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Abstract

For a graph G and integers ai ≥ 2, the expression G → (a1, . . . , ar)v

means that for any r-coloring of the vertices of G there exists a monochro-
matic ai-clique in G for some color i ∈ {1, · · · , r}. The vertex Folkman
numbers are defined as Fv(a1, . . . , ar;H) = min{|V (G)| : G is H-free and
G → (a1, . . . , ar)v}, where H is a graph. Such vertex Folkman numbers
have been extensively studied for H = Ks with s > max{ai}1≤i≤r. If
ai = a for all i, then we use notation Fv(ar;H) = Fv(a1, . . . , ar;H).

Let Jk be the complete graph Kk missing one edge, i.e. Jk = Kk−e. In
this work we focus on vertex Folkman numbers with H = Jk, in particular
for k = 4 and ai ≤ 3. We prove that Fv(3r; J4) is well defined for any



r ≥ 2. The simplest but already intriguing case is that of Fv(3, 3; J4),
for which we establish the upper bound of 135. We obtain the exact
values and bounds for a few other small cases of Fv(a1, . . . , ar; J4) when
ai ≤ 3 for all 1 ≤ i ≤ r, including Fv(2, 3; J4) = 14, Fv(24; J4) = 15,
and 22 ≤ Fv(25; J4) ≤ 25. Note that Fv(2r; J4) is the smallest number of
vertices in any J4-free graph with chromatic number r + 1.

Keywords: Folkman number, vertex coloring
AMS classification subjects: 05C55

1 Introduction

1.1 Notation and Background

All graphs considered in this paper are finite undirected simple graphs. The
order of the largest independent set in graph G will be denoted by α(G), and
the chromatic number of G by χ(G). Let Jk be the complete graph Kk missing
one edge, i.e., Jk = Kk − e. Note that J3 is the path on 3 vertices, and the
diamond graph J4 is formed by two triangles sharing an edge.

For a graph G and integers a1, . . . , ar, such that ai ≥ 2 for 1 ≤ i ≤ r, the
expression G → (a1, . . . , ar)v means that for any r-coloring of the vertices of
G there exists a monochromatic ai-clique in G for some color i ∈ {1, · · · , r}.
In this paper, we call this property vertex-arrowing, or simply arrowing. It
should be noted that an analogous edge-arrowing property G → (a1, . . . , ar)e

is the basis of widely studied Ramsey edge-arrowing problems. In particular,
the Ramsey number R(a1, . . . , ar) is defined as the smallest integer n such that
Kn → (a1, . . . , ar)e. All our results address vertex-arrowing, but in some places
we will refer to edge-arrowing for comparison, context, or when used as a tool.
The vertex Folkman numbers Fv are defined as

Fv(a1, . . . , ar;H) = min{|V (G)| : G is H−free and G→ (a1, . . . , ar)v},

where H is a graph. If ai = a for all i, then we use a more compact nota-
tion, Fv(ar;H) = Fv(a1, . . . , ar;H). The set of all H-free graphs satisfying the
arrowing G → (a1, . . . , ar)v will be denoted by Fv(a1, . . . , ar;H) and we will
call it the set of Folkman graphs for the corresponding parameters. Further,
Fv(a1, . . . , ar;H;n) will denote a subset of the latter when restricted to graphs
on n vertices.

Let us set m = 1 +
∑r

i=1(ai − 1). We will often use the following lemma by
Nenov [18] stating a simple necessary condition for vertex arrowing to hold.

Lemma 1. (Nenov 1980 [18]) If G→ (a1, . . . , ar)v, then χ(G) ≥ m.

Observe that if ai = 2 for all i, 1 ≤ i ≤ r, then the converse is also true.
In the terms of Folkman numbers, this means that Fv(2r;H) is equal to the
smallest number of vertices in any H-free graph G with χ(G) = r + 1 = m.
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The vertex Folkman numbers have been extensively studied when the avoided
graph is complete, i.e., when H = Ks (see [10, 17, 15, 7, 28, 19, 20]). They are
well defined when s > max{ai | 1 ≤ i ≤ r}, since it is known that for such s the
minimum in the definition ranges over a nonempty set of graphs. The situation
is easy for s ≥ m. Moreover, much is known about vertex Folkman numbers and
the corresponding Folkman graphs when s is close to, but less than, m. How-
ever, even some of the basic questions become difficult for small s, such as s = 3
or s = 4. One of the famous problems which can be stated in these terms is the
task of finding the smallest triangle-free graph with given chromatic number r,
which is equal to Fv(2r−1;K3). See the following subsection for references and
more details about this problem in relation to our current work. A recent Ph.D.
thesis by Bikov [1] presents a variety of Folkman problems, focusing on a com-
putational approach together with the known values and bounds for Folkman
numbers.

