Some Ramsey Problems Involving Triangles -Computational Approach

Stanisław Paweł Radziszowski

Department of Computer Science Rochester Institute of Technology, NY

ramsey@dimacs, 28 may 2009

Outline - Triangles Everywhere

or avoiding K_3 in some/most colors

Ramsey Numbers - Two Colors Some known and computed facts *R*(3, 10) is hard Some things to do, computationally

2 Ramsey Numbers - More Colors Some general bounds R(3,3,4), R(3,3,3,3) are hard Things to do

3 Most Wanted Folkman Number Edge-arrowing (3,3) *K*₄-free edge-arrowing (3,3) Things to do

4 So, what to do next? Summary of things to do

Ramsey Numbers

R(G, H) = n iff
 n = least positive integer such that in any 2-coloring of the edges of K_n there is a monochromatic G in the first color or a monochromatic H in the second color

- $R(k, l) = R(K_k, K_l)$
- generalizes to *r* colors, $R(G_1, \dots, G_r)$
- 2-edge-colorings \cong graphs
- Theorem (Ramsey 1930): Ramsey numbers exist

Values and Bounds on R(k, I)

two colors, avoiding cliques

l	3	4	5	6	7	8	9	10	11	12	13	14	15
k .				a 14									
2	~			1100			26	40	46	52	59	66	73
3	6	9	14	18	23	28	36	43	51	59	69	78	88
		10	-05	35	49	56	73	92	97	128	133	141	153
4		18	25	41	61	84	115	149	191	238	291	349	417
	9 <u>9</u> 3		43	58	80	101	125	143	1.59	185	209	235	265
5			49	87	143	216	316	442	010105	848		1461	10004
6	с		0 :	102	113	127	169	179	253	262	317		401
0				165	298	495	780	1171	5	2566		5033	
7	Ĩ		а		205	216	233	289	405	416	511		
<i>x</i>					540	1031	1713	2826	4553	6954	10581	15263	22116
8						282	317				817		861
8	12 ×			× 9		1870	3583	6090	10630	16944	27490	41525	63620
							565	580					
9	8. 3			s 32		8	6588	12677	22325	39025	64871	89203	
10								798					1265
10								23556		81200			45255546

[EIJC survey Small Ramsey Numbers]

#vertices / #graphs

- 3 4
- 4 11
- 5 34
- 6 156
- 7 1044
- 8 12346
- 9 274668
- 10 12005168
- 11 1018997864
- 12 165091172592 $\approx 1.6 * 10^{11}$

-too many to process-

- 13 50502031367952 $\approx 5 * 10^{14}$
- 14 29054155657235488
- 15 31426485969804308768
- 16 64001015704527557894928
- 17 245935864153532932683719776

$18~\approx 2*10^{30}$

#vertices / #triangle-free graphs

- 3 3
- 4 7
- 5 14
- 6 38
- 7 107
- 8 410
- 9 1897
- 10 12172
- 11 105071
- 12 1262180
- 13 20797002
- 14 467871369
- 15 14232552452
- $16\ 581460254001\ \approx 6*10^{11}$

-too many to process----

 $17~\approx 3*10^{12}$

Asymptotics

Ramsey numbers avoiding K₃

- Recursive construction yielding $R(3, 4k + 1) \ge 6R(3, k + 1) - 5$ $\Omega(k^{\log 6/\log 4}) = \Omega(k^{1.29})$ Chung-Cleve-Dagum 1993
- Explicit Ω(k^{3/2}) construction
 Alon 1994, Codenotti-Pudlák-Giovanni 2000
- Kim 1995 (lower bound)
 Ajtai-Komlós-Szemerédi 1980 (upper bound)

