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ABSTRACT: We present data which, to the best of our knowledge,

includes all known nontrivial values and bounds for specific graph,

multicolor and hypergraph Ramsey numbers, where the avoided

graphs are complete or complete without one edge. Many results per-

taining to other more studied cases are also presented. We give refer-

ences to all cited bounds and values, as well as to previous similar

compilations. We do not attempt complete coverage of asymptotic

behavior of Ramsey numbers, but rather we concentrate on their

specific values.
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1. Scope and Notation

There is vast literature on Ramsey type problems starting in 1930 with the original paper

of Ramsey [Ram]. Graham, Rothschild and Spencer in their book [GRS] present an exciting

development of Ramsey Theory. The subject has grown amazingly, in particular with regard

to asymptotic bounds for various types of Ramsey numbers (see the survey papers [GrRö,

Nes̆, ChGra2, Ros2]), but the progress on evaluating the basic numbers themselves has been

unsatisfactory for a long time. In the last few decades, however, considerable progress has

been obtained in this area, mostly by employing computer algorithms. The few known exact

values and several bounds for different numbers are scattered among many technical papers.

This compilation is a fast source of references for the best results known for specific numbers.

It is not supposed to serve as a source of definitions or theorems, but these can be easily

accessed via the references gathered here.

Ramsey Theory studies conditions when a combinatorial object contains necessarily some

smaller given objects. The role of Ramsey numbers is to quantify some of the general existen-

tial theorems in Ramsey Theory.

Let G 1, G 2, . . . , Gm be graphs or s -uniform hypergraphs (s is the number of vertices

in each edge). R ( G 1, G 2, . . . , Gm ; s) denotes the m -color Ramsey number for s -uniform

graphs/hypergraphs, avoiding Gi in color i for 1 ≤ i ≤ m . It is defined as the least integer n

such that, in any coloring with m colors of the s -subsets of a set of n elements, for some i

the s -subsets of color i contain a sub-(hyper)graph isomorphic to Gi (not necessarily

induced). The value of R ( G 1, G 2, . . . , Gm ; s) is fixed under permutations of the first m

arguments. If s = 2 (standard graphs) then s can be omitted. If Gi is a complete graph Kk ,

then we may write k instead of Gi , and if Gi = G for all i we may use the abbreviation

Rm (G ; s) or Rm (G). For s = 2, Kk − e denotes a Kk without one edge, and for s = 3, Kk − t

denotes a Kk without one triangle (hyperedge).

The graph nG is formed by n disjoint copies of G , G∪H stands for vertex disjoint

union of graphs, and the join G + H is obtained by adding all of the edges between vertices of

G and H to G∪H . Pi is a path on i vertices, Ci is a cycle of length i , and Wi is a wheel

with i −1 spokes, i.e. a graph formed by some vertex x , connected to all vertices of the cycle

Ci −1 (thus Wi = K 1 + Ci −1). Kn, m is a complete n by m bipartite graph, in particular K 1, n is

a star graph. The book graph Bi = K 2 + Ki = K 1 + K 1, i has i + 2 vertices, and can be seen as i

triangular pages attached to a single edge. The fan graph Fn is defined by Fn = K 1 + nK 2.

For a graph G , n (G) and e (G) denote the number of vertices and edges, respectively, and

δ(G) and Δ(G) minimum and maximum degree of G . Finally, χ(G) denotes the chromatic

number of G . In general, we follow the notation used by West [West].

Section 2 contains the data for the classical two color Ramsey numbers R (k, l) for com-

plete graphs, Section 3 for the much studied two color cases of Kn − e , K 3, Km, n , and Sec-

tion 4 for numbers involving cycles. Section 5 lists other often studied two color cases for

general graphs. The multicolor and hypergraph cases are gathered in Sections 6 and 7,

respectively. Finally, Section 8 gives pointers to cumulative data and to other surveys.
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2. Classical Two-Color Ramsey Numbers

2.1. Values and bounds for R (k, l), k ≤ 10, l ≤ 15

l 3 4 5 6 7 8 9 10 11 12 13 14 15

k

40 47 53 60 67 74
3 6 9 14 18 23 28 36

41 50 59 68 77 87

36 49 59 73 92 102 128 138 147 158
4 18 25

41 61 84 115 149 191 238 291 349 417

43 59 80 101 133 149 183 203 233 267 275
5

48 87 143 216 316 442 633 848 1138 1461 1878

102 115 134 183 204 262 294 347 401
6

165 298 495 780 1171 1804 2566 3703 5033 6911

205 219 252 292 405 417 511
7

540 1031 1713 2826 4553 6954 10578 15263 22112

282 329 343 457 817 873
8

1870 3583 6090 10630 16944 27485 41525 63609

565 581
9

6588 12677 22325 38832 64864

798 1313
10

23556 45881 81123

Table Ia. Known nontrivial values, lower bounds (2024) and upper bounds (2017)

for two-color Ramsey numbers R (k, l) = R (k, l ; 2), for k ≤ 10 and k ≤ l ≤ 15.

For the best known upper bounds (2024) with k ≥ 4 see Table Ib.

l 4 5 6 7 8 9 10 11 12 13 14 15

k

Ka2 GR Ka2 Ex5 Ex20 Kol1 Kol1 Kol2 Kol2
3 GG GG Kéry

GrY McZ GR Ang GoeR1 Les GoeR1 GoeR1 GoeR1

Ka1 Ex19 Ex3 ExT Ex16 HaKr1 ExT SuLL ExT ExT Tat
4 GG

MR4 MR5 Mac Mac Mac Mac Spe4 Spe4 Spe4 Spe4 Spe4

Ex4 Ex25 CaET HaKr1 Kuz ExT Kuz Kuz Kuz Kuz 2.3.h
5

AnM1 HZ1 HZ1 Spe4 Mac Mac HW+ HW+ HW+ HW+ HW+

Ka2 ExT ExT Kuz Kuz Tat Kuz Kuz 2.3.i
6

Mac HZ1 Mac Mac Mac HW+ HW+ HW+ HW+ HW+

Math Tat Kuz Kuz XXER XSR2 XuXR
7

Mac HZ1 HZ2 Mac HW+ HW+ HW+ HW+ HW+

BurR Kuz Kuz 2.3.i XXER 2.3.i
8

Mac Ea1 HZ2 HW+ HW+ HW+ HW+ HW+

Math XSR2
9

ShZ1 Ea1 HW+ HW+ HW+

Math 2.3.i
10

Shi2 HW+ HW+

References for Table Ia. All upper bounds for k ≥ 4, l ≥ 6 were improved in 2019 [AnM2] and

2023 [AnM3], see Table Ib. HW+ abbreviates HWSYZH, as enhanced in [Boza5], see 2.1.m.
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l 5 6 7 8 9 10 11 12 13 14 15

k

4 25 40 58 79 105 135 170 210 256 307 364

5 46 85 133 193 282 381 511 672 860 1081 1341

6 160 270 423 651 944 1346 1855 2499 3301 4305

7 492 832 1368 2119 3197 4665 6653 9260 12635

8 1518 2662 4402 7040 10836

9 4956 8675 14631

10 16064

Table Ib. Upper bounds for R (k, l), l ≥ k ≥ 4, l ≥ 5. All of them were obtained by

Angeltveit and McKay in 2019 [AnM2] and 2023 [AnM3], except R (4, 5) [MR4],

and they improve over previously best known bounds reported in Table Ia.

We split the data into Table Ia with a separate table of references corresponding to it,

and Table Ib of new upper bounds. In Table Ia, the known exact values appear as centered

entries, lower bounds as top entries, and upper bounds as bottom entries. For some of the

exact values two references are given when the lower and upper bound credits are different.

In large computational projects from 2019 to 2023, Angeltveit and McKay run independent

computations [AnM2, AnM3], and obtained new upper bounds reported in Table Ib. These, by

using the classical recursive upper bound 2.3.a, and the methods of [HW+, HYZ, LiShen],

lead to improvements of other higher upper bounds listed in Table Ia but not reported in

Table Ib.

(a) The task equivalent to that of proving R (3, 3) ≤ 6 was the second problem in the

Kürschák Mathematics Competitions in Hungary in 1947 [BaLiu]. It also was the

second problem in Part I of the William Lowell Putnam Mathematical Competition held

in March 1953 [Bush].

(b) Greenwood and Gleason [GG] established the initial values R (3, 4) = 9, R (3, 5) = 14

and R (4, 4) = 18 in 1955.

(c) Kéry [Kéry] proved that R (3, 6) = 18 in 1964, but only in 2007 an elementary and self-

contained proof of this result appeared in English [Car].

(d) All of the critical graphs for the numbers R (k, l) (graphs on R (k, l) − 1 vertices without

Kk and without Kl in the complement) are known for k = 3 and l = 3, 4, 5 [Kéry], 6

[Ka2], 7 [RaK2, McZ], 8 [BrGS] and 9 [GoeR1], and there are 1, 3, 1, 7, 191, 477142,

and 1 of them, respectively. There are at least 43×106 (3, 10)-graphs on 39 vertices

[GoeR2, Ang]. All (3, k)-graphs, for k ≤ 6, were enumerated in [RaK2], and all (4,4)-

graphs in [MR2]. There exists a unique critical graph for R (4, 4) [Ka2]. Until 2015, there
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were 350904 known critical graphs for R (4, 5) [MR4], but the full set of such graphs

was computed in 2016 [McK3], and there are 352366 of them.

(e) In [MR5], strong evidence is given for the conjecture that R (5, 5) = 43 and that there

exist exactly 656 critical graphs on 42 vertices. The upper bound of 49 was established

in 1997 [MR5]. Angeltveit and McKay improved it to 48 in 2016 [AnM1], and further

to 46 in 2023 [AnM3]. It is known that there does not exist any (5, 5)-critical graph

which is self-complementary [Chv2].

