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Outline - Triangles Everywhere
or avoiding K3 in some/most colors
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R(3, 10) is hard
Some things to do, computationally

2 Ramsey Numbers - More Colors
Some general bounds
R(3, 3, 4), R(3, 3, 3, 3) are hard
Things to do

3 Most Wanted Folkman Number
Edge-arrowing (3, 3)
K4-free edge-arrowing (3, 3)
Things to do

4 So, what to do next?
Summary of things to do

2/40



Ramsey Numbers

• R(G, H) = n iff
n = least positive integer such that in any 2-coloring of the
edges of Kn there is a monochromatic G in the first color or
a monochromatic H in the second color

• R(k , l) = R(Kk , Kl)

• generalizes to r colors, R(G1, · · · , Gr )

• 2-edge-colorings ∼= graphs

• Theorem (Ramsey 1930): Ramsey numbers exist
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Values and Bounds on R(k , l)
two colors, avoiding cliques

[ElJC survey Small Ramsey Numbers]
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#vertices / #graphs
3 4
4 11
5 34
6 156
7 1044
8 12346
9 274668
10 12005168
11 1018997864
12 165091172592 ≈ 1.6 ∗ 1011

——————–too many to process——————–
13 50502031367952 ≈ 5 ∗ 1014

14 29054155657235488
15 31426485969804308768
16 64001015704527557894928
17 245935864153532932683719776
18 ≈ 2 ∗ 1030
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#vertices / #triangle-free graphs

3 3
4 7
5 14
6 38
7 107
8 410
9 1897
10 12172
11 105071
12 1262180
13 20797002
14 467871369
15 14232552452
16 581460254001 ≈ 6 ∗ 1011

——————–too many to process——————–
17 ≈ 3 ∗ 1012
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Asymptotics
Ramsey numbers avoiding K3

• Recursive construction yielding
R(3, 4k + 1) ≥ 6R(3, k + 1)− 5
Ω(k log 6/ log 4) = Ω(k1.29)

Chung-Cleve-Dagum 1993

• Explicit Ω(k3/2) construction
Alon 1994, Codenotti-Pudlák-Giovanni 2000

• Kim - 1995 (lower bound)
Ajtai-Komlós-Szemerédi 1980 (upper bound)

R(3, k) = Θ

(
k2

log k

)
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Small R(3, k) cases

k R(3, k) year reference [lower/upper]
3 6 1953 Putnam Competition
4 9 1955 Greenwood-Gleason
5 14 1955 Greenwood-Gleason
6 18 1964 Kéry
7 23 1966 / 1968 Kalbfleisch / Graver-Yackel
8 28 1982 / 1992 Grinstead-Roberts / McKay-Zhang
9 36 1966 / 1982 Kalbfleisch / Grinstead-Roberts

Known values of R(3, k)

Questions (Erdős-Sós 1980) about
3 ≤ ∆k = R(3, k)− R(3, k − 1) ≤ k :

∆k
k→∞ ? ∆k/k k→ 0 ?
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Unavoidable classics

R(3, 3) > 5 R(3, 5) > 13 [GRS’90]
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Clebsch (3, 6; 16)-graph on GF (24)
(x , y) ∈ E iff x − y = α3

[Wikipedia]

Alfred Clebsch (1833-1872)

10/40 Ramsey Numbers - Two Colors



Larger Cases
K3 versus Kk − e or Kk

R(3, K7 − e) = 21 R(3, K8 − e) = 25 R(3, K9 − e) = 31
R(3, 7) = 23 R(3, 8) = 28 R(3, 9) = 36

All R(3, Kk − e) critical graphs are known for k ≤ 8
All R(3, Kk ) critical graphs are known for k ≤ 7

First open cases:
37 ≤ R(K3, K10 − e) ≤ 38, 42 ≤ R(K3, K11 − e) ≤ 47
40 ≤ R(K3, K10) ≤ 43, 46 ≤ R(K3, K11) ≤ 51
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Counting edges
computing R(3, 10) is difficult

Def: e(k , n) = min # edges in n-vertex ∆-free k -graphs

• Very good lower bounds on e(k − 1, n − d)
give good lower bounds on e(k , n)

• For any graph G ∈ R(k , n, e)

ne −
k−1∑
i=0

ni(e(k − 1, n − i − 1) + i2) ≥ 0

• e(9, n) not known for 27 ≤ n ≤ 35
seem needed before improving on e(10, n) for n > 37

• known e(8, n)-graphs not sufficient to improve on e(9, n)
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R(K3, G)
general non-asymptotic results