For graphs F and G, the Ramsey number R(F,G) is the smallest integer n
such that if the edges of Kn are 2-colored, say red and blue, then necessarily this
coloring includes a copy of red-colored F or a copy of blue-colored G. If F and
G are complete graphs, then we write R(s, t) instead of R(Ks,Kt). A regularly
updated survey Small Ramsey Numbers [26] contains the known bounds and
values for a variety of Ramsey numbers.

In this work we focus on the vertex Folkman numbers for graphs avoiding
H = Jk, in particular for k = 4 and 2 ≤ ai ≤ 3. Note that this special case of
J4-free graphs admits some triangles, but not too many, since in J4-free graphs
each edge can belong to at most one triangle. Note also that avoiding J4 falls
in-between the two extensively studied classical cases of avoiding K3 and K4.

Instantiating previous comments for H = J4, we see that Fv(2r; J4) is the
smallest number of vertices in any J4-free graph with chromatic number r + 1.
These numbers are clearly well defined since any K3-free graph is also J4-free,
and Fv(2r;K3) is well defined for every r ≥ 1. However, while the classical
results for multicolor Folkman numbers by Nešetřil and Rödl [21, 22] guarantee
the existence of Fv(3r;Ks) for s ≥ 4 and of Fv(3, 3; J4), they do not so for
Fv(3r; J4) with r > 2.

1.2 Summary of New Results

This subsection summarizes our new results. The first result in our Theorem 2
is theoretical, the results in the following theorems are computational.

Theorem 2. Fv(3r; J4) is well defined for all r ≥ 1.

The J4-free graphs satisfying the required arrowing property in Theorem 2
quickly become very large as r grows. The simplest, but already intriguing
case, is that of Fv(3, 3; J4), for which we establish the upper bound of 135 in
Theorem 7. Note that, by monotonicity, Theorem 2 implies the existence of
Folkman numbers of the form Fv(a1, . . . , ar; J4) with ai ≤ 3 for all 1 ≤ i ≤ r.
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A J4-free graph G is called maximal J4-free if the addition of any edge creates
a J4 in G. A graph G for which G→ (a1, . . . , ar) is called minimal if after the
deletion of any edge this arrowing does not hold. If G is maximal and minimal,
it is referred to as bicritical. Using computational methods, we obtain the exact
values and bounds for several small cases, as stated in Theorems 3–7 below.

Theorem 3. Fv(23; J4) = 9, and there are exactly 3 graphs in Fv(23; J4; 9), of
which 1 is maximal and 1 is minimal.

Theorem 4. Fv(24; J4) = 15, and there are exactly 5 graphs in Fv(24; J4; 15),
of which 1 is maximal and 2 are minimal.

Theorem 5. 22 ≤ Fv(25; J4) ≤ 25.

Theorem 6. Fv(2, 3; J4) = 14 and there are exactly 212 graphs in Fv(2, 3; J4; 14),
of which 24 are maximal, 26 are minimal, and 1 is bicritical.

Theorem 7. Fv(3, 3; J4) ≤ 135.

For the context and comparison with the cases involving K3 and K4 instead
of J4, we collect the values and bounds from Theorems 3–5 in Table 1. Observe
that since K3 ⊂ J4 ⊂ K4, we must have Fv(2r;K3) ≥ Fv(2r; J4) ≥ Fv(2r;K4),
for each r.

r K3 ref. J4 K4 ref.

2 5 C5 3 3 K3

3 11 [4] 9 6 W6

4 22 [11] 15 11 [17]

5 32–40 [9] 22 – 25 16 [14]

Table 1: Known values and bounds for Fv(2r;H), for r ≤ 5 and H ∈ {K3, J4,K4}.
The bold entries in the J4 column were obtained in this work. For easy
entries we give the upper bound witness graph. The unique witness for
Fv(23;K4) = 6 is the wheel graph W6 = K1 + C5 = K6 − C5.

The following sections contain the proof of Theorem 2 and the descrip-
tion of computations leading to Theorems 3–7. The closing section states
some open problems and it contains a few remarks for parameters beyond
those studied in this paper. The witness graphs for Theorems 3–7, as well
as the code implementing algorithm A in Section 3.1 are available at https:

//www.cs.rochester.edu/~dnarvaez/folkmanj4/.
We found a few discrepancies between our results and those claimed in the

paper [12]. We investigated all such differences, and we arrived to the conclusion
that the computations reported in [12] were incomplete. The computational re-
sults reported in this paper were obtained by two independent implementations
which agreed on the final and intermediate claims.
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2 The Existence of Fv(3
r; J4) and Fe(3, 3;H)

Two seminal papers by Nešetřil and Rödl [21, 22] lay the foundation for our
reasoning in this section: the first one from 1976 implies that the edge Folkman
numbers Fe(3

r;K4) are well defined for all r ≥ 1, and the second paper from
1981 shows that Fv(3, 3; J4) is well defined. These, together with a technique
developed by Dudek and Rödl in 2008 [6], permit us to give a rather elementary
proof that Fv(3r; J4) is well defined for all r ≥ 1.

