

Developing an Applied, Security-Oriented Computing Curriculum

Abstract

Software and hardware security is a reality that all stakeholders must face, from hardware

engineers to software developers to customers. As a direct result, the technology industry is

facing a growing need for engineers who understand security principles at varying levels of

abstraction. These engineers will need security-oriented perspectives stemming from both

theoretical and practical disciplines, including software engineering, computer engineering, and

computer science. Unfortunately, in traditional academic settings, secure software and hardware

are typically taught independently despite being intertwined in practice. Consequently, the

objective of this initiative is to prepare students to apply a security-oriented awareness to a broad

range of hardware and software systems by developing a multi-disciplinary curriculum involving

three departments. Our efforts at Rochester Institute of Technology focus on integrating security

into software design and implementations, hardware design and implementations, and hardware-

software co-design. In the cluster of courses described in this paper, we use cryptographic

applications as the motivating security focus. We describe changes made to an existing

introductory cryptography course, report on a recently-developed course entitled Hardware and

Software Design for Cryptographic Applications, and present our plans for a Secure Software

Engineering course.

1. Introduction

With the pervasiveness and importance of cyberinfrastructure in modern society, secure

computing and communication have become critically important. Applications with important

security requirements include e-commerce, voice/video communications, military operations,

secure databases, and financial market transactions. As a result, the technology industry has a

growing need for secure infrastructure at lower levels, such as disk drives, processors (e.g., built-

in encryption/decryption), trusted system boards, network switching elements, mobile devices,

and sensors. Security at any point in the infrastructure requires careful attention to algorithm

choice and implementation method, with trade-offs between software and hardware being

particularly important at these lower levels. The development of these secure systems requires a

population of entry-level developers who have knowledge and skills beyond standard hardware

and software design. A key element of this is an understanding of cryptographic algorithms and

their implementations. To gain the necessary knowledge and skills, a student must learn concepts

from multiple disciplines including computer engineering, computer science, and software

engineering.

In traditional computing curricula, computer engineering students usually learn how to design

general purpose digital systems, but they lack the knowledge related to the design of specialized

cryptographic circuits and optimizations of hardware-software co-designs. Those students who

do some cryptographic design might construct a hardware implementation of the algorithm

without knowing the fundamental theory on which it is based. Computer science and software

engineering students study cryptographic algorithms mostly as a rigorous mathematical exercise

with some software implementation. They rarely investigate the performance of their

implementations and are usually not familiar with software optimizations or hardware

implementations. In many applications, implementation aspects are crucial because

cryptographic algorithms have demanding resource requirements. This is especially true when

they operate upon data from a streaming communications channel, with a constrained power

budget, or in an environment where side-channel attacks can be exploited to compromise the

system.

To study security across multiple disciplines - computer engineering, software engineering, and

computer science – we are developing a cluster of applied cryptography courses, and created a

laboratory with state-of-the-art field programmable gate array (FPGA) hardware boards and

development stations tailored for the study of efficient software, hardware, and combined

hardware-software implementations. The goal of the Hardware and Software Design for

Cryptographic Applications course is to build knowledge and skills necessary for efficient and

secure implementations of cryptographic primitives in software and hardware. The goal of the

Engineering Secure Software course is to teach students how to apply security principles to every

phase of the software development lifecycle.

We are confident that students who take the courses that this project develops will be aware of

varied approaches for implementing cryptographic algorithms along with techniques to assess

their strengths and weaknesses, and measure system performance. They will also be able to apply

best practices to design a broad range of secure software systems. Finally, these courses will

increase awareness and interest in cryptography and secure computing which is needed for an

overall improvement in system security.

2. Role of Cryptography in Multidisciplinary Computing Education

Cryptographic algorithms, and their secure implementations, are required in a growing number

of computing systems. The specification, selection, and development of cryptographic solutions

require consideration of algorithm performance, software design, and hardware design. The

current study of cryptography typically does not cross disciplines to span this range of skills

from fundamental theory to practical implementation.