(f) The graphs constructed by Exoo in [Ex9-Ex25], and some others, are available electroni-

cally from http://cs.indstate.edu/ge/RAMSEY. Fujita [Fuj1] maintains a website with some

lower bound constructions, using witness graphs obtained independently from Exoo. The

equality R (3, 8) = 28 was verified using a certifiable DRAT proof with SAT + CAS tech-

nique [DuLBG]. The equality R (4, 5) = 25 was verified using the HOL4 (higher order

logic) interactive theorem prover system [GauB].

(g) Cyclic (or circulant ) graphs are often used for Ramsey graph constructions. Several

cyclic graphs establishing lower bounds were given in the Ph.D. dissertation by J.G.

Kalbfleisch in 1966, and many others were published in the next few decades (see

[RaK1]). Harborth and Krause [HaKr1] presented all best lower bounds up to 102 from

cyclic graphs avoiding complete graphs. In particular, no lower bound in Table Ia can be

improved with a cyclic graph on less than 102 vertices, except possibly for R (3, k) for

k ≥ 13. See also items 2.3.l and 5.16.o [HaKr1]. Larger cyclic heuristic constructions

for R (3, k) were explored in [JiLTX1, JiLTX2]. Several best lower bounds from dis-

tance colorings, a slightly more general concept than circular graphs, are presented in

[HaKr2].

(h) The claim that R (5, 5) = 50 posted on the web [Stone] is in error, and despite being

shown to be incorrect more than once, this value is still being cited by some authors.

The bound R (3, 13) ≥ 60 [XieZ] cited in the 1995 version of this survey was shown to

be incorrect in [Piw1]. Another incorrect construction for R (3, 10) ≥ 41 was described

in [DuHu].

(i) There are really only two general upper bound inequalities useful for small parameters,

namely 2.3.a and 2.3.b. Stronger upper bounds for specific parameters were difficult to

obtain, and they often involved massive computations, like those for the cases of (3,8)

[McZ], (3,10) [GoeR1, Ang], (4,5) [MR4], (4,6) and (5,5) [MR5, AnM1, AnM2, AnM3].

The bound R (6, 6) ≤ 166, only one more than in [Mac], is an easy consequence of a

theorem in [Walk] (2.3.b) and R (4, 6) ≤ 41. Since 2023, we know that R (6, 6) ≤ 160

[AnM3], see Table Ib.

(j) T. Spencer [Spe4], Mackey [Mac], and Huang and Zhang [HZ2], using the bounds for

minimum and maximum number of edges in (4,5) Ramsey graphs listed in [MR3, MR5],

were able to establish new upper bounds for several higher Ramsey numbers, improving

on all of the previous longstanding best results by Giraud [Gi3, Gi5, Gi6]. These were

further improved as reported in Table Ib.

(k) In Table Ia, only some of the higher bounds implied by 2.3.* are shown, and more simi-

lar bounds could be derived. In general, we show bounds beyond the contiguous small
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values if they improve on results previously reported in this survey or published else-

where. Some easy upper bounds implied by 2.3.a are marked as [Ea1].

(l) In 2009, we have recomputed the upper bounds in Table Ia marked [HZ2] using the

method from the paper [HZ2], because the bounds there relied on an overly optimistic

personal communication from T. Spencer. Further refinements of this method are studied

in [HZ3, ShZ1, Shi2]. The paper [Shi2] subsumes the main results of the manuscripts

[ShZ1, Shi2]. All these bounds are now improved by the bounds in Table Ib obtained in

[AnM2, AnM3].

(m) In 2013, Boza [Boza5] using the method of [HWSYZH], which is abbreviated as HW+

in Table Ia, computed the bounds marked HW+ by starting from better upper bounds for

smaller parameters. Most of the currently shown bounds are thus better than those origi-

nally listed in [HWSYZH, HZ3]. All these bounds are now improved by the bounds in

Table Ib obtained in [AnM2, AnM3].

(n) In 2015, Exoo and Tatarevic obtained several lower bound improvements marked [ExT]

in Tables Ia and IIa by using some modifications of general circulant constructions, but

especially related to the quadratic residues Paley graph Q 101 and the cubic residues graph

G 127. More bounds by Tatarevic are reported in [Tat]. In 2016, Kuznetsov [Kuz]

obtained several further new lower bounds building up on circulant graphs. Also in 2015

and 2016, somewhat surprisingly, Kolodyazhny [Kol1, Kol2] improved four longstanding

lower bounds on R (3, k) in Table Ia. The newest improvement of a small lower bound

was found by Exoo for R (5, 6) in 2023.

(o) Some lower bounds in Table Ia, like for R (6, 8) or R (8, 8), may seem rather weak, yet

they are not easy to improve. For comments on R (8, 8) see [ExT].

(p) A perspective on lower bounds for Ramsey numbers as a statistical physics problem is

discussed in [WoGKSF]. It builds up on another approach using adiabatic quantum

optimization [RanMCG], but also on more classical heuristic algorithm developed by

Exoo in many papers [Ex-nn].

2.2. Bounds for R (k, l), higher parameters

(a) The upper bounds in Tables Ia and IIa marked [GoeR1, Les, Back1] were obtained

mainly by deriving lower bounds for several cases of e (3, k, n), which denotes the

minimum number of edges in n -vertex triangle-free graphs with independence number

less than k . The study of e (3, k, n) was also the main tool for the results obtained in

[GrY, GR, RaK2, RaK3, GoeR2].

(b) Ramsey Calculus [Back1], is an extensive manuscript by Backelin, which, among other

goals, addresses the derivation of e (3, k, n) and the corresponding realisers while avoid-

ing reliance on computer assisted results as far as possible. It achieves the derivation of

several lower bounds for e (3, k + 1, n) better than those in [GoeR1, RaK3, RaK4] for n

close to and above 13k /4. Better lower bounds on e (3, k, n) sometimes lead to better

upper bounds on R (3, l), like for l = 18 and l = 20 [Back4]. Further improvements to

bounds on e (3, k, n) were obtained in [Krü].
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l 15 16 17 18 19 20 21 22 23

k

74 82 92 99 106 111 122 131 139

Kol2 Ex21 W1+ Ex16 W1+ Ex16 W1+ W2+ XWCS

87 97 109 120 132 145 157 171 185
3

GoeR1 Back3 Back1 Back4 Back3 Les Back4 Back2 Back2

158 170 200 205 213 234 242 314
4

Tat Tat Lia+ 2.3.e 2.3.h Ex16 SLZL LinCa

275 293 388 396 411 424 441 492 521
5

2.3.h ExT XSR2 2.3.h XSR2 XSR2 2.3.i Ihr 2.3.i

401 434 548 614 710 878 888 1070
6

2.3.i SLLL SLLL SLLL SLLL SLLL 2.3.h SLLL

629 729 797 908 1214
7

2.3.i 2.3.i 2.3.i SLLL SLLL

873 1005 1049 1237 1617
8

2.3.i 2.3.i 2.2.h 2.2.h 2.3.i

Table IIa. Known bounds for higher two-color Ramsey numbers R (k, l), with references.

Lower and upper bounds are given for k = 3, only lower bounds for k ≥ 4;

Lia+, W1+ and W2+ abbreviate LiaWXS, WWY1 and WSLX2, respectively.

l 24 25 26 27 28 29 30 31 32

k

143 154 161 172 179 190 197 208 217
3

W1+ W2+ FuLS LiLi FuLS LiLi FuLS FuLS LiLi

l 33 34 35 36 37 38 39 40 41

k

227 234 248 255 267 278 290 298 311
3

LiaX LiaX LiaX FuLS LiaX LiaX LiaX LiaX FuLS

l 42 43 44 45 46 47 48 49 50

k

320 333 339 354 362 380 384 402
3

FuLS FuLS FuLS Ji+ FuLS Ji+ Ji+ Ji+

Table IIb. Known lower bounds for higher Ramsey numbers R (3, l) for l ≥ 24.

W1+, W2+ and Ji+ abbreviate WSLX1, WSLX2 and JiLTX2, respectively.

- 8 -



THE ELECTRONIC JOURNAL OF COMBINATORICS (2024), DS1.17

k 11 12 13 14 15 16 17

lower bound 1597 1640 2557 2989 5485 5605 8917

reference 2.2.c Tat 2.2.c 2.2.c 2.2.c 2.2.c LuSL

k 18 19 20 21 22 23 24

lower bound 11005 17885 21725 30925 39109 49421

reference LuSL LuSL Ex23 Ex23 Ex23 Ex23

Table IIc. Known lower bounds for diagonal Ramsey numbers R (k, k) for k ≥ 11;

All lower bounds for k ≥ 13 are from Paley graphs, see also 2.2.c below.

(c) The construction by Mathon (discovered later but independently by Shearer [She2], see

also items 2.3.j, 6.2.k and 6.2.l), using the data obtained by Shearer [She4] for primes up

to 7000, implies the lower bounds in Table IIc marked 2.2.c. The first two bounds

credited in Table IIc to [LuSL] also follow similarly from the data in [She4]. The same

approach does not improve on the bound R (12, 12) ≥ 1639 [XSR2], later increased to

1640 [Tat]. The bounds in [Ex23] were obtained by extending data for Paley graphs

beyond [Sha4] and improving on [LiaWXCS].

(d) The lower bounds marked [XuXR], [XXER], [XSR2], 2.3.e, 2.3.h and 2.3.i need not be

cyclic. Several of the Cayley colorings from [Ex16] are also non-cyclic. All other lower

bounds listed in Table IIa/b were obtained by construction of circular graphs.

(e) The graphs establishing lower bounds marked 2.3.h can be constructed by using

appropriately chosen graphs G and H with a common m -vertex induced subgraph, simi-

larly as it was done in several cases in [XuXR].

(f) Yu [Yu2] constructed a special class of triangle-free cyclic graphs establishing several

lower bounds for R (3, k), for k ≥ 61. All of these bounds can be improved by the ine-

qualities in 2.3.c and data from Tables Ia and IIa/b.