For graph G = (VG, EG), we define the graph F = DR(G) as in the con-
struction by Dudek-Rödl [6], as follows:

DR(G) = F = (EG, EF ),

where the set of vertices of F consists of the edges of G, and the edge set EF

contains the edges {ef, fg, eg} for every edge-triangle efg in EG. Note that
each pair of edges from triangle {e, f, g} ⊆ EG spans the same three vertices in
G, and thus the same three vertices in the corresponding vertex-triangle in F .
Such triangles in F will be called images of triangles from G, other triangles in
F will be called spurious. Note that for any edge ef in EF , the edges e and f
in EG must share one vertex. It is easy to observe (see the proof of Lemma 8(2)
below) that two image triangles may share vertices but no edges.

Example. For G = K4, DR(G) has 6 vertices, 12 edges (it is 4-regular), and 8
triangles. These 8 triangles are split into 4 images of triangles from G and 4
spurious triangles.

Lemma 8. Let G be any K4-free graph, and let F denote the graph DR(G).
Then we have that:

1. F has no spurious triangles,

2. F is J4-free, and

3. G→ (3r)e if and only if F → (3r)v, for every r ≥ 1.

Proof. First, we will show that the graph F = DR(G) has no spurious triangles.
For contradiction, suppose that efg is a spurious triangle in F , where e = {A,B}
and f = {A,C} for some vertices A,B,C ∈ VG. Since edge g is incident to both
e and f , but efg is not an image of a triangle in G, we must have g = {A,D}
for another vertex D ∈ VG. This implies that ABC,ABD,ACD are triangles,
and thus also BCD, in G. Hence ABCD forms a K4 in G, contradicting the
assumption. This shows part (1).

If F contains J4 with the vertices {e, f, g, h} and formed by two triangles
{efg} and {efh}, then we claim that at most one of them is an image triangle.
In order to see this, let e = {A,B}, f = {A,C} and note that the unique image
triangle in F containing e and f is the one implied by the triangle ABC in G.
Hence, at least one of {efg} and {efh} must be spurious, but by (1) this is
impossible in F = DR(G) obtained from a K4-free graph G. Thus (2) follows.
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For (3), consider the natural bijection between all r-vertex-colorings of F
and r-edge-colorings of G. This bijection preserves the number of colors used in
any edge-triangle in G when mapped to its image triangle in F . Hence, because
of (1) and (2), we can conclude (3).

Using Lemma 8, we can give a simple proof that for every r there exists a J4-
free graph such that in any r-coloring of its vertices there must be a monochro-
matic triangle, or equivalently, Fv(3r; J4) 6= ∅.

Proof of Theorem 2. A general result by Nešetřil and Rödl [21] implies that the
sets Fe(3

r;K4) are nonempty for all r ≥ 1. This, together with the claim that
Fv(32; J4) 6= ∅, was also discussed in [29]. For general r, consider any graph
G ∈ Fe(3

r;K4). Then by Lemma 8(3), we have that DR(G) ∈ Fv(3r; J4), and
thus the numbers of the form Fv(3r; J4) are well defined for all r ≥ 1. �

Note that, by monotonicity, Theorem 2 implies the existence of Folkman
numbers of the form Fv(a1, . . . , ar; J4) with 1 ≤ ai ≤ 3 for all 1 ≤ i ≤ r. The
orders of graphs in Fe(3

r;K4) and Fv(3r; J4) can be expected to be quite large,
even for small r. In the trivial case for r = 1 we have Fe(3;K4) = Fv(3; J4) = 3,
but both problems become very difficult already for r = 2. For the edge problem,
the best known bounds are 21 ≤ Fe(3, 3;K4) ≤ 786 [2, 13], while for the vertex
problem we establish the bound Fv(3, 3; J4) ≤ 135 in Theorem 7. We are not
aware of any reasonable bounds for r ≥ 3 in either case.

We wish to point to a study of the existence of edge Folkman numbers
for some small parameters [29]. While a simple argument easily shows that
Fe(3, 3; J4) does not exist, for other cases with |V (H)| ≤ 5 one can prove or
disprove the existence of Fe(3, 3;H) with some work, leaving only two open
cases. Namely, the following is known: the sets Fe(3, 3;H) are nonempty for
all connected graphs H containing K4, and for some graphs not containing
K4. If H is any connected K4-free graph on 5-vertices containing K3, then
Fe(3, 3;H) = ∅ except for two possible cases: the wheel graph W5 = K1 + C4

and its subgraph P2 ∪ P3 ⊂W5. The latter two cases remain open.