$$R(3,k) = \Theta\left(\frac{k^2}{\log k}\right)$$

Small R(3, k) cases

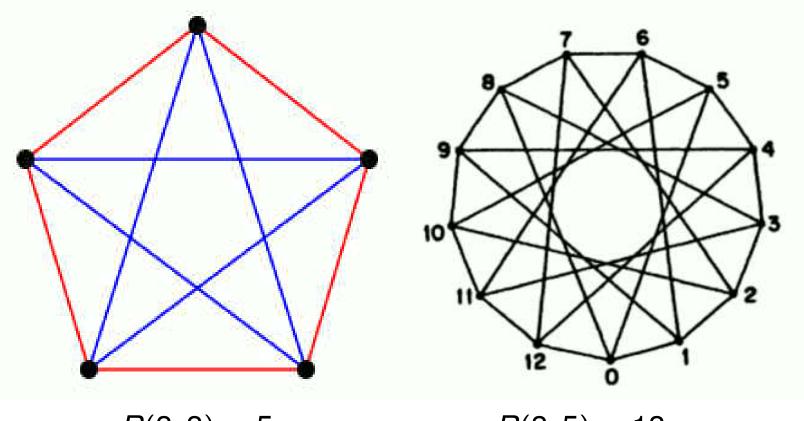
k	R(3,k)	year	reference [lower/upper]
3	6	1953	Putnam Competition
4	9	1955	Greenwood-Gleason
5	14	1955	Greenwood-Gleason
6	18	1964	Kéry
7	23	1966 / 1968	Kalbfleisch / Graver-Yackel
8	28	1982 / 1992	Grinstead-Roberts / McKay-Zhang
9	36	1966 / 1982	Kalbfleisch / Grinstead-Roberts

Known values of R(3, k)

Questions (Erdős-Sós 1980) about $3 \le \Delta_k = R(3, k) - R(3, k - 1) \le k$:

$$\Delta_k \xrightarrow{k} \infty$$
 ? $\Delta_k / k \xrightarrow{k} 0$?

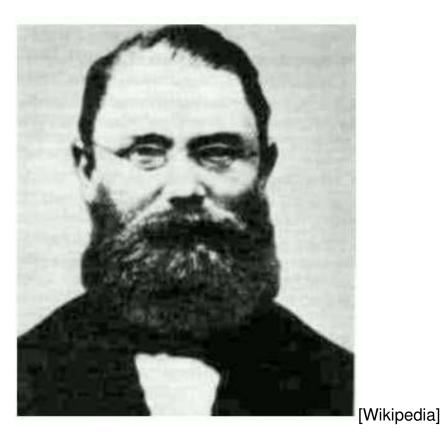
Unavoidable classics



R(3,3) > 5

R(3,5)>13 [GRS'90]

Clebsch (3, 6; 16)-graph on $GF(2^4)$ (*x*, *y*) $\in E$ iff $x - y = \alpha^3$



Alfred Clebsch (1833-1872)

Larger Cases K_3 versus $K_k - e$ or K_k

$$\begin{array}{ll} R(3,K_7-e)=21 & R(3,K_8-e)=25 & R(3,K_9-e)=31 \\ R(3,7)=23 & R(3,8)=28 & R(3,9)=36 \end{array}$$

All $R(3, K_k - e)$ critical graphs are known for $k \le 8$ All $R(3, K_k)$ critical graphs are known for $k \le 7$

First open cases:

 $\begin{array}{ll} 37 \leq R(K_3, K_{10} - e) \leq \textbf{38}, & 42 \leq R(K_3, K_{11} - e) \leq 47 \\ 40 \leq R(K_3, K_{10}) & \leq \textbf{43}, & 46 \leq R(K_3, K_{11}) & \leq 51 \end{array}$

Counting edges

computing R(3, 10) is difficult

Def: $e(k, n) = \min \#$ edges in *n*-vertex Δ -free *k*-graphs

- Very good lower bounds on e(k 1, n d) give good lower bounds on e(k, n)
- For any graph $G \in R(k, n, e)$

$$ne - \sum_{i=0}^{k-1} n_i(e(k-1, n-i-1) + i^2) \ge 0$$

- *e*(9, *n*) not known for 27 ≤ *n* ≤ 35 seem needed before improving on *e*(10, *n*) for *n* > 37
- known e(8, n)-graphs not sufficient to improve on e(9, n)