(g) Unpublished bound R (4, 22) ≥ 314 [LiSLW] improved over 282 given in [SuL]. [LinCa]

obtained the same bound, and also R (4, 25) ≥ 458. Not yet published bounds

R (3, 23) ≥ 139 [XWCS] and R (4, 17) ≥ 200 [LiaWXS] improve over 137 and 182

obtained in [WSLX2] and [LuSS1], respectively. The bound R (9, 17) ≥ 1411 is given in

[XuXR]. Large cyclic heuristic constructions for R (3, k) for k < 50 were explored in

[JiLTX1, JiLTX2].

(h) Two special cases, R (8, 18) ≥ 1049 and R (8, 19) ≥ 1237, can be obtained by applying

2.3.i and 2.3.h below. In both cases we start with the 816-vertex graph G , witnessing

R (8, 13) ≥ 817, obtained by 2.3.i. Next, for properly chosen graphs H in the application

of 2.3.h, we have large common subgraphs of G and H , namely the 101-vertex witness

of R (6, 6) ≥ 102 and the 204-vertex witness of R (7, 7) ≥ 205, respectively.

(i) One can expect that the lower bounds in Tables IIa/b are weaker than those in Table Ia,

especially smaller ones, in the sense that some of them should not be that hard to

improve, in contrast to the bounds in Table Ia.
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2.3. General results on R (k, l)

(a) R (k, l) ≤ R (k −1, l) + R (k, l −1), with strict inequality when both terms on the right hand

side are even [GG]. There are obvious generalizations of this inequality for avoiding

graphs other than complete.

(b) R (k , k) ≤ 4R (k , k − 2) + 2 [Walk].

(c) Explicit construction for R (3, 3k + 1) ≥ 4R (3, k + 1) − 3, for all k ≥ 2 [CleDa],

explicit construction for R (3, 4k + 1) ≥ 6R (3, k + 1) − 5, for all k ≥ 1 [ChCD].

(d) Explicit triangle-free graphs with independence k on Ω(k 3/ 2 ) vertices [Alon2, CoPR].

For other constructive results in relation to R (3, k) see [BrBH1, BrBH2, Fra1, Fra2,

FrLo, GoeR1, Gri, KlaM1, Loc, RaK2, RaK3, RaK4, Stat, Yu1]. See also 2.4.3 and 2.4.4

in the next subsection.

(e) The study of bounds for the difference between consecutive Ramsey numbers was ini-

tiated in [BEFS], where the bound R (k, l) ≥ R (k, l − 1) + 2k − 3 , for k, l ≥ 3, was esta-

blished by a construction. In 1980, Erdős and Sós (cf. [Erd2,ChGra2]) asked: If we set

Δ k, l = R (k, l) − R (k, l − 1), then is it true that Δ k, k + 1 / k→ ∞ as k→ ∞ ? Only easy

bounds on Δ k, l are known, in particular for k = 3 we have 3 ≤ Δ 3, l ≤ l . For some dis-

cussion of the roadblocks on the latter see [XSR2, GoeR2, ZhuXR]. It is also known

that R (3, k) ≥ R (3, Kk −1 − e) + 4 [ZhuXR].

(f) A conjecture that R (k, l) ≥ R (k − 1, l + 1), for all 3 ≤ k ≤ l , is dubbed DC for the Diago-

nal Conjecture. Its implications, evidence for validity, and some related problems are

discussed in [LiaRX]. For the multicolor version of the DC and its consequences see

item 6.2.v.

(g) By taking a disjoint union of two critical graphs one can easily see that R (k, p) ≥ s and

R (k, q) ≥ t imply R (k, p + q −1) ≥ s + t −1. Xu and Xie [XuX1] improved this construc-

tion to yield better general lower bounds, in particular R (k, p + q −1) ≥ s + t + k − 3.

(h) For 2 ≤ p ≤ q and 3 ≤ k , if (k, p)-graph G and (k, q)-graph H have a common induced

subgraph on m vertices without Kk −1, then R (k, p + q − 1) > n (G) + n (H) + m . In particu-

lar, this construction implies the bounds R (k, p + q − 1) ≥ R (k, p) + R (k, q) + k − 3 and

R (k, p + q − 1) ≥ R (k, p) + R (k, q) + p − 2 [XuX1, XuXR], with some small improve-

ments, such as using the term k − 2 instead of k − 3 in the first bound for k ≥ 5 [XSR2].

(i) R (2k − 1, l) ≥ 4R (k, l − 1) − 3 for l ≥ 5 and k ≥ 2, and in particular for k = 3 we have

R (5, l) ≥ 4R (3, l − 1) − 3 [XXER].

(j) If the quadratic residues Paley graph Qp of prime order p = 4t + 1 contains no Kk , then

R (k, k) ≥ p + 1 and R (k + 1, k + 1) ≥ 2p + 3 [Math, She2]. Data for larger p was

obtained in [LuSL], and further for p up to 25000 in [Ex23]. See also 3.1.f, and items

6.2.k and 6.2.l for similar multicolor results.

(k) Study of Ramsey numbers for large disjoint unions of graphs [Bu1, Bu9], in particular

R (nKk , nKl ) = n (k + l − 1) + R (Kk −1, Kl −1) − 2, for n large enough [Bu8].

(l) R (k, l) ≥ L (k, l) + 1, where L (k, l) is the maximal order of any cyclic (k, l) −graph.

A compilation of many best cyclic bounds was presented in [HaKr1].
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(m) The graphs critical for R (k, l) are (k − 1) −vertex connected and (2k − 4) −edge connected,

for k, l ≥ 3 [BePi]. This was improved to vertex connectivity k for k ≥ 5 and l ≥ 3 in

[XSR2].

(n) All Ramsey-critical (k, l) −graphs are Hamiltonian for k ≥ l − 1 ≥ 1 and k ≥ 3, except

when (k, l) = (3, 2) [XSR2].

(o) Two-color lower bounds can be obtained by using items 6.2.m, 6.2.n and 6.2.o with

r = 2. Some generalizations of these were obtained in [ZLLS].

2.4. Some pillars of asymptotics of R (k, l)

In this section we give only some selected pointers to the literature dealing with asymp-

totics of two-color Ramsey numbers. This survey was designed mostly for small, finite, and

combinatorial results, but still we wish to give the reader some useful and representative refer-

ences to more traditional papers studying the infinite. In particular, we include the main

breakthroughs in this area, such as the progress on asymptotics of R (3, k), R (4, k) and

R (k, k).

(1) In 1947, Erdős gave a simple probabilistic proof that R (k, k) > 2 k / 2 [Erd1]. In 1975,

Spencer [Spe1] improved it to R (k, k) > √ 2 e −1k 2 k / 2 (1 + o (1)). More probabilistic

asymptotic lower bounds were obtained in [Spe1, Spe2, AlPu].

(2) The limit of R (k, k) 1 / k , if it exists, is between √ 2 and 4 [GRS, GrRö, ChGra2]. This

limit is now known to be strictly below 4, as implied by the last result of item (8) below.

(3) In 1995, Kim obtained a breakthrough result by proving that R (3, k) = Θ(k 2/ log k)

[Kim]. The best known lower and upper bounds constants are 1/4 [BohK2, BohK3] and

1 (implicit in [She1]), respectively. The optimality of the constant 1/4 is conjectured in

[BohK3]. An independent proof of the lower bound constant 1/4 and a conjecture that it

is best possible are presented in [FizGM].

(4) Other asymptotic and general results on triangle-free graphs in relation to R (3, k) can be

found in [Boh, AlBK, AjKS, Alon2, CleDa, ChCD, CoPR, Gri, FrLo, Loc, She1, She3].

(5) Explicit constructions yielded the lower bounds R (4, k) ≥ Ω(k 8/ 5), R (5, k) ≥ Ω(k 5/ 3) and

R (6, k) ≥ Ω(k 2) [KosPR]. For the same cases of k classical probabilistic arguments give

Ω((k / log k)5/ 2), Ω((k / log k)3) and Ω((k / log k)7/ 2), respectively [Spe2]. These were

improved to Ω(k 5/ 2/ (log k)2), Ω(k 3/ (log k)8/ 3) and Ω(k 7/ 2/ (log k)13/ 4), respectively, in

[Boh, BohK1], and in general to R (s, t) ≥ Ω(t (s +1)/ 2 / (log t)(s 2− s − 4)/(2s − 4)), for fixed s

and large t [BohK1].

(6) In 2023 arXiv posting (journal paper appeared in 2024), Mattheus and Verstraëte

[MatVer] proved that there exist constants c 1 and c 2 such that for all k ≥ 3 we have

c 1 k 3/ log4k ≤ R (4, k) ≤ c 2 k 3/ log2k.
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A brief background and explanation of this breakthrough result, and its link to finite

geometry, are presented in [Bish].

(7) Explicit construction of a graph with clique and independence k on 2 c log2 k / log log k ver-

tices was presented by Frankl and Wilson [FraWi], and further constructions by Chung

[Chu3] and Grolmusz [Grol1, Grol2]. In 2012, the best explicit construction for large k

by Barak et al. [BarRSW] improved over [FraWi] by giving such a graph on 22( log log k)C

vertices for some c > 1, or equivalently, on n vertices, where log log n = ( log log k)c . In

2016, this was improved by Cohen [Coh] to log log n = ( log k)d , for a positive constant

d , and in a 2023 arXiv posting, Xin Li [LiXin] presents explicit Ramsey graphs on n

vertices with no clique or independent set of order logc n , for some c > 1. Explicit con-

structions such as these are usually weaker than known probabilistic results.

(8) In 2009, Conlon [Con1] obtained the best until then upper bound for the diagonal case

R (k + 1, k + 1) ≤


 k

2k 


k − c log k / log log k .

In 2020 on arXiv (journal paper appeared in 2023), Sah [Sah] improved it to

R (k + 1, k + 1) ≤


 k

2k 


e − c(log k)2

.