3 Computational Proofs

3.1 Overview and Algorithms

In this section we describe the computations which were performed to obtain
the proofs of Theorems 3–7 stated in Section 1.2. First, we give an overview
of the algorithms that were used or developed for this work, including some
details of their implementation. In the following subsections we summarize the
results of our computations. We present graphs establishing the upper bounds
in Theorems 3–6, and give counts for several intermediate graph families which
were obtained. All graphs involved in the computations were J4-free. The
target sets of graphs had additional constraints consisting of the number of
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vertices, independence number, chromatic number, and the desired parameters
of arrowing, {a1, . . . , ar}, where 2 ≤ ai ≤ 3 for 1 ≤ i ≤ r.

The basis of our software framework consisted of the package nauty devel-
oped by McKay [16], which includes a powerful graph generator geng, tools
to remove graph isomorphs, and several other utilities for graph manipulation.
In the following, we will list some of the graphs in their g6-format, a compact
string representation of graphs in nauty. These graphs are also available at
https://www.cs.rochester.edu/~dnarvaez/folkmanj4/.

The template of our main extension algorithm A is presented and com-
mented on below. We also implemented filters for extracting graphs with spec-
ified chromatic number, graph which are maximal J4-free, those which arrow
(2, 3)v and (3, 3)v, and other utilities. Observe that by Lemma 1 the test for
arrowing (2r)v is the same as for chromatic number.

The graph families pointed to in Table 2 were obtained by using geng with
filters for J4-free graphs and for graphs with given chromatic number. For graph
families on 13 or more vertices, we used mainly algorithm A together with other
utilities, as described in the notes to Table 3.

Our custom filter for graphs with specified chromatic number range was
tuned to process large number of graphs with small χ(G). For a given graph
G, first we find all maximal independent sets, and then determine χ(G) as the
minimum number of these independent sets which cover VG. The custom filter
for maximal J4-free graphs has two modes: a full test detecting graphs for which
addition of any edge forms a J4, and a partial test for graphs being constructed
within algorithm A which cannot be maximal J4-free after A terminates. The
latter permitted to significantly prune the output of A, which was then filtered
through the full test.

Testing whether G → (2, 3)v was applied only to graphs with χ(G) ≥ 4,
since by Lemma 1 this arrowing does not hold if χ(G) ≤ 3. This test was
done by checking that for every maximal independent set I ⊂ VG the set of
vertices (VG \ I) does not induce any triangle. The test for G → (2, 2, 3)v was
accomplished similarly by checking that the set of vertices (VG\(I1∪I2)) does not
induce any triangle, for every pair of maximal independent sets I1 and I2. The
test for G→ (3, 3)v was accomplished with a totally distinct approach involving
SAT-solvers as described in Section 3.4. This was necessary since for arrowing
(3, 3)v we were processing a large number of graphs on 100 to 200 vertices,
for which an effective handling of their chromatic number and enumeration of
maximal triangle-free sets would be computationally very expensive.
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Algorithm A(G, n, q, χ, δ)
Input: G - a set of J4-free graphs, each on n-vertices, q - extension degree,
χ - target chromatic number, δ - minimum cone size.

Output: H - a set graphs which are extensions of graphs from G. H ∈ H if
and only if H is a q-vertex extension of any graph G ∈ G, q new vertices in
H form an independent set, |VH | = n+ q, new vertices have degree ≥ δ, and
such that H is maximal J4-free and χ(H) ≥ χ.

H = ∅
for every graph G ∈ G do

Compute and store CG, the set of feasible cones in G of size at least δ
Compute and store the values of τ(C,D), for all C,D ∈ CG
for k = 3 to q do

Using known (k − 1)-tuples, make all k-tuples (k-multisets) of feasible
cones {C1, . . . , Ck} such that τ(Ci, Cj) is true for all 1 ≤ i, j ≤ q. If
k = q, then for each such q-tuple make graph H from G and {C1, . . . , Cq}.
If H is maximal J4-free, then add H to H.

end for
end for
Remove isomorphs from H
Remove from H graphs H with χ(H) < χ

Extension Algorithm A. The inputs are: a family of graphs G consisting of
n-vertex J4-free graphs, an integer q, which is the extension degree, the target
chromatic number χ, and the minimum degree δ of new vertices. For each
G ∈ G, algorithm A outputs all maximal J4-free graphs H with χ(H) ≥ χ such
that they can be obtained from G by adding an independent set I = {v1, . . . , vq}
and some edges between I and VG. New vertices have degree at least δ. These
output graphs H will be called q-vertex extensions of the input graph G.