• R(nK3, mK3) = 2n + 3m, for n ≥ m ≥ 1, n ≥ 2,
Burr-Erdős-Spencer 1975

• R(C3, Cn) = R(K3, Wn) = 2n − 1
Faudree-Schelp 1974, Burr-Erdős 1983
all critical colorings, R-Jin 1994

• R(K3, G) = 2n(G)− 1, for connected G
e(G) ≤ 17(n(G) + 1)/15, n(G) ≥ 4
Burr-Erdős-Faudree-Rousseau-Schelp 1980

• R(K3, G) ≤ 2e(G) + 1, isolate-free G
R(K3, G) ≤ n(G) + e(G), a conjecture for all G
Sidorenko 1992-3, Goddard-Kleitman 1994

• R(K3, G) for all connected G, n(G) ≤ 9
Brandt-Brinkmann-Harmuth 1998-2000
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Things to do for two colors

• Enumerate all critical (3, 8; 27)-graphs
430K+ known already

• Enumerate all critical (3, 9; 35)-graphs
only one is known!

• Finish off 37 ≤ R(3, K10 − e) ≤ 38

• R(3, 10) ≤ 43, get it down first to 42
(R(3, 10) ≥ 40, don’t even try to do better)
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More colors
upper bound

R(k1, . . . , kr ) ≤ 2− r +
∑r

i=1 R(k1, . . . , ki−1, ki − 1, ki+1, . . . , kr )

with strict < if the RHS is even and sum has en even term
Greenwood-Gleason 1955

Only two known multicolor cases, (3,3,4) and (3,3,3,3), where the
RHS is improved. Likely this bound is never tight, except for (3,3,3).
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More colors
some results

• Xu-Xie-Exoo-R 2004

• for k1 ≥ 5 and ki ≥ 2
R(k1, 2k2 − 1, k3, · · · , kr ) ≥ 4R(k1 − 1, k2, k3, · · · , kr )

• using k1 = l , k2 = 2, k3 = k in the above
R(3, k , l) ≥ 4R(k , l − 1)− 3

• use k = 3
R(3, 3, l) ≥ 4R(3, l − 1)− 3

• R(3, 3, k) = Θ(k3poly-log k)
Alon-Rődl 2005
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Rr(3) = R(3, 3, · · · , 3)

• Much work on Schur numbers s(r)
via sum-free partitions and cyclic colorings
s(r) > 89r/4−c log r > 3.07r

[except small r ]

Abbott+ 1965+

• s(r) + 2 ≤ Rr (3)
s(r) = 1, 4, 13, 44,≥ 160,≥ 536

• Rr (3) ≥ 3Rr−1(3) + Rr−3(3)− 3
Chung 1973

• The limit L = limr→∞Rr (3)
1
r exists

Chung-Grinstead 1983

(2s(r) + 1)
1
r = cr ≈(r=6) 3.199 < L
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R(3, 3, 3) = 17
two Kalbfleisch (3, 3, 3; 16)-colorings, each color is a Clebsch graph

[Wikipedia]
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Three colors - R(3, 3, 4)
the only (as of now) not hopeless case

• 30 ≤ R(3, 3, 4), cyclic coloring, Kalbfleisch 1966
• R(3, 3, 4) ≤ 31, computations, Piwakowski-R 1998

Theorem (Piwakowski-R 2001): R(3, 3, 4) = 31 iff there exists
a (3, 3, 4; 30)-coloring C in which every edge in 3-rd color has
an endpoint x with degree 13. Furthermore, C has at least 25
vertices with color degree sequence (8, 8, 13).

Proof: Gluing possible arrangements of color induced
neighborhoods of v in a (3, 3, 4; 30)-coloring:

(3, 4; s), (3, 4; t), (3, 3, 3; u ≥ 14) with s + t + u = 29

too many (3, 3, 3; 13)’s to proceed further �
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Four colors - R4(3)

51 ≤ R(3, 3, 3, 3) ≤ 62

year reference lower upper
1955 Greenwood, Gleason 42 66
1967 false rumors [66]
1971 Golomb, Baumert 46
1973 Whitehead 50 65
1973 Chung, Porter 51
1974 Folkman 65
1995 Sánchez-Flores 64
1995 Kramer (no computer) 62
2004 Fettes-Kramer-R (computer) 62

History of bounds on R4(3) [from FKR 2004]
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Four colors - R4(3)
color degree sequences for (3, 3, 3, 3;≥ 59)-colorings

n orders of Nη(v)

65 [ 16, 16, 16, 16 ] Whitehead, Folkman 1973-4
64 [ 16, 16, 16, 15 ] Sánchez-Flores 1995
63 [ 16, 16, 16, 14 ]