$R(K_3, G)$

general non-asymptotic results

- *R*(*nK*₃, *mK*₃) = 2*n* + 3*m*, for *n* ≥ *m* ≥ 1, *n* ≥ 2, Burr-Erdős-Spencer 1975
- $R(C_3, C_n) = R(K_3, W_n) = 2n 1$ Faudree-Schelp 1974, Burr-Erdős 1983 all critical colorings, R-Jin 1994
- $R(K_3, G) = 2n(G) 1$, for connected G $e(G) \le 17(n(G) + 1)/15$, $n(G) \ge 4$ Burr-Erdős-Faudree-Rousseau-Schelp 1980
- $R(K_3, G) \le 2e(G) + 1$, isolate-free G $R(K_3, G) \le n(G) + e(G)$, a conjecture for all GSidorenko 1992-3, Goddard-Kleitman 1994
- $R(K_3, G)$ for all connected G, $n(G) \le 9$ Brandt-Brinkmann-Harmuth 1998-2000

Things to do for two colors

- Enumerate all critical (3, 8; 27)-graphs 430K+ known already
- Enumerate all critical (3,9;35)-graphs only one is known!
- Finish off $37 \le R(3, K_{10} e) \le 38$
- *R*(3, 10) ≤ 43, get it down first to 42 (*R*(3, 10) ≥ 40, don't even try to do better)

More colors

$$R(k_1,\ldots,k_r) \leq 2-r + \sum_{i=1}^r R(k_1,\ldots,k_{i-1},k_i-1,k_{i+1},\ldots,k_r)$$

with strict < if the RHS is even and sum has en even term Greenwood-Gleason 1955

Only two known multicolor cases, (3,3,4) and (3,3,3,3), where the RHS is improved. Likely this bound is never tight, except for (3,3,3).

More colors

some results

- Xu-Xie-Exoo-R 2004
 - for $k_1 \ge 5$ and $k_i \ge 2$ $R(k_1, 2k_2 - 1, k_3, \cdots, k_r) \ge 4R(k_1 - 1, k_2, k_3, \cdots, k_r)$
 - using $k_1 = l, k_2 = 2, k_3 = k$ in the above $R(3, k, l) \ge 4R(k, l 1) 3$
 - use k = 3 $R(3,3,l) \ge 4R(3,l-1) - 3$
- $R(3,3,k) = \Theta(k^3 \text{poly-log } k)$ Alon-Rődl 2005

$R_r(3) = R(3,3,\cdots,3)$

• Much work on Schur numbers s(r)via sum-free partitions and cyclic colorings $s(r) > 89^{r/4-c\log r} > 3.07^r$ [except small r] Abbott+ 1965+

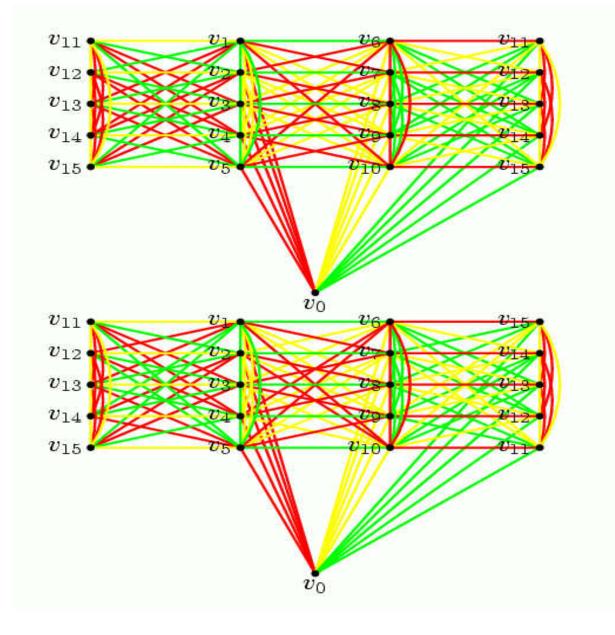
•
$$s(r) + 2 \le R_r(3)$$

 $s(r) = 1, 4, 13, 44, \ge 160, \ge 536$

- $R_r(3) \ge 3R_{r-1}(3) + R_{r-3}(3) 3$ Chung 1973
- The limit $L = \lim_{r \to \infty} R_r(3)^{\frac{1}{r}}$ exists Chung-Grinstead 1983 $(2s(r) + 1)^{\frac{1}{r}} = c_r \approx_{(r=6)} 3.199 < L$

R(3,3,3) = 17

two Kalbfleisch (3, 3, 3; 16)-colorings, each color is a Clebsch graph



[Wikipedia]

Three colors - R(3, 3, 4)

the only (as of now) not hopeless case

- $30 \le R(3,3,4)$, cyclic coloring, Kalbfleisch 1966
- $R(3,3,4) \leq 31$, computations, Piwakowski-R 1998

Theorem (Piwakowski-R 2001): R(3,3,4) = 31 iff there exists a (3,3,4;30)-coloring *C* in which every edge in 3-rd color has an endpoint *x* with degree 13. Furthermore, *C* has at least 25 vertices with color degree sequence (8,8,13).