The new edges of H are defined by q cones {C1, . . . , Cq}, Ci ⊆ VG, where
the set of edges connecting vi to VG is {{vi, u} | u ∈ Ci}. First, we precompute
the set of all feasible cones CG such that for each C ∈ CG the 1-vertex extension
of G using C is J4-free and |C| ≥ δ. We also precompute a binary predicate
τ(C,D) on pairs of feasible cones which is false if C ∩ D = ∅, C ∩ D = {x}
and there is no vertex y ∈ (C \D) ∪ (D \ C) connected to x, or C ∩D induces
an edge in G. Otherwise, τ(C,D) is set to true. One can easily see that if
τ(C,D) is false and both cones C and D are used in the extension, then H is
not maximal J4-free. This test significantly prunes the search space. Next, we
assemble q-tuples of feasible cones such that each pair of cones used passes the
τ -test. Each such q-tuple defines one graph H. Finally, the isomorphic copies
of graphs are removed, and the remaining graphs H are tested for χ(H). �

Clearly, larger values of δ in A for the minimum cone size produce fewer
cones and allow for faster computation. Maximal J4-free graphs H with δ = 1
are easy to characterize. These graphs have χ = 3 and need not be generated

8



using algorithm A. Thus, for most of our computations we set δ = 2, but we
also observe that when constructing graph families which are known to be χ-
vertex-critical, it is sufficient to set δ = χ− 1.

The values of the Ramsey numbers of the form R(J4,Kq) are known for all
q ≤ 6 (cf. [26]). In particular, the values of importance to our computations are
R(J4,K4) = 11, R(J4,K5) = 16 and R(J4,K6) = 21. We use these values to
determine the value of parameter q for algorithm A by applying an observation
that any J4-free graph H must have α(H) ≥ q, provided |VH | = |VG| + q ≥
R(J4,Kq).

Sections 3.2 and 3.3 list several sets of parameters for A which were used:
G is taken from the cases reported in Table 2, or equal to Fv(2, 3; J4; 14) or
Fv(24; J4; 15), and the ranges of other parameters are 1 ≤ q ≤ 7, 4 ≤ χ ≤ 6,
and 2 ≤ δ ≤ χ− 1.

3.2 Enumerations for Small Cases

n all graphs J4-free χ = 2 J4-free, χ = 3 J4-free, χ = 4

6 156 69 34 34 0

7 1044 255 87 167 0

8 12346 1301 302 998 0

9 274668 9297 1118 8175 3

10 12005168 97919 5478 92379 61

11 1018997864 1519456 32302 1484866 2287

12 165091172592 34270158 251134 33888537 130486

Table 2: The number of nonisomorphic graphs G by their type and the number of
vertices n, 6 ≤ n ≤ 12. The corresponding sets of graphs were obtained
by using graph generator geng of nauty with tests for J4-free graphs and
chromatic number χ(G).

Figure 1: |Fv(2, 2, 2; J4; 9)| = 3. The 18-edge graph, which is H{‘Ypgj in g6-format,
is formed by all depicted edges, the other two graphs with 17 and 16 edges
are obtained by deleting the edges marked in red, in any order.

9



The results of our computations for small cases are summarized in Tables 2
and 3. The special graphs, which are witnesses for the exact values in Theorems
3, 4 and 6, are presented in Figures 1–4.

Notes to Table 2

• In each row n, the sum of entries for χ = 2, 3, 4 is one less than the count
of J4-free graphs (because the only missed graph has χ = 1). Note that
χ(G) = 2 implies that G is J4-free.

• The entries 0 and 3 in rows 8 and 9, respectively, of the last column show
that Fv(2, 2, 2; J4) = 9 and |Fv(2, 2, 2; J4; 9)| = 3; the three witnesses have
16, 17 and 18 edges, respectively, and they are presented in Figure 1. This
part proves Theorem 3.

• Obtaining the next row of Table 2 (for n = 13) by the same approach is
doable but only at an extraordinary computational cost. Thus, for n ≥ 13
we first targeted only maximal J4-free graphs. The results are reported in
Table 3.

type of graphs n = 13 n = 14 n = 15

maximal J4-free, χ = 2 5 6 6

maximal J4-free, χ = 3 15684

maximal J4-free, χ = 4 4750 74738

maximal J4-free, χ = 5 0 0 1

Table 3: Counts of nonisomorphic maximal J4-free graphs G by their chromatic num-
ber χ = χ(G) and number of vertices n, for 13 ≤ n ≤ 15. The results for
n ≥ 14 and χ ≥ 4 required significant computational resources.