[ 16, 16, 15, 15 ]
62 [ 16, 16, 16, 13 ] Kramer 1995+

[ 16, 16, 15, 14 ] –
[ 16, 15, 15, 15 ] Fettes-Kramer-R 2004

61 [ 16, 16, 16, 12 ]
[ 16, 16, 15, 13 ]
[ 16, 16, 14, 14 ]
[ 16, 15, 15, 14 ]
[ 15, 15, 15, 15 ]

60 [ 16, 16, 16, 11 ] guess: doable in 2015
[ 16, 16, 15, 12 ]
[ 16, 16, 14, 13 ]
[ 16, 15, 15, 13 ]
[ 16, 15, 14, 14 ]
[ 15, 15, 15, 14 ]

59 [ 16, 16, 16, 10 ]
[ 16, 16, 15, 11 ]
[ 16, 16, 14, 12 ]
[ 16, 16, 13, 13 ]
[ 16, 15, 15, 12 ]
[ 16, 15, 14, 13 ]
[ 15, 15, 15, 13 ]
[ 15, 15, 14, 14 ]
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More colors - summary

k value or bounds reference(s)
2 6 [cf. Bush 1953]
3 17 Greenwood-Gleason 1955
4 51 – 62 Chung 1973 – Fettes-Kramer-R 2004
5 162 – 307 Exoo 1994 – easy
6 538 – 1838 Fredricksen-Sweet 2000 – easy
7 1682 – 12861 Fredricksen-Sweet 2000 – easy

Bounds and values of Rk (K3)
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Things to do
computational multicolor Ramsey numbers problems

• improve 45 ≤ R(3, 3, 5) ≤ 57

• finish off 30 ≤ R(3, 3, 4) ≤ 31

• understand why heuristics don’t find 51 ≤ R4(3)

• improve on R4(3) ≤ 62
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More Arrowing

F , G, H - graphs, s, t , si - positive integers

Definitions
F → (s1, ..., sr )

e iff for every r -coloring of the edges
F contains a monochromatic copy of Ksi in some color i .

F → (s1, ..., sr )
v iff for every r -coloring of the vertices

F contains a monochromatic copy of Ksi in some color i .

F → (G, H)e iff for every red/blue edge-coloring of F ,
F contains a blue copy of G or a red copy of H.

Facts

R(s, t) = min{n | Kn → (s, t)e}
R(G, H) = min{n | Kn → (G, H)e}
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Folkman problems

edge Folkman graphs
Fe(s, t ; k) = {G → (s, t)e : Kk 6⊆ G}

edge Folkman numbers
Fe(s, t ; k) = the smallest n such that there exists
an n-vertex graph G in Fe(s, t ; k)

vertex Folkman graphs/numbers
2-coloring vertices instead of edges

Theorem (Folkman 1970): For all k > max(s, t), edge-
and vertex Folkman numbers Fe(s, t ; k), Fv (s, t ; k) exist.
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Two small cases
warming up

• G = K6 has the smallest number of vertices among
graphs which are not a union of two K3-free graphs, or
• K6 → (K3, K3)

e and K5 6→ (K3, K3)
e

• What if we want G to be K6-free?
Graham (1968) proved that
• K8 − C5 = K3 + C5 → (K3, K3)

|V (H)| < 8 ∧ K6 6⊂ H ⇒ H 6→ (K3, K3)
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Known values/bounds for Fe(3, 3; k)
the challenge is to compute Fe(3, 3; 4)

k > R(s, t) ⇒ Fe(s, t ; k) = R(s, t)
k ≤ R(s, t), very little known in general

k Fe(3, 3; k) graphs reference
≥ 7 6 K6 folklore

6 8 C5 + K3 Graham 1968
5 15 659 graphs Piwakowski-Urbański-R 1999
4 ≤ 941 α5 mod 941 Dudek-Rődl 2008
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Fe(3, 3; 5) = 15, and Fv(3, 3; 4) = 14
G + x → (3, 3)e, and G → (3, 3)v

unique 14-vertex bicritical Fv (3, 3; 4)-graph G [PRU 1999]
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History of upper bounds on Fe(3, 3; 4)

• 1967 - Erdős, Hajnal state the problem

• 1970 - Folkman proves his theorem for 2 colors
VERY large bound for Fe(3, 3; 4).

