. Grenda and H. Harborth, The Ramsey Number r (K 3, K 7 − e ), Journal of Combinatorics, Informa-
tion & System Sciences, 7 (1982) 166-169.

[-] S. Griffiths, see [FizGM, FizGMSS].

[Gri] J.R. Griggs, An Upper Bound on the Ramsey Numbers R (3,k ), Journal of Combinatorial Theory,
Series A, 35 (1983) 145-153.

[GR]** C. Grinstead and S. Roberts, On the Ramsey Numbers R (3,8) and R (3,9), Journal of Combinatorial
Theory, Series B, 33 (1982) 27-51.

[-] C. Grinstead, see also [ChGri].

[Grol1] V. Grolmusz, Superpolynomial Size Set-Systems with Restricted Intersections mod 6 and Explicit
Ramsey Graphs, Combinatorica, 20 (2000) 73-88.

[Grol2] V. Grolmusz, Low Rank Co-Diagonal Matrices and Ramsey Graphs, Electronic Journal of Combina-
torics, http://www.combinatorics.org, #R15, 7 (2000), 7 pages.

[Grol3] V. Grolmusz, Set-Systems with Restricted Multiple Intersections, Electronic Journal of Combinator-
ics, http://www.combinatorics.org, #R8, 9 (2002), 10 pages.

[Gros1] J.W. Grossman, Some Ramsey Numbers of Unicyclic Graphs, Ars Combinatoria, 8 (1979) 59-63.

[Gros2] J.W. Grossman, The Ramsey Numbers of the Union of Two Stars, Utilitas Mathematica, 16 (1979)
271-279.

[GHK] J.W. Grossman, F. Harary and M. Klawe, Generalized Ramsey Theory for Graphs, X: Double Stars,
Discrete Mathematics, 28 (1979) 247-254.

[-] J.W. Grossman, see also [BG].

Gu - Gy

[GuLi] Gu Hua and Li Yusheng, On Ramsey Number of K 2,t +1 vs K 1,n , Journal of Nanjing University
Mathematical Biquarterly, 19 (2002) 150-153.

[GuSL] Gu Hua, Song Hongxue and Liu Xiangyang, Ramsey Numbers r (K 1,4, G ) for All Three-Partite
Graphs G of Order Six, Journal of Southeast University, (English Edition), 20 (2004) 378-380.

[-] Gu Hua, see also [SonGQ].

- 71 -



THE ELECTRONIC JOURNAL OF COMBINATORICS (2014), DS1.14

[GuoV] Guo Yubao and L. Volkmann, Tree-Ramsey Numbers, Australasian Journal of Combinatorics, 11
(1995) 169-175.

[-] L. Gupta, see [GGS].

[GGS] S.K. Gupta, L. Gupta and A. Sudan, On Ramsey Numbers for Fan-Fan Graphs, Journal of Combina-
torics, Information & System Sciences, 22 (1997) 85-93.
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[MoSST] G.O. Mota, G.N. Sárközy, M. Schacht and A. Taraz, Ramsey Numbers for Bipartite Graphs with
Small Bandwidth, manuscript (2013).

[-] D. Mubayi, see [AxFM, AxGLM, KosMV1, KosMV2, LaMu].

[-] P.R. Mullins, see [LorMu].

[-] S. Musdalifah, see [SuAM, SuAAM].

- 80 -



THE ELECTRONIC JOURNAL OF COMBINATORICS (2014), DS1.14

N

[-] S.M. Nababan, see [BaSNM].
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