The graph families for χ ≥ 3 summarized in Table 3 were constructed using
algorithm A. The following lemma was used to determine the initial family of
graphs G. More details of how each entry with χ ≥ 3 was computed are listed
in the notes to Table 3.

Lemma 9. Let G be any graph with χ(G) ≥ k, and let I ⊆ V (G) be any
independent set in G. Then for G′ = G[V (G) \ I] we have χ(G′) ≥ k − 1.

Proof. Assume there exists an I ⊆ V (G) such that the graph G′ induced in G
on V (G) \ I has χ(G′) ≤ k − 2. If V (G′) is colored with k − 2 colors, then
all vertices in I can be colored with the same (k − 1)-st color, not used in the
coloring of V (G′). This implies that χ(G) ≤ k−1, which is a contradiction.
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Notes to Table 3

• The row for χ = 2 shows the number of complete bipartite graphs Ks,t

with s+ t = n and s, t ≥ 2.

• Graphs with n = 13, χ ≥ 3. Using the fact that R(J4,K4) = 11, we can
see that any J4-free graph G of order at least 11 must have α(G) ≥ 4. The
graphs with n = 13 were obtained by A in three different ways: via 3-, 2-
and 1-vertex extensions of graphs with 10, 11 and 12 vertices, respectively.
When 3 ≤ χ ≤ 4, we use δ = 2. When χ = 5, we set δ = χ − 1 = 4,
since the target graphs are known to be χ-vertex-critical. This is because
Lemma 9, R(J4,K4) = 11 and Table 2 imply that there is no J4-free graph
with n = 12 and χ = 5.

• Graphs with n = 14, χ ≥ 4. These graphs were obtained by computing
4-vertex extensions of the graphs with n = 10 and χ ≥ 3 using δ = 2. We
set δ = 4 when generating graphs with χ = 5 since no graphs with χ = 5
were found on 13 vertices.

• Graphs with n = 15, χ ≥ 5. The unique maximal graph with n = 15 and
χ = 5 was obtained by performing 3-vertex extensions of all graphs with
n = 12 and χ ≥ 4, and independently by 4-vertex extensions of all graphs
with n = 11 and χ ≥ 4. Since no graphs with χ = 5 were found on 14
vertices, we set δ = 4.

• Empty entries correspond to graphs whose full enumeration was not at-
tempted. These would be difficult to obtain, and they are not relevant for
this work. Still, many such graphs were obtained as side result of other
computations.

• The entry requiring most CPU time (about one CPU-week if run on a
single processor) was that for χ = 4, n = 14. It was obtained by ap-
plying algorithm A to make J4-maximal 4-vertex extensions of the 97918
graphs with n = 10 and χ ≥ 2 (though using χ ≥ 3 would suffice).
Among the resulting 74738 graphs G, there are 24 of them for which
G → (2, 3)v. No graph reported in column 13 satisfies this arrowing
(though, by Lemma 1, it would suffice to test only 4750 graphs with
χ = 4), and thus Fv(2, 3; J4) = 14.

• The complete set Fv(2, 3; J4; 14) was obtained from the above 24 maximal
J4-free graphs by repeatedly deleting the edges until they did not satisfy
the arrowing. This set consists of 212 nonisomorphic graphs, with the
number of edges ranging from 31 to 39, the number of triangles from 8
to 10, and the orders of their automorphism groups ranging from 1 to
8. 26 of these graphs are minimal. There exists a unique (up to isomor-
phisms) bicritical graph, namely the graph G14 shown in Figure 2, for
which addition of any edge creates a J4, and deletion of any edge e yields
G14 − e 6→ (2, 3)v. This part proves Theorem 6.
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Figure 2: Unique bicritical graph G14 ∈ Fv(2, 3; J4; 14). Edges marked in red do not
belong to any triangle in G14. The graph G14, which is M?K iqg‘QDqQXBpw?

in g6-format, has 33 edges, 9 triangles and just one non-trivial symmetry
(left-right swap of the figure).

• The second most-expensive-to-obtain entry was that for n = 15, χ = 5.
The entries in the last row of Table 3 prove that Fv(24; J4) = 15. The
unique maximal graph in Fv(24; J4; 15) was obtained in two ways: as a
4-extension and 3-extension of all graphs with χ = 4 on 11 and 12 vertices,
respectively.

• The complete set Fv(24; J4; 15) consists of 5 graphs with 45, 44, 43, 43
and 42 edges, respectively. Four of these graphs (except one on 43 edges)
form a chain presented in Figure 3. The graph on 45 edges is formed by all
edges, three red edges can be removed (in any order) to give its subgraphs
which are also in Fv(24; J4; 15). The fifth graph is a subgraph of one on
44 edges. This part proves Theorem 4.