• 1975 - Erdős offers $100 (or 300 Swiss francs)
for deciding if Fe(3, 3; 4) < 1010

• 1988 - Spencer, probabilistic proof for the bound 3× 108

(1989 - Hovey finds a mistake, bound up to 3× 109)

• 2007 - Lu, ≤ 9697, spectral analysis of modular circulants

• 2008 - Dudek-Rődl, Fe(3, 3; 4) ≤ 941
circulant arc lengths α5 mod 941
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Fe(3, 3; 4) ≤ 941
some details of the proof by Dudek-Rődl

• Theorem: If for every vertex v ∈ V (G)

Maxcut(G[N(v)]) <
2
3
|E(G[N(n)])|

then G → (3, 3)e.

• Define graph H on vertices E(G) with edges
{(e, f ) : e, f ∈ E(G), efg is a triangle in G for some g}.

Maxcut approximation in H can imply G → (3, 3)e.

• This works for the graph

G = (Z941, {(i , j) : i − j = α5 mod 941})

30/40 Most Wanted Folkman Number



History of lower bounds on Fe(3, 3; 4)

• 10 ≤ Fe(3, 3; 4) Lin 1972

• 16 ≤ Fe(3, 3; 4) Piwakowski-Urbański-R 1999
since Fe(3, 3; 5) = 15, all graphs in Fe(3, 3; 5) on
15 vertices are known, and all of them contain K4’s

• 19 ≤ Fe(3, 3; 4) R-Xu 2007
18 ≤ Fe(3, 3; 4) proof "by hand"
19 ≤ Fe(3, 3; 4) computations

• ANY proof technique improving on 19
very likely will be of interest
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Testing arrowing is hard
theory/practice

• Testing whether F → (3, 3)e is coNP-complete
Burr 1976

• Determining if R(G, H) < m is NP-hard
Burr 1984

• Testing whether F → (G, H)e is Πp
2-complete

Schaefer 2001

• Implementing fast F → (3, 3)e is challenging
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G127
Hill-Irving 1982

G127 = (Z127, E)
E = {(x , y)|x − y = α3 (mod 127)}

Ramsey (4, 12)-graph, a color in (4, 4, 4; 127)
Exoo started to study if G127 → (3, 3)e

• 127 vertices, 2667 edges, 9779 triangles
• no K4’s, independence number 11, regular of degree 42
• vertex- and edge-transitive
• 5334 (= 127 ∗ 42) automorphisms
• (127, 42, 11, {14, 16}) - regularity
• K127 can be partitioned into three G127’s
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Reducing {G | G 6→ (3, 3)e} to 3-SAT

edges in G 7−→ variables of φG
each (edge)-triangle xyz in G 7−→ add to φG

(x + y + z) ∧ (x + y + z)

Clearly,
G 6→ (3, 3)e ⇐⇒ φG is satisfiable

For G = G127, φG has 2667 variables and 19558 3-clauses,
2 for each of the 9779 triangles.

Note: By taking only the positive clauses, we obtain
a reduction to φ′G in NAE-3-SAT with half of the clauses.
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Use SAT-solvers

SAT 2007 Competition
3 medals in each of 9 categories

(random, crafted, industrial)
× (SAT, UNSAT, ALL)

SATzilla CRAFTED (UBC) - winner of 2007 competition
in the category (crafted, UNSAT) - the one we need!

Rsat, Picosat, Minisat, March_KS
other recent leading SAT-solvers
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G127 → (3, 3)e ?
zChaff experiments on φG127

• Pick H = G127[S] on m = |S| vertices.
Use zChaff to split H:

• m ≤ 80, H easily splittable
• m ≈ 83, phase transition ?
• m ≥ 86, splitting H is very difficult

• #(clauses)/#(variables) = 7.483 for G127, far above
conjectured phase transition ratio r ≈ 4.2 for 3-SAT.
It is known that

3.52 ≤ r ≤ 4.596
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Folkman problems to work on
Is it true that 50 ≤ Fe(3, 3; 4) ≤ 100?

• Decide whether G127 → (3, 3)e

• Improve on 19 ≤ Fe(3, 3; 4) ≤ 941

• Study Fe(3, 3; G) for G ∈ {K5 − e, W5 = C4 + x}

• Study Fe(K4 − e, K4 − e; K4)

• Don’t study Fe(K3, K3; K4 − e)
it doesn’t exist :−)
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So, what to do next?
computationally

Hard but potentially feasible tasks:

• Improve any of the Ramsey bounds
• 40 ≤ R(3, 10) ≤ 43
• 30 ≤ R(3, 3, 4) ≤ 31
• 51 ≤ R(3, 3, 3, 3) ≤ 62

• Folkman arrowing of K3
• Improve on 19 ≤ Fe(3, 3; 4) ≤ 941
• Study Fe(3, 3; G) for G ∈ {K5 − e, W5 = C4 + x}
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Thanks
for listening
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