This new curriculum introduces students across multiple computing disciplines to the broad

range of topics associated with cryptographic algorithms and their realization in hardware and

software. Students engage in multi-disciplinary activities on real cryptographic problems,

extending their knowledge and skills well beyond that of their home discipline. Students who

possess this broad range of knowledge and skills will be more effective developers of secure

systems.

3. Cryptography Courses at Rochester Institute of Technology

For several years, we have been offering coursework in cryptography in the Department of

Computer Science. Cryptography I, a traditional introductory course, covers block ciphers, hash

functions, and public-key systems together with the mathematics behind it. In the last offering of

Cryptography I, we introduced a new thread on efficiency and secure implementations of

cryptographic algorithms. This new material encourages students to enroll in one or both of the

new courses discussed below.

Cryptography I – Introduction to Cryptography

In the basic cryptography course offered in Computer Science, we attempt to provide students

with a balanced mathematical approach but avoid very formal concepts of security. This course

includes the topics typically covered in an undergraduate cryptography course, such as, the

private- and public-key cryptosystems with mathematical background, or authentication

methods. We do, however, spend significant effort on studying the computational side of various

cryptographic primitives and protocols. Students complete programming assignments of a

limited scope, but typically they do not involve fine-tuned implementations needed by real

applications. In addition, hardware issues shaping many of the current requirements of industrial

cryptographic protocols are only mentioned in passing. The main new component of the

modified Cryptography I course makes students more sensitive to efficiency and practical limits

of cryptographic applications. First, the students learn about feasibility of cryptographic

algorithms (or desired infeasibility of attacks on them) from the point of view of the general

theory of algorithms and computational complexity theory. What, in principle, could work, and

what rather will not. The redesigned Cryptography I course also includes basic hardware

considerations in the design of heavily used primitives, for example in the Advanced Encryption

Standard (AES) or in the recently launched NIST SHA-3 competition for the design of a new

hash standard. The discussion of side-channel attacks was added to the basic course, though

more technical study of the feasibility of such attacks is delayed to a following course.

Cryptography II – Advanced Cryptographic Algorithms

This course investigates advanced topics in cryptography. It begins with an overview of the

necessary background in algebra and number theory, private- and public-key cryptosystems, and

basic signature schemes. The course covers the number theory and basic theory of Galois fields

used in cryptography; history of primality algorithms and the polynomial-time test of primality;

discrete logarithm-based cryptosystems including those based on elliptic curves; interactive

protocols including the role of zero-knowledge proofs in authentication; construction of

untraceable electronic cash on the net; and the basics of quantum cryptography. Other topics may

include digital watermarking, fingerprinting, and steganography. Programming exercises are

required.

4. Hardware and Software Design for Cryptographic Applications

The primary goal of this course is to build the knowledge and skills necessary for efficient and

secure implementations of cryptographic primitives in software and hardware. The

implementation platform is a field programmable gate array (FPGA) containing a general

purpose processor and additional reconfigurable fabric for implementations of custom hardware

accelerators. Student teams design selected cryptographic algorithms then compare and contrast

various implementation alternatives, such as software, custom FPGA hardware, and hybrid

hardware-software co-design. Project teams are ideally composed of one computer engineering

student and one software engineering or computer science student.

Structure

A list of topics covered in the course is shown in Table 1.

Table 1 - Hardware-software design course topics

Lecture topic Hands-on assignments

Security need, applications of private- and

public-key cryptosystems, overview of

 public-key cryptosystems, cryptographic hash

functions and their applications

General hardware-software co-design flow for

platform FPGAs, hard- and soft-core

processors, communication interfaces,

performance, flexibility and cost trade-offs

Using Xilinx Platform Studio (XPS) to create

hardware and software for an FPGA-based

system-on-chip;

Profiling software with hardware timers,

interrupts, advanced software design flow with

Xilinx Software Development Kit (SDK)