In 2023, Campos, Griffiths, Morris and Sahasrabudhe [CamGMS] posted a 57-page long

paper on arXiv showing that there exists ε>0 such that

R (k, k) ≤ (4 − ε)k .

Thus, in (2), the upper bound on the limit R (k, k) 1 / k is 4 − ε.

(9) Other older asymptotic bounds can be found, for example, in [Chu3, McDS, Boh,

BohK1] (lower bound) and [Tho] (upper bound), and for many other bounds in the gen-

eral case of R (k, l) consult [Spe2, GRS, GrRö, Chu4, ChGra2, LiRZ1, AlPu, Kriv,

ConFS7]. Two nontechnical essays by Sloman on recent developments in this area

appeared in the Quanta Magazine in 2023 [Slo].
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3. Two Colors: Kn − e , K 3, Km, n

3.1. Dropping one edge from complete graph

This section contains known values and nontrivial bounds for the two color case when the

avoided graphs are complete or have the form Kk − e , but not both are complete.

(a) The exact values in Table IIIa involving K 3 − e are obvious, since one can easily see that

R (K 3 − e, Kk ) = R (K 3 − e, Kk +1 − e) = 2k − 1 for all k ≥ 2.

(b) More bounds (beyond those shown in Tables IIIa/b) can be easily obtained using Table

Ia/b, an obvious generalization of the inequality R (k, l) ≤ R (k −1, l) + R (k, l −1), and by

the monotonicity of Ramsey numbers, in this case R (Kk −1, G) ≤ R (Kk − e, G) ≤
R (Kk , G).

H K 3 − e K 4 − e K 5 − e K 6 − e K 7 − e K 8 − e K 9 − e K 10 − e K 11 − e

G

K 3 − e 3 5 7 9 11 13 15 17 19

42
K 3 5 7 11 17 21 25 31 37

45

30 36 43
K 4 − e 5 10 13 17 28

32 45 57 73

37 52 62
K 4 7 11 19 30

49 71 102 135 170

66 69
K 5 − e 7 13 22 37 65

91 136 188 261

30 43 65 81 121
K 5 9 16

33 62 102 173 262 381 511

45 66 83
K 6 − e 9 17 37

70 124 206 334 505 757

43 58
K 6 11 21

53 104 205 353 612 944 1346

66
K 7 − e 11 28 65

124 247 432 761 1218 1964

28 65 80
K 7 13

29 82 184 370 716 1269 2119 3197

36 69
K 8 15

39 120 286 646 1281 2518 4402 7040

41 75
K 9 17

53 172 456 1072 2340 4686 8675 14631

49
K 10 19

68 236 666 1702 3880 8413 16064

Table IIIa. Bounds on the Ramsey numbers R (G, H), for complete or missing

one edge graphs G and H , but not both complete. Known exact values appear as

centered entries, lower bounds as top entries, and upper bounds as bottom entries.
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H K 4 − e K 5 − e K 6 − e K 7 − e K 8 − e K 9 − e K 10 − e K 11 − e

G

MPR WWY2
K 3 ChH2 Clan FRS1 GrH Ra1 Ra1

GoeR2 GoeR2

AnM2 VO GoeVO
K 4 − e ChH1 FRS2 McR McR

LidP BZ2 BZ2 BZ2

Boza6 Ex14 VO VO
K 4 ChH2 EHM1

JamKR LidP BZ3 Ea1 AnM3 AnM3

Ea1 Ea1
K 5 − e FRS2 CE+ VO VO

BZ3 Ea1 BZ3 BZ3

Ex6 Ea1 VO VO VO
K 5 BoH

Boza7 LidP LidP BZ3 BZ3 AnM3 AnM3

Ex14 VO VO
K 6 − e McR VO

HZ3 LidP BZ3 BZ3 BZ3 BZ3

McN/ VO Ea1
K 6 ShWR BZ1 BZ4 ShZ2 BZ4 BZ3 AnM3 AnM3

VO
K 7 − e McR VO

LidP Ea1 BZ3 BZ3 BZ3 BZ3

Ea1 Ea1 Ea1
K 7 LidP Ea1 BZ3 BZ4 BZ4 BZ4 AnM3 AnM3

VO Ea1
K 8 LidP BZ3 BZ3 BZ3 BZ4 BZ4 AnM3 AnM3

VO Ea1
K 9 BZ2 BZ3 BZ3 BZ3 BZ3 BZ4 AnM3 AnM3

VO
K 10 BZ2 BZ3 BZ3 BZ3 BZ3 BZ3 AnM3

References for Table IIIa.

CE+ abbreviates ClEHMS, for some details of BZ1-BZ4 see item 3.1.g,

the bounds marked [AnM3] are trivially implied by entries in Table Ib.

k 11 12 13 14 15 16

lower 42 49 55 61 69 74

bound WWY2 VO GoeR2 VO WWY2 Ea1

upper 45 53 62 71 80 91

bound GoeR2 GoeR2 GoeR2 GoeR2 GoeR2 GoeR2

Table IIIb. Lower and upper bounds for R (K 3, Kk − e) for 11 ≤ k ≤ 16.

(c) Upper bounds for Ramsey numbers R (Kk , Kl − e) marked [AnM3] in references for

Table IIIa are trivially implied by the bounds on R (Kk , Kl ) in Table Ib. These were

obtained in 2023 by Angeltveit and McKay using linear programming, and they improve

over upper bounds in Table Ia. [AnM2] points to little older and weaker bounds for some

higher cases. The upper bounds by Lidický and Pfender [LidP] use flag algebras.
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(d) Two special exact values, and several other bounds were obtained by Van Overberghe

[VO] in 2020. The surprisingly large exact values R (K 5 − e, K 6 − e) = 37 and

R (K 5 − e, K 7 − e) = 65 exploit some previously known strongly regular graphs on 27, 36

and 64 vertices, namely the Schläfli graph, NO −(6, 2) and VO −(6, 2). See the website by

A. E. Brouwer [Brou] for a great collection of strongly regular graphs, including those

used in [VO].

(e) Some lower bounds beyond the range of Table IIIa are as follows:

49 ≤ R (K 3, K 12 − e) [GoeVO]

61 ≤ R (K 3, K 14 − e) [GoeVO]

82 ≤ R (K 4 − e, K 16 − e) [VO]

128 ≤ R (K 4, K 12 − e) [Shao]

2987 ≤ R (K 14 − e , K 14 − e) [LiShen]

The results of MS thesis [VO] are contained and extended in a journal article [GoeVO].

The bound R (K 4, K 12 − e) ≥ 128 [Shao] is derived by using one color of the

(4, 4, 4;127)-coloring defined in [HiIr]. For comments related to the bound in [LiShen],

see the next item.

(f) If the quadratic residues Paley graph Qp of prime order p = 4t + 1 contains no Kk − e ,

then R (Kk +1 − e, Kk +1 − e) ≥ 2p + 1. In particular, R (K 14 − e, K 14 − e) ≥ 2987 [LiShen].

This was generalized to Kk −F for some small graphs F instead of an edge e (= K 2)

[WaLi]. See also item 2.3.j.

(g) This item follows from personal communications by Boza [Boza5, Boza8], The upper

bound marked [BZ1] was obtained in 2012, while [BZ2, BZ3, BZ4] are from 2024, all

by Boza. [BZ2] refers to computer-free simple proofs of some upper bounds, those

marked [BZ3] use the methods and theorems in [LiShen, HYZ, HWSYZH], and [BZ4]

use in addition item 5.14.n. These approaches expand on 2.1.m, or are implied by

[Boza6], the previous work [Boza1, Boza3, BoPo], the method of [HZ3], and the bounds

given in [GoeR2, AnM2, AnM3]. The enumeration of all (K 6, K 4 − e)-graphs [ShWR] is

used in [BoPo].

(h) All (K 3, Kk − e)-graphs were enumerated for k ≤ 6 [Ra1] and k = 7 [Fid2, GoeR2]. Full

sets of (Kl , Kk − e)-graphs were posted for the parameters (K 3, Kk − e) for k ≤ 7,

(K 4, Kk − e) for k ≤ 5, and (K 5, Kk − e) for k ≤ 4 ([Fid2], available until 2014), and

other full and restricted families at [BrCGM, Fuj1].

(i) The number of (K 3, Kk − e)-critical graphs for k = 4, 5 and 8 is 4, 2 and 9, respectively

[MPR]. There are 7 critical graphs for R (K 3, K 9 − e), and at least 40 such graphs for

R (K 3, K 10 − e) [GoeR2].

(j) The critical graphs are unique for: R (K 3, Kk − e) for k = 3 [Tr], 6 and 7 [Ra1],

R (K 4 − e , K 4 − e) [FRS2], R (K 5 − e , K 5 − e) [Ra3, GoeVO] and R (K 4 − e , K 7 − e)

[McR]. All of the critical graphs for the cases R (K 4 − e , K 4 ) [EHM1], R (K 4 − e , K 5 )

and R (K 5 − e , K 4 ) [DzFi1] are known, and there are 5, 13 and 6 of them, respectively.

The unpublished value of R (K 4 − e , K 6 ) [McN] was confirmed in [ShWR], where in

addition all 24976 critical graphs were found. All (K 4 − e , K 6 − e )-graphs were
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enumerated in [GoeVO].

(k) If m ≤ n then R (K 4 − e, K m + n +1) ≥ R (3, m + 1) + R (3, n + 1) + n .

Study of the growth of R (K 4 − e, Kn ) and its relationship to R (K 3, Kn ) [JiLSX].

(l) R (Kk − e, Kk − e) ≤ 4R (Kk −2, Kk − e) − 2 [LiShen].

For a similar inequality for complete graphs see 2.3.b.

(m) Study of the cases R (Km , Kn −K 1, s ) and R (Km − e , Kn −K 1, s ), with several exact

values for special parameters [ChaMR]. This study was extended to some cases involv-

ing R (Km −K 3) [MonCR].