• Another view of the graphs in Fv(24; J4; 15) is presented in Figure 4.
The 9-vertex grid on the right has 6 independent sets of 3 vertices. The
vertices of triangles ABC and 123, on the left, are connected to the grid
as indicated by the labels. The red edges can be dropped (in any order),
yielding graphs with 44, 43, 42 edges, also in Fv(24; J4; 15). In this view
we can easily see all 72 symmetries of the minimal graph.

12



Figure 3: A view of graphs in Fv(24; J4; 15). The maximal graph on 45 edges, which
is N{eCIhJSaWEfIuKqDeG in g6-gormat, is formed by all depicted edges. It
is 6-regular. Three vertices of the outer triangle form one orbit, 12 other
vertices form the second orbit (the center of the figure is not a vertex).
Three edges marked in red can be removed, in any order, to give its sub-
graphs in Fv(24; J4; 15). The 5-th graph is a subgraph of one with 44
edges. The minimal graph on 42 edges (formed by the black edges) has 72
automorphisms, more than the other four graphs.
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Figure 4: Set view of Fv(24; J4; 15). The 9-vertex 3 × 3 grid on the right has 6
triangles and 6 independent sets of 3 vertices. It is a self-complementary
graph. The vertices {A,B,C} and {1,2,3} on the left are connected to
the grid by 18 edges as indicated by the labels. Equivalently, 9 vertices
of the grid on the right connect to pairs of vertices (one from each of
two triangles) on the left. The red edges can be dropped (in any order)
yielding graphs with 44, 43 and 42 edges, respectively. This figure describes
4 graphs isomorphic to those in Figure 3, but presenting them in a very
different way. The vertices of the middle row of the grid form the triangle
corresponding to the outer triangle in Figure 3.

3.3 Bounds for Fv(2
5; J4) and Fv(2, 2, 3; J4)

Easy bounds on the order of the smallest 6-chromatic J4-free graph, Fv(25; J4),
are implied in prior work by others on avoiding K3 and K4 (see Table 1 in
Section 1.2), namely:

16 = Fv(25;K4) ≤ Fv(25; J4) ≤ Fv(25;K3) ≤ 40.

We obtain much better bounds stated in Theorem 5:

22 ≤ Fv(25; J4) ≤ 25

These bounds were computed as follows. Take S to be the Schläfli graph on
27 vertices [27]: S is a strongly regular graph of degree 16. Its complement is
J4-free and it has χ(S) = 6. Removing from S any two adjacent vertices with
all incident edges yields a 25-vertex witness to Fv(25; J4) ≤ 25 (the g6-format
of this graph is XIPA@CQA KEBIIHKBHGicBXB w}auURYbDu maULkdQTseOfpp?).
Removing any further vertices reduces the chromatic number below 6.

For the lower bound, since R(J4,K6) = 21, any 21-vertex J4-free graph must
have an independent set of 6 vertices. Thus, any graph G ∈ Fv(25; J4; 21) can
be obtained by adding a 6-independent set (with 6 cones) to one of the 5 graphs
in Fv(24; J4; 15). This was verified with algorithm A and no suitable graph was
found with χ ≥ 6. Thus Fv(25; J4) ≥ 22. This part proves Theorem 5.

The bounds we have for Fv(2, 2, 3; J4) are rather weak, namely

Fv(2, 3; J4) + 6 = 20 ≤ Fv(2, 2, 3; J4) ≤ Fv(3, 3; J4) ≤ 135.
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The upper bound follows from Theorem 7 and by an easy observation that for
any graph G, if G→ (3, 3)v, then G→ (2, 2, 3)v. For the lower bound, suppose
that G ∈ Fv(2, 2, 3; J4; k). Note that by Lemma 1, we must have χ(G) ≥ 5.
For k = 19, since R(J4,K5) = 16, we have α(G) ≥ 5, and thus G is a 5-
vertex extension of at least one of the 212 graphs in Fv(2, 3; J4; 14). Using
again algorithm A we have found no suitable graph G, and hence k > 19. We
attempted to use A and other ad-hoc methods to construct a witness G for
k ≥ 20, but all such searches failed. The complement of the Schläfli graph S
does not arrow (2, 2, 3)v. We also tested 8933 J4-free graphs G on 20 vertices
with χ(G) = α(G) = 5 [25] and found that none of them arrows (2, 2, 3)v.
For comparison with the cases for K4-free graphs, we note that it is not hard to
check that Fv(2, 3;K4) = 7 with the unique witness graph K7−C7 (cf. Theorem
3 in [15]), and it is known that Fv(2, 2, 3;K4) = 14 [5].