Proof: Gluing possible arrangements of color induced neighborhoods of v in a (3, 3, 4; 30)-coloring:

 $(3, 4; s), (3, 4; t), (3, 3, 3; u \ge 14)$ with s + t + u = 29

too many (3, 3, 3; 13)'s to proceed further \diamond

Four colors - $R_4(3)$

 $51 \leq R(3,3,3,3) \leq 62$

year	reference	lower	upper
1955	Greenwood, Gleason	42	66
1967	false rumors	[66]	
1971	Golomb, Baumert	46	
1973	Whitehead	50	65
1973	Chung, Porter	51	
1974	Folkman		65
1995	Sánchez-Flores		64
1995	Kramer (no computer)		62
2004	Fettes-Kramer-R (computer)		62

History of bounds on $R_4(3)$ [from FKR 2004]

Four colors - $R_4(3)$

color degree sequences for (3, 3, 3, 3; \geq 59)-colorings

n	orders of $N_\eta(v)$	
65 64 63	[16, 16, 16, 16] [16, 16, 16, 15] [16, 16, 16, 14]	Whitehead, Folkman 1973-4 Sánchez-Flores 1995
62	[16, 16, 15, 15] [16, 16, 16, 13] [16, 16, 15, 14] [16, 15, 15, 15]	Kramer 1995+ – Fettes-Kramer-R 2004
61	[16, 16, 16, 12] [16, 16, 15, 13] [16, 16, 14, 14]	
60	[16, 15, 15, 14] [15, 15, 15, 15] [16, 16, 16, 11] [16, 16, 15, 12] [16, 16, 14, 13]	guess: doable in 2015
59	[16, 15, 15, 13] [16, 15, 14, 14] [15, 15, 15, 14] [16, 16, 16, 10] [16, 16, 15, 11] [16, 16, 14, 12] [16, 16, 13, 13] [16, 15, 15, 12] [16, 15, 14, 13]	
	[15, 15, 15, 13] [15, 15, 14, 14]	

More colors - summary

k	value	or	bounds	reference(s)
2		6		[cf. Bush 1953]
3	3 17			Greenwood-Gleason 1955
4	51	—	62	Chung 1973 – Fettes-Kramer-R 2004
5	162	—	307	Exoo 1994 – easy
6	538	_	1838	Fredricksen-Sweet 2000 – easy
7	1682	_	12861	Fredricksen-Sweet 2000 – easy

Bounds and values of $R_k(K_3)$

Things to do

computational multicolor Ramsey numbers problems

- improve $45 \le R(3, 3, 5) \le 57$
- finish off $30 \le R(3, 3, 4) \le 31$
- understand why heuristics don't find $51 \le R_4(3)$
- improve on $R_4(3) \leq 62$

More Arrowing

F, G, H - graphs, s, t, s_i - positive integers

Definitions

 $F \rightarrow (s_1, ..., s_r)^e$ iff for every *r*-coloring of the edges *F* contains a monochromatic copy of K_{s_i} in some color *i*.

 $F \rightarrow (s_1, ..., s_r)^v$ iff for every *r*-coloring of the vertices *F* contains a monochromatic copy of K_{s_i} in some color *i*.

 $F \rightarrow (G, H)^e$ iff for every red/blue edge-coloring of F, F contains a blue copy of G or a red copy of H.

Facts

$$R(s,t) = \min\{n \mid K_n \to (s,t)^e\}$$

$$R(G,H) = \min\{n \mid K_n \to (G,H)^e\}$$

Folkman problems

edge Folkman graphs $\mathcal{F}_e(s, t; k) = \{G \rightarrow (s, t)^e : K_k \not\subseteq G\}$

edge Folkman numbers

 $F_e(s, t; k)$ = the smallest *n* such that there exists an *n*-vertex graph *G* in $\mathcal{F}_e(s, t; k)$

vertex Folkman graphs/numbers

2-coloring vertices instead of edges

Theorem (Folkman 1970): For all k > max(s, t), edgeand vertex Folkman numbers $F_e(s, t; k)$, $F_v(s, t; k)$ exist.