FPGA technology overview, binary finite

 field arithmetic, block ciphers, Advanced

Encryption Standard

Implementing the AES-128 block cipher in

software, profiling software with hardware timers

and gprof, modifying code to improve

performance, performance gain/cost analysis

Hardware-software co-design with Impulse C

Impulse C tutorial, using Impulse C to port the

AES algorithm to run on the FPGA board,

performance gain/hardware cost analysis,

exploiting parallelism and pipelining at the

software level, coding techniques for parallelism

and pipelining

Block cipher modes: ECB, CBC, OFB,

AES-Galois/Counter Mode

AES-Galois/Counter Mode software

implementation

Introduction to design of custom hardware

accelerators, VHDL modeling for synthesis,

overview of communication interfaces, design

flow and hardware-software debugging

FPGA design flow with the Xilinx

toolchain and VHDL

Area and performance oriented hardware

architectures of AES, overview of secure

hardware design techniques

Implementing custom AES hardware component

Material

At a high level there are four different areas of material that are covered in both lecture topics

and lab assignments: 1) cryptographic foundations, 2) FPGA-based embedded systems, 3)

embedded software development and optimization, and 4) hardware and hardware-software

design and development. These different areas were unified through the various stages of

development of the AES block cipher and SHA-3 hash functions
1,2,3

.

1) Cryptographic Foundations

Although AES is the primary candidate for lectures and exercise material due to its prominence

as the leading block cipher, other fundamental cryptographic primitives were discussed to

enlighten students about the ubiquitous need for security. In particular, topics on hash functions

and the SHA-3 competition, RSA, ElGamal, and elliptic curve public-key cryptosystems
4
 were

integrated into the course schedule. Basic mathematical properties and operations that are

utilized in such designs were covered in order for the students to grasp the specific details of

these algorithms.

2) FPGA-Based Embedded Systems

Due to a strong interdependence of hardware and software in FPGA-based embedded systems, as

well as the numerous performance, power, and size constraints that these systems face, we felt it

was appropriate to use them as the basis for all of our development work in this course. In

particular, this choice allowed us to look at:

 Algorithm acceleration with spatial (parallel) computing in an FPGA fabric.

 Flexibility of processor-based computing using high-level software tools.

 Exploiting tightly coupled hardware and software domains for performance and

flexibility benefits, though only addressing some of the practical aspects. A more in depth

treatment was described by Schaumont
5
.

In this course, we utilized the Xilinx ML507, a general FPGA-based development platform.

Lectures addressed the underlying FPGA technology specific to this platform, including details

related to the FPGA fabric and configurable logic blocks, system buses and memory interfaces,

and hard-core PowerPC and soft-core MicroBlaze processors.

3) Embedded Software Development and Optimization

Since one of the threads of the course was focused on translating cryptographic algorithms and

designs into running software and hardware, a fundamental lecture and lab topic was profiling

and analyzing these implementations to identify areas for potential performance improvement.

Student optimization efforts in these areas were mainly focused on the profiling techniques used

in embedded software environments and the different source code optimization techniques that

can improve performance in localized areas of the software. Some instrumentation, profiling, and

optimization techniques that the students used were:

 Using timer components as an instrumentation mechanism in an existing embedded

system to profile an application using raw cycle count measurements.

 Using the GNU profiling tool gprof to analyze source code.

 Experimenting with common source code optimization techniques, such as data width

adjustments, static versus dynamic memory allocation, variable scope relocation, loop

manipulation, and function invocation.

4) Hardware and Hardware-Software Design and Development

To facilitate the initial hardware and hardware-software development we chose to use Impulse C,

a C-to-FPGA programming model and compilation engine that promotes rapid prototyping of

digital hardware using a subset of the C programming language. Using Impulse C as an efficient

tool in development of hardware systems by software oriented students was studied by Dandass
6
.

In our course students used it to transform their existing software designs for AES to hybrid

hardware-software solutions that performed at significantly higher levels.

Once the students finished experimenting with their Impulse C designs, their next and final task

was to take their existing designs one step further and focus on custom hardware accelerators for

the AES encryption engine. This involved an understanding of basic hardware modeling and

digital design concepts. The assignments in this portion of the course were led by the computer

engineering students. To account for students without an extensive hardware background, a

single class was dedicated to an overview of VHDL syntax, development practices, and

modeling techniques.