(n) The upper bounds from [ShZ2] are subsumed by a later article [Shi2].

(o) The upper bounds in [HZ3] were obtained by a reasoning generalizing the bounds for

classical numbers in [HZ2]. Several other results from Section 2.3 apply, though check-

ing in which situation they do may require looking inside the proofs whether they still

hold for Kn − e . The upper bounds in the manuscript [HTHZ1] are based on [HZ3].

3.2. Triangle versus other graphs

(a) R (3, k) = Θ(k 2/ log k) [Kim].

For more comments on asymptotics see Section 2.3.(3) and the items 3.2.p/q below.

(b) Explicit construction for R (3, 3k + 1) ≥ 4R (3, k + 1) − 3, for all k ≥ 2 [CleDa],

explicit construction for R (3, 4k + 1) ≥ 6R (3, k + 1) − 5, for all k ≥ 1 [ChCD].

(c) Explicit triangle-free graphs with independence k on Ω(k 3/2 ) vertices [Alon2, CoPR].

(d) R (K 3, K 7 − 2P 2 ) = R (K 3, K 7 − 3P 2 ) = 18 [SchSch2].

(e) R (K 3, K 3 + Km ) = R (K 3, K 3 + Cm ) = 2m + 5, for m ≥ 212 [Zhou1].

(f) R (K 3, K 2 + Tn ) = 2n + 3 for n -vertex trees Tn , for n ≥ 4 [SonGQ],

R (K 3, K 1 + nK 3) = 6n + 1, for n ≥ 3 [HaoLin].

(g) R (K 3, G) = 2n (G) − 1 for any connected G on at least 4 vertices and with at most

(17n (G) + 1)/15 edges, in particular for G = Pi and G = Ci , for all i ≥ 4 [BEFRS1].

(h) R (K 3, Qn ) = 2n +1 − 1 for large n [GrMFSS], where Qn is the n -dimensional hypercube.

For related publications on the general case of R (Km , Qn ) see [FizGMSS, ConFLS] and

item 5.15.n.

(i) Relations between R (3, k) and graphs with large χ(G) [BiFJ],

further detailed study of the relation between R (3, k) and the chromatic gap [GySeT].

(j) R (K 3, G) ≤ 2e (G) + 1 for any graph G without isolated vertices [Sid3, GodK].

(k) R (K 3, G) ≤ n (G) + e (G) for all G , a conjecture [Sid2].

(l) R (K 3, G) for all connected G up to 9 vertices [BrBH1, BrBH2].

(m) R (K 3, G) for all graphs G on 10 vertices [BrGS], except 10 cases (three of which,

including G = K 10 − e , were solved [GoeR2]). See also several items in Section 8.1.
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(n) R (nK 3, nK 3 ) = 5n for n ≥ 2, R (mK 3, nK 3 ) = 3m + 2n for m ≥ n ≥ 2 [BES], and

R (c (nK 3 ), c (nK 3 )) = 7n − 2 for n ≥ 2, where c (nK 3 ) is any connected graph containing

n vertex disjoint triangles [GySá3].

(o) Formulas for R (nK 3, mG) for all G of order 4 without isolates [Zeng].

(p) For every positive constant c , and for Δ and n large enough, there exists n -vertex graph

G with Δ(G) ≤ Δ for which R (K 3, G) > cn [Bra3].

(q) R (K 3, Kk, k ) = Θ(k 2/ log k) [LinLi2].

(r) For R (K 3, Kn ) see Section 2, and for R (K 3, Kn − e) see Section 3.1.

(s) Since B 1 = F 1 = C 3 = W 3 = K 3, other sections apply. For some other cases involving

triangle see also [Boh, AjKS, BrBH1, BrBH2, FrLo, Fra1, Fra2, BiFJ, Gri, GySeT, Loc,

KlaM1, LiZa2, RaK2, RaK3, RaK4, She1, She3, Spe2, Stat, Yu1].

3.3. Complete bipartite graphs

This subsection gathers information on Ramsey numbers where specific bipartite graphs are

avoided in edge colorings of Kn (as everywhere in this survey), in contrast to the often stu-

died bipartite Ramsey numbers, which are not covered in this survey, where the edges of

complete bipartite graphs Kn, m are colored.

3.3.1. Numbers

n R (C 4, K 1, n ) reference n R (C 4, K 1, n ) reference

2 4 ChH2 22 28 SunSh

3 6 ChH2 23 29 Par5

4 7 Par3 24 30 WuSZR

5 8 Par3 25 31 Par3

6 9 FRS4 26 32 Par3

7 11 FRS4 27 33 Boza8

8 12 Tse1 28 35 Boza8

9 13 Par3/Tse1 29 36 Boza8

10 14 Par3/Tse1 30 37 Boza8

11 16 Tse1 31 38 Boza8

12 17 Tse1 32 39 Boza8

13 18 DyDz2 33 40 Boza8

14 19 DyDz2 34 41 WuSR

15 20 Law2/DyDz2 35 42 WuSR

16 21 Par3/DyDz2 36 43 WuSR

17 22 Par3 37 44 Boza8

18 23 ZhaBC1 38 45 ZhaCC2

19 24 WuSR 39 46-47 WuSR/DyDz2

20 25 WuSR 40 47 ZhaCC2

21 27 Par5 41 49 Boza8

Table IVa. Values and bounds for Ramsey numbers R (C 4, K 1, n ) for n ≤ 41, C 4 = K 2, 2.
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Table IVa presents data for C 4 = K 2, 2 versus stars, while the following Tables IVb and

IVc gather information about small complete bipartite graphs. Their first versions were based

on the surveys by Lortz and Mengersen [LoM3, LoM4]. All cases involving K 1, 2 = P 3 are

solved by a formula for R (P 3, G), which holds for all isolate-free graphs G , derived in

[ChH2]. The star versus star numbers are given below in the item 3.3.2.a and in Section 5.5.

(a) Note that for graph G to avoid K 1, n is equivalent to δ(G) < n . Thus, for general mono-

tonicity we have, for example, that rows of Table IVb are nondecreasing, but we do not

know if they are strictly increasing.

(b) See function f (n) in the item 3.3.2.c as one involving C 4. Similarly, we also have

R (C 4, K 1, n +1) ≤ R (C 4, K 1, n ) + 2 [Chen], which is the same claim as in 3.3.2.d.

(c) R (C 4, K 1, n ) = R (C 4, Wn +1 ) for n ≥ 6 [ZhaBC1]. See also items (b)-(f) in Section

4.3.2 concerning results on Ramsey numbers of wheels versus C 4. Values and bounds on

several cases higher than those in Table IVa are reported in [NoBa, WuSR].

(d) For all odd prime powers q we have [Boza8]:

q 2 + 1 ≤ R (C 4, K 1, q 2 − q + 1 ) ≤ q 2 + 2 ≤ R (C 4, K 1, q 2 − q + 2 ) ≤ q 2 + 3.

A number of similar results were included in the early papers by Parsons [Par3, Par5],

and many in newer papers such as [ZhaBC1, WuSR, WuSZR, ZhaCC2, DyDz2].

(e) Formula for R (K 1, n , Kk 1, k 2, . . . , kt , m ) for m large enough, in particular for t = 1, k 1 = 2

with n ≤ 5, m ≥ 3 and n = 6, m ≥ 11, for example R (K 1, 5, K 2, 7 ) = 15 [Stev].

(f) The values and bounds for higher cases of R (K 2, 2, K 2, n ) are 20, 22, 22, 24, 25, 26,

27/28, 28/29, 30 and 32 for 12 ≤ n ≤ 21 , respectively. All of them were given in

[HaMe4], except those for n = 14, 15 and 18, which were obtained in [Dyb1]. More

exact values for prime powers √ n  and √ n  + 1 can be found in [HaMe4].

(g) The known values of R (K 2, 2, K 3, n ) are 15, 16, 17, 20 and 22 for 6 ≤ n ≤ 10 [Lortz],

and R (K 2, 2, K 3, 12 ) = 24 [Shao]. See Tables IVa and IVb for the smaller cases, and

[HaMe4] for upper bounds and values for some prime powers √ n .

(h) R (K 2, n , K 2, n ) is equal to 46, 50, 54, 57 and 62 for 12 ≤ n ≤ 16, respectively.

The first open diagonal case is 65 ≤ R (K 2, 17, K 2, 17 ) ≤ 66 [EHM2].

The status of all higher cases for n < 30 is listed in [LoM1].
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p, q 1, 2 1, 3 1, 4 1, 5 1, 6 2, 2 2, 3 2, 4 2, 5 3, 3 3, 4

m, n

4 6 7 8 9 6
2, 2

ChH2 ChH2 Par3 Par3 FRS4 ChH1

5 7 9 10 11 8 10
2, 3

ChH2 FRS4 Stev FRS4 FRS4 HaMe4 Bu4

6 8 9 11 13 9 12 14
2, 4

ChH2 HaMe3 Stev HaMe4 LoM4 HaMe4 ExRe EHM2

7 9 11 13 14 11 13 16 18
2, 5

ChH2 HaMe3 Stev Stev LoM4 HaMe4 LoM3 LoM1 EHM2

8 10 11 14 15* 12 14 17 20
2, 6

ChH2 HaMe3 Stev Stev Shao HaMe4 LoM3 LoM3 LoM1

7 8 11 12 13 11 13 16 18 18
3, 3

ChH2 HaMe3 LoM4 LoM4 LoM4 Lortz HaMe3 LoM4 LoM4 HaMe3

7 9 11 13 14 11 14 17 20 19-20 25
3, 4

ChH2 HaMe3 LoM4 LoM4 LoM4 Lortz LoM4 Sh1+ VO-LidP VO-LidP VO-LidP

9 10 13 15 17 14 17* 19-20 21-23 21-24 25-29
3, 5

ChH2 HaMe3 Sh1+ Sh1+ LidP HaMe4 Shao VO-LidP VO-LidP VO-LidP VO-LidP

Table IVb. Ramsey numbers R (Km, n , Kp, q ); unpublished result marked with *,

Sh1+ abbreviates ShaXBP, the bound R (K 3, 5, K 2, 5 ) ≥ 21 is also in [ShaoWX].

m 2 3 4 5 6 7 8 9 10 11

n

12 14 17 20 21
6

HaMe4 LoM3 LoM3 LoM1 EHM2

14 17 19 21 24 26
7

HaMe4 LoM3 LoM3 LoM3 LoM1 EMH2

15 18 20 22-23 25 28 30
8

HaMe4 LoM3 LoM3 LoM3 VO-LoM3 LoM1 EMH2

16 19 22 25* 27* 29* 32 33
9

HaMe4 LoM3 LoM3 Shao Shao Shao LoM1 EHM2

17 21 24 27 27-29 29-31 33 36 38
10

HaMe4 LoM3 LoM3 LoM3 LoM3 VO-LoM3 VO-LoM3 LoM1 EHM2

18 ≥ 22 ≥ 25 ≥ 28 ≥ 29 ≥ 33 35 37 40 42
11

HaMe4 VO VO VO VO VO VO-LoM3 VO-LoM3 LoM1 EHM2

Table IVc. Known Ramsey numbers R (K 2, n , K 2, m ) for 6 ≤ n ≤ 11 and 2 ≤ m ≤ 11.