Two small cases

warming up

- $G = K_6$ has the smallest number of vertices among graphs which are not a union of two K_3 -free graphs, or
 - $K_6 \rightarrow (K_3, K_3)^e$ and $K_5 \not\rightarrow (K_3, K_3)^e$

• What if we want *G* to be *K*₆-free? Graham (1968) proved that

•
$$K_8 - C_5 = K_3 + C_5
ightarrow (K_3, K_3)$$

 $|V(H)| < 8 \land K_6 \not\subset H \Rightarrow H \not\rightarrow (K_3, K_3)$

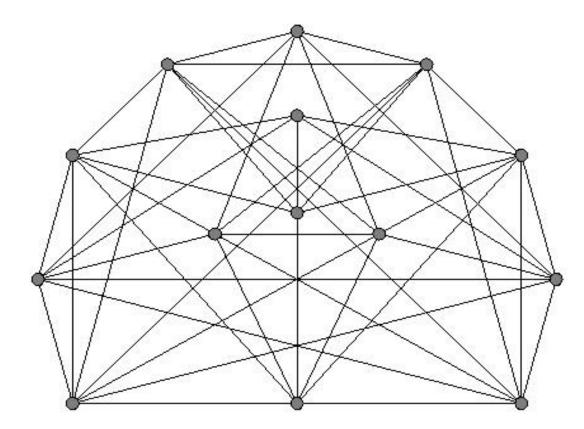
Known values/bounds for $F_e(3, 3; k)$

the challenge is to compute $F_e(3, 3; 4)$

 $k > R(s, t) \Rightarrow F_e(s, t; k) = R(s, t)$ $k \le R(s, t)$, very little known in general

k	F _e (3,3;k)	graphs	reference
<u>></u> 7	6	K ₆	folklore
6	8	$C_5 + K_3$	Graham 1968
5	15	659 graphs	Piwakowski-Urbański-R 1999
4	\leq 941	$\alpha^5 \mod 941$	Dudek-Rődl 2008

$F_e(3,3;5) = 15$, and $F_v(3,3;4) = 14$ $G + x \rightarrow (3,3)^e$, and $G \rightarrow (3,3)^v$



unique 14-vertex bicritical $F_v(3,3;4)$ -graph $G_{[PRU 1999]}$

28/40 Most Wanted Folkman Number

History of upper bounds on $F_e(3, 3; 4)$

- 1967 Erdős, Hajnal state the problem
- 1970 Folkman proves his theorem for 2 colors VERY large bound for $F_e(3,3;4)$.
- 1975 Erdős offers \$100 (or 300 Swiss francs) for deciding if F_e(3, 3; 4) < 10¹⁰
- 1988 Spencer, probabilistic proof for the bound 3×10^8 (1989 Hovey finds a mistake, bound up to 3×10^9)
- 2007 Lu, \leq 9697, spectral analysis of modular circulants
- 2008 Dudek-Rődl, $F_e(3,3;4) \le 941$ circulant arc lengths $\alpha^5 \mod 941$

$$F_e(3,3;4) \le 941$$

some details of the proof by Dudek-Rődl

• Theorem: If for every vertex $v \in V(G)$

$$Maxcut(G[N(v)]) < \frac{2}{3}|E(G[N(n)])|$$

then $G \rightarrow (3,3)^e$.

• Define graph H on vertices E(G) with edges $\{(e, f) : e, f \in E(G), efg \text{ is a triangle in } G \text{ for some } g\}.$

Maxcut approximation in *H* can imply $G \rightarrow (3,3)^e$.