Once the students became acquainted with hardware modeling techniques and design flows, we

provided them with a working implementation of the AES engine. After verifying the

functionality of this model using a provided test bench, the students were asked to modify this

implementation to shorten the width of the data path using a folded register architecture. The

overall workflow for this portion of the course is shown in Figure 1.

The first stage depicts the original software version of AES as it was run on the ML507

development board. The top two stages show the incremental development cycle we used to

translate the software version into a hardware-software co-designed application using Impulse C.

The bottom stage depicts the design of the custom hardware accelerated version of AES, where

the software was only responsible for driving the internal logic of the hardware component.

Project

The SHA-3 hash function candidates were the basis for the course project due to their current

and future widespread influence in academia and industry. With the final round of the NIST

SHA-3 competition in place, research efforts have been increasingly focused towards the five

remaining candidate functions: BLAKE, Grøstl, JH, Keccak and Skein
3
. Given the importance of

selecting the candidate that provides the best combination of security, performance, simplicity,

and modularity, many teams across the world have focused on the analysis of the mathematical

and statistical properties, and the implementation efficiency of these five hash functions.

In our course, we divided the students into five teams, each focusing on a single SHA-3 finalist.

The term-long project had four major parts culminating with a research paper and presentation

by each team. The highlights of each part were:

 Researching the history of hash functions, the current standard hash functions, and recent

advancements in cryptanalysis efforts that target hash functions.

 Discussing the internal algorithmic details of the team’s hash function, which serves as a

basis for the remaining parts of the project.

 Analyzing published research efforts on the design, implementation and performance of

the hash function.

 Implementing the hash function in software using the publicly available resources

provided by each SHA-3 candidate team.

In order for students to have a common baseline for comparison of their results, all teams

implemented the 512-bit digest versions of these hash functions. All teams quantified their

implementation’s performance by collecting cycles/byte measurements on fixed sized messages.

Figure 1 - Incremental development of AES as studied in the course.

Outcomes

The overall objective of this course is to equip future engineers with the knowledge and skills

necessary to implement security-related applications, specifically, cryptographic algorithms,

across both hardware and software. We designed the course to give students the ability to:

 Customize and implement an FPGA based embedded processor system in order to build

and run cryptographic primitives.

 Profile software applications and identify performance bottlenecks.

 Apply optimization techniques to improve application performance at different levels of

abstraction.

 Analyze performance costs and gains in both hardware and software.

 Use Impulse C to perform high-level synthesis of C programs into FPGA hardware.

 Implement a custom hardware accelerator for the selected architecture to achieve

performance and area goals.

5. Engineering Secure Software

In the spring term of 2012, we will be introducing a new undergraduate course developed in the

Department of Software Engineering entitled Engineering Secure Software. The primary goal of

this course is to equip students with the skills, principles, and knowledge needed to develop

secure software. While related courses have focused on defensive coding practices
7,8,9

,

information assurance
10

, and software testing
11

, our course will have the added emphasis of

software engineering practices such as requirements engineering, secure designs, maintenance,

and assessment. The course will start as an upper-class elective seminar, but will be required for

all undergraduate software engineering majors starting in fall 2012.

Structure

The class will meet twice per week over nine weeks with two-hour sessions in a combined

lecture-laboratory setting. The schedule for each day is a 10-minute Vulnerability of the Day

(VotD), a 40-minute lecture of the day’s material, and an hour-long associated activity.

The purpose of the VotD is to cover concrete, code-level security vulnerabilities found in

production-level software. In an effort to maintain student interest, we chose to break up the

discussion of vulnerabilities as one VotD each class session, which eliminates the monotony of

learning many different vulnerabilities in one or two sessions. This also provides the students

with both abstract principles and concrete code examples each day in class. Many of the

vulnerabilities come from the Common Weakness Enumeration (CWE), with an emphasis on the

Top 25 Vulnerabilities
12

. Examples of the VotD include: SQL injection, cross-site scripting,

buffer overflow, and HTTP response splitting. Each VotD is taught as a potential coding mistake

that a developer can make. In each VotD, the instructor covers a code example, the potential

threat of the vulnerability, and mitigations.