Finding any non-obvious bounds for Fv(2, 3, 3; J4) or Fv(3, 3, 3; J4) is an
interesting challenge which we pose as a problem to work on.

3.4 The J4-free process and Fv(3, 3; J4)

The triangle-free process begins with an empty graph of order n, and itera-
tively adds edges chosen uniformly at random, subject to the constraint that no
triangle is formed. The triangle-free process has been used to prove that

R(3, t) ≥
(

1

4
+ o(1)

)
t2

log t
,

which currently is the best known lower bound for R(3, t) obtained by Bohman
and Keevash in 2013/2019 [3] and independently by Fiz Pontiveros, Griffiths
and Morris in 2013/2020 [8].

Similarly to the triangle-free process, the J4-free process begins with an
empty graph of order n, and iteratively adds edges chosen uniformly at random,
subject to the constraint that no J4 is formed. The asymptotic properties of
this process were analyzed in [23]. We implemented the J4-free process in C++
and generated several graphs for which we then checked the arrowing property.
The check was done by turning the arrowing property into a Boolean formula
and then using Boolean satisfiability (SAT) solvers on the resulting formula.
The formula is computed as follows: for every triple of vertices (v1, v2, v3), if
they form a triangle, we output the disjunctions

(v1 ∨ v2 ∨ v3) ∧ (v1 ∨ v2 ∨ v3)

A satisfying assignment for this subformula will assign at least one of the
vertices in {v1, v2, v3} to the value False and at least one of them to the value
True. Taking False and True to be colors, it is clear that for a graph G the
formula ∧

(v1,v2,v3)∈VG

s.t. G[{v1,v2,v3}]∼K3

(v1 ∨ v2 ∨ v3) ∧ (v1 ∨ v2 ∨ v3)
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is satisfiable if and only if there is a way to assign colors to the vertices of G
that avoids monochromatic triangles. We are thus searching for J4-free graphs G
that yield unsatisfiable instances, as these witness the bound Fv(3, 3; J4) ≤ |VG|.
The smallest such graph we were able to find has 135 vertices, thus establishing
that

Fv(3, 3; J4) ≤ 135.

This part proves Theorem 7.

It is easy to see that G→ (3, 3)v implies K1 +G→ (3, 3)e, where the graph
K1 +G is obtained from G by adding one new vertex connected to all of VG. By
applying this implication we can also see that Fe(3, 3;K1+H) ≤ Fv(3, 3;H)+1.
The latter inequality is tight for H = K4, as it was shown that Fe(3, 3;K5) = 15
and Fv(3, 3;K4) = 14 [24]. Now, using similar steps for H = J4, by Theorem 7
we obtain Fe(3, 3; J5) ≤ 136. We observe that by the monotonicity with respect
to the avoided graph H we have Fe(3, 3;K5) ≤ Fe(3, 3; J5) ≤ Fe(3, 3;K4).

4 Open Problems and Remarks

We close this paper by posing some related open problems.

Problem 1. Give a general lower bound for Fv(3r; J4), or any nonobvious lower
bound for Fv(3, 3; J4), which are not easily implied by known bounds for other
more studied parameters.

Similarly, we do not know much about the cases like Fv(2r;K4), Fv(3r;K4),
or Fv(4r; J5): no general methods are known to obtain good lower or upper
bounds.

Problem 2. Does there exist a J4-free graph G such that every set of |VG|/2
vertices induces a triangle?

If not, this could help in the analysis of Fv(3, 3; J4). We may consider this
problem in a more general case. By using density arguments, it is known how
to obtain upper bounds on Fv(3r;K4), but not on Fv(3, 3; J4) or Fv(3r; J4).

Except for Fe(3, 4;K5) ≥ 22 [30], we do not know of any other nonobvious
bounds for: (a) Fv(3, 4; J5), (b) Fv(4, 4; J5), (c) Fe(3, 4;K5), or (d) Fe(4, 4; J5).
Case (a) might be solvable with computational methods. We also think that
case (b), while far from easy, is easier than (c) and much easier than (d). For a
similar case of Fv(4, 4;K5), the best known bounds were obtained in [1, 28]:

19 ≤ Fv(2, 2, 2, 4;K5) ≤ Fv(4, 4;K5) ≤ 23.

Finally, we state a related existence problem, which was already raised in an
earlier work [29], and which is also described at the end of Section 2.
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Problem 3. (a) Fe(3, 3;K1 + C4) = ∅? (b) Fe(3, 3;P2 ∪ P3) = ∅?

We note that the YES answer to part (a) implies YES answer to part (b),
which eliminates one YES/NO combination of answers (out of four possible
ones). This problem can be rephrased in some interesting ways. For example,
part (a) is equivalent to the following question: Does there exist any W5-free
graph which is not a union of two triangle-free graphs?
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