Results marked [VO] are from MS thesis by Van Overberghe, and they now appeared in

a journal paper [GoeVO]. Unpublished results improving over [LoM3] are marked with a *.
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(i) Some exact values and bounds for parameters beyond the range of Tables IVb/c are:

R (K 1, 4, K 4, 4 ) = R (K 1, 5, K 4, 4 ) = 13 [ShaXPB]

R (K 1, 4, K 1, 2, 3 ) = R (K 1, 4, K 2, 2, 2 ) = 11 [GuSL]

R (K 1, 7, K 2, 3 ) = 13 [Par4, Par6]

R (K 2, 2, K 4, 4 ) = 14 [HaMe4]

R (K 2, 2, K 4, 5 ) = 15 [Shao]

R (K 2, 2, K 4, 6 ) = 16 [Shao]

R (K 2, 2, K 5, 5 ) = R (K 2, 3, K 3, 5 ) = 17 [Shao]

R (K 3, 5, K 3, 5 ) = 33 [VO][LidP]

33 ≤ R (K 4, 4, K 4, 4 ) ≤ 49 [VO][LidP]

(j) A number of general upper and lower bounds for R (Ks, t , Ks, t ), in particular for small

fixed s, and for some slightly off-diagonal cases were obtained in [LoM2]. They can be

used to derive the upper bounds for the cases listed in (i) above and (k) below.

(k) Several lower bounds of the form R (Ks, t , Ks, t ) ≥ m from distance colorings, a slightly

more general concept than circular graphs, were presented in [HaKr2] for the following

triples (s, t, m): (3,6,38), (3,7,42), (3,8,43), (3,9,54), (4,5,42), (4,6,43), (4,7,54), (5,5,54).

3.3.2. General results

(a) R (K 1, n , K 1, m ) = n + m − ε, where ε = 1 if both n and m are even and ε = 0 otherwise

[Har1]. It is also a special case of multicolor numbers for stars obtained in [BuRo1].

(b) R (K 1, 3, Km, n ) = m + n + 2 for m, n ≥ 1 [HaMe3].

(c) R (K 1, n , K 2, 2 ) = f (n) ≤ n + √ n  + 1, with f (q 2 ) = q 2 + q + 1 and f (q 2 + 1 ) = q 2 + q + 2

for every q which is a prime power [Par3]. Furthermore, f (n) ≥ n + √ n − 6n 11 / 40

[BEFRS4]. For more bounds on f (n) see [Par5, Chen, ChenJ, MoCa, WuSR, WuSZR,

ZhaBC1, BoRa]. Summary of what is known and further progress are reported in two

2017 papers [ZhaCC2, ZhaCC3]. With f (29) = 36 obtained in [Boza8], the values of

f (n) are known for all n ≤ 29. Compare also to items in Section 4.3 involving C 4.

(d) R (K 1, n + 1, K 2, 2 ) ≤ R (K 1, n , K 2, 2 ) + 2 [Chen].

(e) R (K 2, λ+1, K 1, v − k +1 ) is either v + 1 or v + 2 if there exists a (v, k, λ)-difference set. This

and other related results are presented in [Par4, Par5]. See also [GoCM, GuLi].

(f) Formulas and bounds on R (K 2, 2, K 2, n ), and bounds on R (K 2, 2, Km, n ). In particular, we

have R (K 2, 2, K 2, k ) = n + k√ n + c , for k = 2, 3, 4, some prime powers √ n  and

√ n  + 1, and some − 1 ≤ c ≤ 3 [HaMe4]. An improvement of the latter for some spe-

cial cases of n was obtained in [Dyb1]. Asymptotics of R (K 2, 2, Kn, n ) is discussed in

[LiuLi2], where in particular the lower bound R (K 2, 2, Kn, n ) = Ω(n 3/ 2/ log n) is

presented. See also item 4.2.d.

(g) R (K 2, n , K 2, n ) ≤ 4n − 2 for all n ≥ 2, and the equality holds if and only if there exists a

strongly regular (4n − 3, 2n − 2, n − 2, n − 1 )-graph [EHM2].
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(h) Conjecture that 4n − 3 ≤ R (K 2, n , K 2, n ) ≤ 4n − 2 for all n ≥ 2. Many special cases are

solved and several others are discussed in [LoM1].

(i) R (K 2, n −1, K 2, n ) ≤ 4n − 4 for all n ≥ 3, with the equality if there exists a symmetric

Hadamard matrix of order 4n − 4. There are only 4 cases in which the equality is still

open for 3 ≤ n ≤ 58, namely 30, 40, 44 and 48 [LoM1].

(j) R (K 2, n −s , K 2, n ) ≤ 4n − 2s − 3 for s ≥ 2 and n ≥ s + 2, with the equality in many cases

involving Hadamard matrices or strongly regular graphs. Asymptotics of R (K 2, n , K 2, m )

for m>>n [LoM3].

(k) Some algebraic lower and upper bounds on R (Ks, n , Kt, m ) for various combinations of n ,

m and 1 ≤ t, s ≤ 3 [BaiLi, BaLX]. A general lower bound R (Km, n ) ≥ 2m (n − n 0.525)

for large n [Dong].

(l) Upper bounds for R (K 2, 2, Km, n ) for m, n ≥ 2 , with several cases identified for which the

equality holds. Special focus on the cases for m = 2 [HaMe4].

(m) Let G be any isolate-free graph with p vertices and q ≥ 2 edges. Then it holds that

R (K 2, 2, G) ≤ 2q + 1, with the equality for G = qK 2 or G = K 3, and

R (K 2, 2, G) ≤ 2p + q − 2. Some generalizations to R (K 2, k , G) [JRB].

(n) Bounds for the numbers of the form R (K k, n , K k, m ), specially for fixed k and close to

the diagonal cases. Asymptotics of R (K 3, n , K 3, m ) for m>>n [LoM2]. Asymptotic

upper bounds on R (K 2, n , K 2, m ) and on R (K 3, 3, Km, n ) for m ≤ 3 [WaLL].

(o) R (nK 1, 3, mK 1, 3 ) = 4n + m − 1 for n ≥ m ≥ 1, n ≥ 2 [BES].

(p) Asymptotics for K 2, m versus Kn [CaLRZ]. Upper bound asymptotics for Kk, m versus

Kn [LiZa1] and for some bipartite graphs Kn [JiSa].

(q) Special two-color cases apply in the study of asymptotics for multicolor Ramsey

numbers for complete bipartite graphs [ChGra1].
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4. Two Colors: Numbers Involving Cycles

4.1. Cycles, cycles versus paths and stars

Note: The paper Ramsey Numbers Involving Cycles [Ra4] is based on the revision #12 of this

survey. It collects and comments on the results involving cycles versus any graphs, in two or

more colors. It contains some more details than this survey, but only until 2009.

Cycles

(a) R (C 3, C 3 ) = 6 [BaLiu, Bush, GG],

R (C 4, C 4 ) = 6 [ChH1].

(b) R (C 3, Cn ) = 2n − 1 for n ≥ 4, R (C 4, Cn ) = n + 1 for n ≥ 6,

R (C 5, Cn ) = 2n − 1 for n ≥ 5, and R (C 6, C 6 ) = 8 [ChaS].

(c) Result obtained independently in [Ros1] and [FS1], a new simpler proof in [KáRos]:

R (Cm , Cn ) =







max{ n − 1 + m / 2, 2m − 1}
n − 1 + m / 2
2n − 1

for 4 ≤ m < n, m even and n odd.
for 4 ≤ m ≤ n, m and n even, (m, n) =/ (4, 4),
for 3 ≤ m ≤ n, m odd, (m, n) =/ (3, 3),

(d) R (mC 3, nC 3 ) = 3n + 2m for n ≥ m ≥ 1, n ≥ 2 [BES].

(e) R (mC 4, nC 4 ) = 2n + 4m − 1 for m ≥ n ≥ 1, (n, m) =/ (1, 1) [MiSa, LiWa1].

(f) Formulas for R (mC 4, nC 5 ) [LiWa2].

(g) Formulas and bounds for R (mCn , sCt ) [Den2, Biel1].

(h) Characterization of all graphs critical for R (C 4, Cn ) [WuSR].

(i) Study of R (S 1, S 2), where S 1 and S 2 are sets of cycles [Hans].

A conjecture generalizing 4.1.c stated in [Hans] was proved in [WaCh2].

(j) Unions of cycles, formulas and bounds for various cases including diagonal, different

lengths, different multiplicities [MiSa, Den2], disjoint cycles versus Kn [Fuj2], and their

relation to 2-local Ramsey numbers [Biel1].