A lecture follows after the VotD. The purpose of the lecture is to cover the theoretical and

practical principles behind secure software as it applies to the day’s phase of the software

development lifecycle (SDLC). For example, in covering the design phase, we cover security

risks associated with conventional design patterns, along with a collection secure design

patterns
13

. After the lecture, the material is reinforced by a daily activity. Working in pairs,

students will follow tutorials on a tool or technique. Some days are devoted to learning and

applying a given software tool, other days involve an interactive exercise with teammates.

Table 2 - Mapping security principles to software engineering practices

Software engineering practice Topics covered Tools and activities

Requirements Abuse cases, personas, anti-

requirements, compliance, privacy

Planning Risk assessment, threat modeling Microsoft Threat

Modeling tool
15

Design & Modeling Secure design patterns,

architectural risks, role-based

access control, formal model

checking

Alloy
16

Implementation Defensive coding practices, code

reviews, static analysis

Vulnerability of the

Day, web application

activity

Testing Unit test generation, fuzz testing,

penetration testing, exploratory

testing

JTest
17

Deployment Deployment of cryptographic

algorithms and networks,

sandboxing, authentication

Wireshark
18

, Java

Security Manager

Maintenance & Assessment Common Vulnerability Scoring

System
19

, patch management,

responsible disclosure

Material

With the target audience being software developers, the emphasis of the course is on secure

software over security software. Our guiding principle is to show how security applies to each

practice of the SDLC
14

. Practices of the SDLC include: requirements, planning, design,

modeling, implementation, testing, deployment, maintenance, and assessment. A map from

software engineering practice to the security topics covered can be found in Table 2.

One may notice that “classic” security practices, such as networking and cryptography, are

covered, yet with the focus on software deployment. With our target audience being developers,

the emphasis is on providing the knowledge they need to select and use cryptographic software

appropriately.

Projects

The course contains two major projects: a project case study and a programming assignment.

For the case study, students will work in teams of two or three to assess the security of a large,

open source software product. Students are required to select a case study that has (a) significant

security implications if exploited, (b) a public record of fixed vulnerabilities, and (c) publicly-

available source code. The project involves incrementally submitting three parts of a paper:

domain analysis, design analysis, and code analysis. As the material is covered in class, students

analyze their own case studies to enumerate the threats to their case study’s domain, potential

design-level vulnerabilities, as well as potential code-level vulnerabilities. Teams who find and

report previously unknown security vulnerabilities in their case study will receive extra credit.

To aid the open source community, the best papers will be disseminated to the development

teams associated with the software products analyzed in the papers.

In addition to the case study, students will work in teams to build a custom web application fuzz

tester (i.e. “fuzzer”). A web application fuzzer is a program that searches a website for its inputs

and automatically constructs potential exploits for those inputs. The result is a sequence of HTTP

requests sent to the system under test and resulting responses that the fuzzer processes in an

effort to find a vulnerability.

While web application fuzzing tools exist, using them in practice requires a significant amount of

customization effort. Given a simple skeleton program, students will develop a fuzzer that can be

customized to an arbitrary web application in a short period of time. Students will be given one

testbed web application and a list of exploits to test their fuzzers. To evaluate their fuzzer,

students will be given one two-hour block to test their fuzzer on a real web application that was

developed in a web application development course.

Outcomes

The overall objective of this course is to give future software engineers an awareness of security

risks and mitigations. Students will learn how to design, code, and test for security in their

software as that software is being built. Specifically, the course will give students the ability to:

 Apply contemporary formal mathematical modeling techniques to model and analyze the

security of a software system.

 Identify project security risks; select and follow risk management strategies.

 Use statistical methods to collect and analyze metrics for assessing and improving the

security of a product, process, and project objectives.

 Describe and discuss security concerns at multiple levels of abstraction.

 Comply with data privacy and security requirements when designing a software system.

 Design a software solution for secure access and protection of data.

 Use quality assurance activities and strategies that support early vulnerability detection

and contribute to improving the development process.