• This works for the graph

$$G = (Z_{941}, \{(i, j) : i - j = \alpha^5 \mod 941\})$$

History of lower bounds on $F_e(3, 3; 4)$

- $10 \le F_e(3,3;4)$ Lin 1972
- $16 \le F_e(3,3;4)$ Piwakowski-Urbański-R 1999 since $F_e(3,3;5) = 15$, all graphs in $\mathcal{F}_e(3,3;5)$ on 15 vertices are known, and all of them contain K_4 's
- $\begin{tabular}{ll} & 19 \leq F_e(3,3;4) & $$$ R-Xu\ 2007$ \\ & 18 \leq F_e(3,3;4) & $$$ proof "by hand"$ \\ & 19 \leq F_e(3,3;4) & $$$ computations $$ \end{tabular}$
- ANY proof technique improving on 19 very likely will be of interest

Testing arrowing is hard

theory/practice

- Testing whether $F \rightarrow (3,3)^e$ is **coNP**-complete Burr 1976
- Determining if R(G, H) < m is NP-hard Burr 1984
- Testing whether $F \rightarrow (G, H)^e$ is Π_2^p -complete Schaefer 2001
- Implementing fast $F \rightarrow (3,3)^e$ is challenging

$$G_{127} = (\mathcal{Z}_{127}, E)$$

 $E = \{(x, y) | x - y = \alpha^3 \pmod{127} \}$

Ramsey (4, 12)-graph, a color in (4, 4, 4; 127) Exoo started to study if $G_{127} \rightarrow (3,3)^e$

- 127 vertices, 2667 edges, 9779 triangles
- no K_4 's, independence number 11, regular of degree 42
- vertex- and edge-transitive
- 5334 (= 127 * 42) automorphisms
- (127, 42, 11, {14, 16}) regularity
- K_{127} can be partitioned into three G_{127} 's

Reducing $\{G \mid G \not\rightarrow (3,3)^e\}$ to 3-SAT

edges in $G \mapsto$ variables of ϕ_G each (edge)-triangle *xyz* in $G \mapsto$ add to ϕ_G

 $(x + y + z) \wedge (\overline{x} + \overline{y} + \overline{z})$

Clearly,

$$G \not\rightarrow (\mathbf{3}, \mathbf{3})^{e} \iff \phi_{G}$$
 is satisfiable

For $G = G_{127}$, ϕ_G has 2667 variables and 19558 3-clauses, 2 for each of the 9779 triangles.

Note: By taking only the positive clauses, we obtain a reduction to ϕ'_{G} in NAE-3-SAT with half of the clauses.

Use SAT-solvers

SAT 2007 Competition 3 medals in each of 9 categories

(random, crafted, industrial) \times (SAT, UNSAT, ALL)

SATzilla CRAFTED (UBC) - winner of 2007 competition in the category (crafted, UNSAT) - the one we need!

Rsat, Picosat, Minisat, March_KS other recent leading SAT-solvers

 $G_{127} \rightarrow (3,3)^e$?

zChaff experiments on $\phi_{G_{127}}$

- Pick $H = G_{127}[S]$ on m = |S| vertices. Use zChaff to split *H*:
 - $m \le 80$, *H* easily splittable
 - $m \approx 83$, phase transition ?
 - $m \ge 86$, splitting *H* is very difficult
- #(clauses)/#(variables) = 7.483 for G₁₂₇, far above conjectured phase transition ratio r ≈ 4.2 for 3-SAT. It is known that

 $3.52 \le r \le 4.596$

Folkman problems to work on

Is it true that $50 \le F_e(3,3;4) \le 100$?

- Decide whether $G_{127}
 ightarrow (3,3)^e$
- Improve on $19 \le F_e(3, 3; 4) \le 941$
- Study $F_e(3,3;G)$ for $G \in \{K_5 e, W_5 = C_4 + x\}$
- Study $F_e(K_4 e, K_4 e; K_4)$
- Don't study F_e(K₃, K₃; K₄ e)
 it doesn't exist :-)

So, what to do next?

computationally

Hard but potentially feasible tasks:

- Improve any of the Ramsey bounds
 - $40 \le R(3, 10) \le 43$
 - $30 \le R(3,3,4) \le 31$
 - $51 \le R(3,3,3,3) \le 62$
- Folkman arrowing of K_3
 - Improve on $19 \le F_e(3,3;4) \le 941$
 - Study $F_e(3,3;G)$ for $G \in \{K_5 e, W_5 = C_4 + x\}$

References

- Alexander Soifer
 The Mathematical Coloring Book, Springer 2009
- SPR's survey Small Ramsey Numbers at EIJC, revision #11, Aug 2006, here and on the web. All other references therein.
- Survey revision #12 in the Summer 2009 ...

Thanks for listening

40/40 So, what to do next?