(k) Asymptotics for powers of cycles [AllBS]. Exact values for squares of paths Pn and

cycles C 3n for sufficiently large n , in particular we have R (C 3n
2 , C 3n

2 ) = 9n − 3 for large

n [AllMRS].

Cycles versus paths

Result obtained by Faudree, Lawrence, Parsons and Schelp in 1974 [FLPS]:

R ( Cm , Pn ) =









m − 1 + n / 2

max{ m − 1 + n / 2 , 2n − 1}

n − 1 + m / 2

2n − 1

for 2 ≤ n ≤ m, m even.

for 2 ≤ n ≤ m, m odd,

for 4 ≤ m ≤ n, m even,

for 3 ≤ m ≤ n, m odd,
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For all n and m it holds that R ( Pm , Pn ) ≤ R ( Cm , Pn ) ≤ R (Cm , Cn ). Each of the two ine-

qualities can become an equality, and, as derived in [FLPS], all four possible combinations of

< and = hold for an infinite number of pairs (m, n). For example, if both m and n are

even, and at least one of them is greater than 4, then R ( Pm , Pn ) = R ( Cm , Pn ) = R (Cm , Cn ).

For related generalizations see [BEFRS2].

Cycles versus stars

Only partial results for Cm versus stars are known. Lawrence [Law1] settled the cases for

odd m and for long cycles (see also [Clark, Par6]). The case for short even cycles is open,

and it is related in particular to bipartite graphs. Partial results for C 4 = K 2, 2 are pointed to

in Sections 3.3.1 and 3.3.2. The most known general exact result [Law1] is:

R (Cm , K 1, n ) =


 m

2n + 1

for m ≥ 2n.

for odd m ≤ 2n + 1,

Some new cases for even m not too small with respect to n were settled in 2016, in particular

the exact values of R (C 6, K 1, n ) for all n ≤ 11 were completed in [ZhaBC5]. The equality

R (C 6, K 1, 12 ) = 17 was obtained in [SunSh]. The progress on asymptotics for large even m ,

and exact values for large even m and n not too large were obtained in [AllŁPZ].

4.2. Cycles versus complete graphs

Since 1976, it was conjectured that R (Cn , Km ) = (n − 1)(m − 1) + 1 for all n ≥ m ≥ 3,

except n = m = 3 [FS4, EFRS2]. Various parts of this conjecture were proved as follows: for

n ≥ m 2 − 2 [BoEr], for n > 3 = m [ChaS], for n ≥ 4 = m [YHZ1], for n ≥ 5 = m [BolJY+],

for n ≥ 6 = m [Schi1], for n ≥ m ≥ 7 with n ≥ m (m − 2) [Schi1], for n ≥ 7 = m [ChenCZ1],

and for n ≥ 4m + 2, m ≥ 3 [Nik]. Open conjectured cases are marked in Table V by "conj."

In 2019, Keevash, Long and Skokan [KeeLS] proved the above conjecture for

n ≥ C log m / loglog m for some absolute constant C ≥ 1, and furthermore that for any ε> 0

and n > n (ε), for the lower bound it holds that R (Cn , Km ) > m log m >> (n − 1)(m − 1) + 1

for all 3 ≤ n ≤ (1 − ε)log m / loglog m .

(a) The first column in Table V gives data from the first row in Table I.

(b) Joint credit [He2/JR4] in Table V refers to two cases in which Hendry [He2] announced

the values without presenting the proofs, which later were given in [JR4]. The special

cases of R (C 6, K 5 ) = 21 [JR2] and R (C 7, K 5 ) = 25 were solved independently in

[YHZ2] and [BolJY+]. The double pointer [JaBa/ChenCZ1] refers to two independent

papers, similarly as [JaAl/ZZ3], except that in the latter case [ZZ3] refers to an unpub-

lished manuscript. For joint credits marked in Table V with "-", the first reference is for

the lower bound and the second for the upper bound. The cases of the conjecture for

R (Cn , K 8 ), for 10 ≤ n ≤ 15, are confirmed in [Ban2].
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C 3 C 4 C 5 C 6 C 7 C 8 C 9 ... Cn for n ≥m

6 7 9 11 13 15 17 ... 2n − 1
K 3

2.1.a ChaS ... ... ChaS

9 10 13 16 19 22 25 ... 3n − 2
K 4

GG ChH2 He4/JR4 JR2 YHZ1 ... ... YHZ1

14 14 17 21 25 29 33 ... 4n − 3
K 5

GG Clan He2/JR4 JR2 YHZ2 BolJY+ ... ... BolJY+

18 18 21 26 31 36 41 ... 5n − 4
K 6

Kéry Ex2-RoJa1 JR5 Schi1 ... ... Schi1

23 22 25 31 37 43 49 ... 6n − 5
K 7

Ka2-GrY RaT-JR1 Schi2 CheCZN CheCZN JaBa/Ch+ Ch+ ... Ch+

28 26 29 36 43 50 57 ... 7n − 6
K 8

GR-McZ RaT LidP ChenCX ChenCZ1 JaAl/ZZ3 BatJA ... conj.

36 30 33-36 41 49 56 65 ... 8n − 7
K 9

Ka2-GR RaT-LaLR LidP LidP BanAA BanAA conj. ... conj.

40-41 36 9n − 8
K 10

Ex5-Ang LaLR
...

conj.

47-50 40-43 10n − 9
K 11

Ex20-GoeR1 VO-BoRa
...

conj.

53-59 43-51 11n − 10
K 12

Kol1-Les BoRa
...

conj.

Table V. Known Ramsey numbers R (Cn , Km );

Ch+ abbreviates ChenCZ1, for comments on joint credits see 4.2.b.

(c) Erdős et al. [EFRS2] asked what is the minimum value of R (Cn , Km ) for fixed m , and

they suggested that it might be possible that R (Cn , Km ) first decreases monotonically,

then attains a unique minimum, then increases monotonically with n . If so, then the

results in [KeeLS] stated above imply that this transition of behavior happens at

n = Θ(log m / loglog m).

(d) There exist constants c 1, c 2 > 0 such that c 1(m 3/ 2/ log m) ≤ R (C 4, Km ) ≤ c 2(m / log m)2.

The lower bound, obtained by Bohman and Keevash ([BohK1] in 2010, see also 4.2.j/k

below) improved over an almost 40 years old bound c(m / log m)3/ 2 by Spencer [Spe2],

using the probabilistic method. The upper bound was reported in a paper by Caro, Li,

Rousseau and Zhang [CaLRZ], who in turn give the credit to an unpublished work by

Szemerédi from 1980. A refined upper bound, R (C 4, Km ) ≤ (1 + o (1))(m / log m)2, was

presented by Liu and Li [LiuLi2] in 2021.

(e) Erdős, in 1981, in the Ramsey problems section of the paper [Erd3] formulated a chal-

lenge by asking for a proof of R (C 4, Km ) < m 2 − ε , for some ε > 0. To date, no such

proof is known.

(f) The lower bound asymptotics R (Cn , Km ) = Ω(m (n −1)/(n −2) / log m), for fixed n and large

m , was obtained by Bohman and Keevash [BohK1]. An improvement of the latter by a
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polylogarithmic factor for odd n and improved exponents to 11 / 8 and 11 / 9 for C 5 and

C 7, respectively [MuVer]. Further improvement to exponents 10 / 7 and 5 / 4 for C 5 and

C 7, with a polylogarithmic factor, in [ConMMV]. Note that for n = 4 it gives the lower

bound in 4.2.d above. See also [Spe2, FS4, AlRö] for previous related results.

(g) Enumeration of all (Cn , K 4 )-graphs for n ≤ 7 [JaNR].

Classification of all (Cn , K 6 )-critical graphs for n ≥ 15 [JaNS].

(h) A theta graph θn is obtained from the cycle Cn by adding one edge between some of its

nonadjacent vertices. Summary of what is known about R (θn , Kk ), and an additional

result for k = 6, are collected in [BanJBJ]. The cases for k = 5 and n = 7, 8, 9 are solved

in [JaBBJ], and the cases for k = 7 and (n = 7 or n ≥ 14) are solved in [Ban1].

(i) Let C ≤ n be the set of cycles of length at most n , and let the girth g (G) be the length of

the shortest cycle in graph G . Probabilistic lower bound asymptotics for R (C ≤ n , Km )

[Spe2] currently is the same as for R (Cn , Km ), for fixed n . However, there are clear

differences already for girth 4 and 5 and small m : Backelin [Back1, Back2] found that

R (C ≤ 4, Km ) = 6, 8, 11, 15, 18 for m = 3, 4, 5, 6, 7, and that R (C ≤ 5, Km ) = 5, 8, 10,

13, 15, also for m = 3, 4, 5, 6, 7, respectively.

(j) Erdős et al. [EFRS2] proved various facts about R (C ≤ n , Km ), and in particular that it is

equal to 2m − 1 for n ≥ 2m − 1, and to 2m for m < n < 2m − 1. The upper asymptotics for

R (C ≤ n , Km ) is implied in the study of independence number in graphs with odd girth n

[Den1]. The following close to the diagonal exact values were obtained in [WuSL]:

R (C ≤ n , Kn ) is equal to 2n and 2n + 1 for odd n and even n , respectively, and

R (C ≤ n , Kn + 1) = 2n + 3 for odd n ≥ 5 and even n ≥ 16.

(k) R (C ≥ n , Km 1, ... , mk
) = (k − 1)(n − 1) + m 1 for m 1 ≤ . . . ≤ mk , 5mk −1 + 3mk ≤ n [PoSu1].

The same equality holds for R (Cn , Km 1, ... , mk
) for large mi ’s and very large n [PoSu2].

(l) Upper bound asymptotics [BoEr, FS4, EFRS2, CaLRZ, Sud1, LiZa2, AlRö, DoLL2].

4.3. Cycles versus wheels

Note: In this survey the wheel graph Wn = K 1 + Cn −1 has n vertices,

while some authors use the definition Wn = K 1 + Cn with n + 1 vertices.