6. Project Results

There are three distinct inputs to the evaluation of this project: (a) external industrial and

academic evaluators who work in the cryptography area, (b) the PIs working on the project, and

(c) the students who take the courses. These three constituencies are the most appropriate ones

to evaluate our work. In the remainder of this section, we comment on our evaluation results to

date for two of the courses in this project.

Cryptography Course Surveys

To propagate the information about previously discussed curriculum changes and our two new

courses, we prepared an attitudinal survey and administrated it several times to students enrolled

in the Cryptography I course. In this survey, we asked a number of questions regarding the

students' prior experience with cryptography, reasons for enrolling in this course and their future

academic and career interests in this area.

We are pleased that most of the students expressed a high interest and support for our efforts.

There was an overwhelming agreement that the upgraded Cryptography I increased students’

interest in cryptography after taking the course and would possibly assist with employment in the

security area. The following are some exemplary quotes from students:

I am excited to see the possibility of a multiple discipline 'cluster', since a single term

only enables one to view a specific element of the field of cryptography in any

comprehensive, meaningful way.

I think that developing the multi-disciplinary course cluster will be extremely beneficial

to the students that choose to participate in it. In my opinion, combining applied

cryptography, secure design and implementation, hardware-software co-design, and

performance aspects would set our students ahead of most schools in this discipline and

make the program much more competitive. I am 100% for developing this course cluster.

I believe that it is a great idea since most students on the software side rarely have a

chance to interact with hardware at such a low level. It would be a great opportunity to

gain better understanding of computer design and experience with systems that have

much lower amounts of resources available.

As expected, most students in Cryptography I are from the Computer Science program, with

several from both the Computer Engineering and Software Engineering programs.

Hardware and Software Design for Cryptographic Applications Course Results

Prior to the start of the Hardware and Software Design for Cryptographic Applications course,

we had one of our external project reviewers examine the material prepared for this course. His

positive review is summarized by the following comment:

The curriculum is well structured to allow students to build on their individual disciplines

with broader skills by designing and implementing real cryptographic sub-systems. The

program is logically constructed to first familiarize the student with development

platforms and then learn how to use the platforms together with state-of-the-art

development tools.

At the end of the first offering of this course we developed and administrated a new and more

elaborate survey to a body of 12 students with 10 responses. The intent here was to collect data

that would help us assess achievement of the course learning objectives and measurable

outcomes in our first of the two new courses. The main results are summarized in Tables 3 and 4.

Table 3 – Student feedback on course learning objectives

Learning objective
Strongly

agree
Agree Undecided Disagree

Strongly

disagree

Provide knowledge and understanding for

design and implementation of cryptographic

primitives on FPGA-based

embedded systems

40% 60% 0% 0% 0%

To provide knowledge and understanding of

hardware-software co-design methodologies

and techniques

60% 40% 0% 0% 0%

Table 4 – Student feedback on course learning outcomes

Learning outcomes
Strongly

agree
Agree Undecided Disagree

Strongly

disagree

Students have successfully customized and

implemented an FPGA based embedded

processor system; students understand

how to configure linker scripts and build

software projects for cryptographic primitives

70% 30% 0% 0% 0%

Students know how to profile software

applications to identify performance

bottlenecks. Students have successfully

optimized a software application to improve

performance; students have analyzed cost in

terms of the application size

50% 50% 0% 0% 0%

Students have successfully performed high

level synthesis from C programs to FPGA

hardware; students have analyzed performance

improvement in a hardware-software system

70% 30% 0% 0% 0%

Students have successfully implemented a

custom hardware accelerator for selected

architecture to achieve desired performance

cost/area

70% 30% 0% 0% 0%

In this survey, we also asked additional questions to gain insight into student's general interests

in applied cryptography, their self-assessment on background preparation and achievements in

this course. The main results referring to this part of the survey are presented in Table 5.

Table 5 – Additional student feedback

Additional questions
Strongly

agree
Agree Undecided Disagree

Strongly

disagree

The amount I learned was worth the time

invested in this course
70% 30% 0% 0% 0%

My preparation was adequate for taking this

course
60% 30% 10% 0% 0%

I would recommend to a friend to take this

course as an elective
70% 30% 0% 0% 0%

This course increased my interest in computer

security
10% 80% 0% 0% 10%

I plan to seek employment in the computer

security area
20% 0% 50% 10% 20%

7. Conclusions

Security concerns are multi-dimensional and require that computing professionals understand

topics from hardware, software, and computing theory. The required knowledge and skills span

the range from cryptography, to hardware and mixed hardware-software design and performance

measurement, to software design and vulnerabilities. Typically, courses that introduce students to

these topics are separated into individual disciplines with no effort to show the interrelationships.

We have designed a cluster of applied, security-oriented courses that brings the disciplines and

knowledge together using cryptography as the motivating application area. We have introduced

students to these cross-disciplinary areas by successfully adding performance considerations to

an existing cryptography course, developing and teaching a hardware and software design

course, and designing a course for software security. The initial results show that students are

engaged with the new material, and our results to date have achieved course goals. While

cryptography is clearly security-oriented, it is not the only application area that could use our

techniques. Computer graphics or computer gaming, to name two other areas, could be the

application area that motivates the investigation of combined hardware-software performance

and the design of secure software. The same broad multi-disciplinary approach that this project

uses is needed to achieve performance and security design requirements in those areas.

8. References

[1] National Institute of Standards and Technology (NIST), “Specification for the Advanced Encryption Standard

(AES),” Federal Information Processing Standards Publication 197, 2001.

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[2] R. Kayser, “Announcing request for candidate algorithm nominations for a new cryptographic hash algorithm

(SHA-3) family,” Federal Register, vol. 72, no. 212, November 2, 2007.

http://csrc.nist.gov/groups/ST/hash/documents/FR Notice Nov07.pdf

[3] National Institute of Standards and Technology (NIST), Computer Security Division, Cryptographic Hash

Project Website. http://csrc.nist.gov/groups/ST/hash/index.html

[4] D. Stinson, Cryptography: Theory and Practice, CRC Press, third edition, 2006.

[5] P. Schaumont, “A Senior Level Course in Hardware/Software Codesign,” IEEE Transactions on Education,

Special Issue on Micro-Electronic Systems Education, 51(3):306-311, August 2008.

[6] Y. Dandass, “Teaching Application Implementation on FPGAs to Computer Science and Software Engineering

Students,” Computers in Education Journal, Vol. 18, No. 1, January 2008.

[7] E. B. Fernandez, S. Huang, and M. M Larrondo-Petrie. “A set of courses for teaching secure software

development,” in 19th Conference on Software Engineering Education and Training Workshops, 2006. CSEETW

’06, 23- 23. IEEE, 2006.

[8] C. D. Mano, L. DuHadway, and A. Striegel. “A Case for Instilling Security as a Core Programming Skill,” in

Frontiers in Education Conference, 36th Annual, 13-18. IEEE, 2006.

[9] J. Schumacher, and D. Welch. “Educating leaders in information assurance,” IEEE Transactions on Education

45, no. 2 (May 2002): 194-201.

[10] B. Endicott-Popovsky, and D. A. Frincke. “A case study in rapid introduction of an information assurance track

into a software engineering curriculum,” in 17th Conference on Software Engineering Education and Training,

2004. Proceedings, 118- 123. IEEE, 2004.

[11] A. J. A. Wang, “Security testing in software engineering courses,” in Frontiers in Education, 2004. FIE 2004.

34th Annual, F1C- 13-18 Vol. 2. IEEE, 2004.

[12] MITRE Corporation, Top 25 Common Weakness Errors. http://cwe.mitre.org/top25.

[13] G. McGraw, Software Security: Building Security In, Addison-Wesley Professional, 2006.

[14] C. Dougherty, K. Sayre, R. C. Seacord, D. Svoboda, and K. Togashi, “Secure Design Patterns,” Technical

Report, CMU/SEI-2009-TR-010 Cert Program, Oct. 2009.

[15] http://www.microsoft.com/security/sdl

[16] http://alloy.mit.edu

[17] http://www.parasoft.com/jsp/products/jtest.jsp

[18] http://www.wireshark.org

[19] http://nvd.nist.gov/cvss.cfm