The generalized wheel Wk, n is defined by Wk, n = Kk + Cn , so Wn = W 1, n −1.

For the cases involving W 3 = C 3 versus Cm see Sections 3.2 and 4.2.

(a) R (C 3, Wn ) = 2n − 1 for n ≥ 6 [BuE3]. All critical graphs have been enumerated.

The critical graphs are unique for n = 3, 5, and for no other n [RaJi].

(b) R (C 4, Wn ) = 14, 16, 17 for n = 11, 12, 13, respectively [Tse1],

R (C 4, Wn ) = 18, 19, 20, 21 for n = 14, 15, 16, 17, respectively [DyDz2], and several

higher values and bounds, including 9 cases of n between 18 and 44 [WuSR, WuSZR].
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(c) R (C 4, Wn ) ≤ n + (n − 1) / 3 for n ≥ 7 [SuBUB], which was improved to

R (C 4, Wn ) ≤ n + √n − 2 + 1 for n ≥ 11 [DyDz2].

(d) R (C 4, Wq 2+ 1) = q 2 + q + 1 for prime power q ≥ 4 [DyDz2],

exact values of R (C 4, Wq 2+ 2) and R (C 4, Wq 2− i ) for special q and small i [WuSZR].

(e) R (C 4, Wn ) = R (C 4, K 1, n −1 ) for n ≥ 7 [ZhaBC1, ZhaBC2]. Thus, the data in Table IVa

and several items in Section 3.3.1 on R (C 4, K 1, n ) apply also to wheels.

(f) Tight bounds on R (C 4, Wn ) for 46 ≤ n ≤ 93 [NoBa].

C 3 C 4 C 5 C 6 C 7 C 8 Cm for

9 10 13 16 19 22 3m − 2 m ≥ 4
W 4

GG ChH2 He4 JR2 YHZ1 ... ... YHZ1

11 9 9 11 13 15 2m − 1 m ≥ 5
W 5

Clan Clan He2 JR2 SuBB2 ... ... SuBB2

11 10 13 16 19 22 3m − 2 m ≥ 4
W 6

BuE3 JR3 ChvS SuBB2 SuBB2 ... ... SuBB2

13 9 13 11 13 2m − 1 m ≥ 10
W 7

BuE3 Tse1 LuLL LuLL LuLL ... Ch1

15 11 15 16 19 22 3m − 2 m ≥ 6
W 8

BuE3 Tse1 LuLL LuLL Ch2 ... ... Ch2

17 12 17 13 17 2m − 1 m ≥ 13
W 9

BuE3 Tse1 LuLL LuLL LuLL Ch1

19 13 16 19 3m − 2 m ≥ 9
W 10

BuE3 Tse1 Z1 Z2 Ch2

... cycles

Wn 2n − 1 2n − 1 2n − 1

for n ≥ 6 n ≥ 19 n ≥ 29 large

BuE3 Zhou2 Zhou2 wheels

Table VI. Ramsey numbers R (Wn , Cm ) for n ≤ 10, m ≤ 8;

Ch1, Ch2, Z1, Z2 abbreviate ChenCMN, ChenCNZ, ZhaBC5, ZhaZZ, respectively.

(g) R (C 7, Wn ) = 2n − 1 for n = 9, 10, 11 [ZhaZZ].

(h) R (Wn , Cm ) = 2n − 1 for odd m with n ≥ 5m − 6 [Zhou2].

The range of n was extended in [ZhaZC].

(i) R (Wn , Cm ) = 3m − 2 for even n ≥ 4 with m ≥ n − 1, m =/ 3, was conjectured by Surahmat

et al. [SuBT1, SuBT2, Sur]. Parts of this conjecture were proved in [SuBT1, ZhaCC1,

Shi5, ZhaBC2, ZhaZC], and the proof was completed in [ChenCNZ].

(j) Conjecture that R (Wn , Cm ) = 2m − 1 for odd n ≥ 3 and all m ≥ 5 with m > n [Sur]. It

was proved for 2m ≥ 5n − 7 [SuBT1], and improved to 2m ≥ 3n − 1 in [ChenCMN]. For
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further progress see also [Shi5, ZhaBC2,Sanh, RaeZ, Alw].

(k) In Table VI, observe four distinct situations with respect to the parity of m and n .

(l) Cycles are Ramsey unsaturated for some wheels [AliSur],

see also comments on [BaLS] in item 5.16.e.

(m) Study of cycles versus generalized wheels Wk, n [Sur, SuBTB, Shi5, ZhaBC2, BieDa].

4.4. Cycles versus books

C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 10 C 11 Cm for

7 7 9 11 13 15 17 19 21 2m − 1 m ≥ 4
B 2

RoS1 Fal6 Cal Fal8 ... ... Fal8

9 9 10 11 13 15 17 19 21 2m − 1 m ≥ 6
B 3

RoS1 Fal6 Fal8 JR2 Shi5 Fal8 ... ... Fal8

11 11 11 12 13 15 17 19 21 2m − 1 m ≥ 7
B 4

RoS1 Fal6 Fal8 Sal1 Sal1 Shi5 Shi5 Fal8 ... ... Fal8

13 12 13 14 15 15 17 19 21 2m − 1 m ≥ 8
B 5

RoS1 Fal6 Fal8 Sal1 Sal1 Sal2 Sal2 Shi5 Shi5 ... Fal8

15 13 15 16 17 18 18 21 2m − 1 m ≥ 11
B 6

RoS1 Fal6 Fal8 Sal2 Sal2 Sal2 Sal2 Shi5 ... Shi5

17 16 17 16 19 20 21 2m − 1 m ≥ 13
B 7

RoS1 Fal6 Fal8 Sal2 Sal2 Sal2 Sal2 Shi5

19 17 19 17 19 22 ≥ 23 2m − 1 m ≥ 14
B 8

RoS1 Tse1 Fal8 Sal2 Sal2 Sal2 Sal2 Shi5

21 18 21 18 ≥ 25 ≥ 26 2m − 1 m ≥ 16
B 9

RoS1 Tse1 Fal8 Sal2 Sal2 Sal2 Shi5

23 19 23 19 ≥ 28 2m − 1 m ≥ 17
B 10

RoS1 Tse1 Fal8 Sal2 Sal2 Shi5

25 20 25 2m − 1 m ≥ 19
B 11

RoS1 Tse1 Fal8 Shi5

... ... cycles

Bn 2n + 3 ∼∼ n 2n + 3 2n + 3 2n + 3 2n + 3

for n ≥ 2 some n ≥ 4 n ≥ 15 n ≥ 23 n ≥ 31 large

RoS1 (c) Fal8 Fal8 Fal8 Fal8 books

Table VII. Ramsey numbers R (Bn , Cm ) for n, m ≤ 11;

et al. abbreviations: Fal/FRS, Cal/ChRSPS, Sal1/ShaXBP, Sal2/ShaXB.

(a) For the cases of B 1 = K 3 versus Cm see Section 4.2.

The exact values for the cases (3, 7), (4, 8), (4, 9), (5, 10), (5, 11) were obtained

independently in [Sal1, Sal2]/[ShaXBP, ShaXB] using computer algorithms.
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(b) R (C 4, B 12 ) = 21 [Tse1], R (C 4, B 13 ) = 22 , R (C 4, B 14 ) = 24 [Tse2].

R (C 4, B 8 ) = 17 [Tse2] (it was reported incorrectly in [FRS7] to be 16).

R (C 4, B 17 ) ≤ 28 was obtained in [BoRa].

(c) q 2 + q + 2 ≤ R (C 4, Bq 2 − q + 1 ) ≤ q 2 + q + 4 for prime power q [FRS7]. Bn is a subgraph

of Bn + 1, hence likely R (C 4, Bn ) = n + O (√ n ) (compare to R (C 4, K 2, n ) in Section 3.3).

(d) R (C 4, B (m −1)2 + t − 2 ) ≤ m 2 + t for m ≥ 4 and 0 ≤ t ≤ m − 1, and an infinite number of

exact values of R (C 4, Bn ). In particular, R (C 4, Bq 2 − q −2 ) = q 2 + q − 1 for all prime

powers q ≥ 4 [LiLP].

(e) Upper bound on R (C 4, Bn ) in terms of the upper bound on R (C 4, K 1, n ) [BoRa].

(f) R (Bn , Cm ) = 2n + 3 for odd m ≥ 5 with n ≥ 4m − 13, and

R (Bn , Cm ) = 2m − 1 for n ≥ 1, m ≥ 2n + 2 [FRS9]. The range of m in the latter was

extended to m ≥ 2n − 1 ≥ 7 in [ShaXB], and to m > (6n + 7) / 4 in [Shi5].

(g) Close to the diagonal we have R (Bn , Cn ) ≥ 3n − 2 and R (Bn − 1, Cn ) ≥ 3n − 4 for n ≥ 3

[ShaXB], and for all sufficiently large n it holds [LinP]:

R (Bn , Cm ) =





 3n

3n − 2

3m − 2

for n + 2 ≤ m ≤ 10n / 9.

if m = n + 1,

for 9n / 10 ≤ m ≤ n,

(h) More theorems on R (Bn , Cm ) in [FRS7, FRS9, NiRo4, Zhou1].

(i) Cycles versus some generalized books Bn
(k) = nK 1 + Kk [Shi5]. Exact asymptotics for

odd cycles versus Bn
(k) [LiuLi1], and for general cases close to the diagonal [LinP].

4.5. Cycles versus other graphs

(a) C 4 versus stars [Par3, Par4, Par5, BEFRS4, Chen, ChenJ, DyDz2, GoMC, MoCa, WuSR,

WuSZR, SunSh]. For several exact results see the cases of C 4 = K 2, 2 in the tables

IVa/b/c, and for general results see several items in Sections 3.3.1, 3.3.2, and 4.3.e.

(b) C 4 versus unions of stars [HaABS, Has, HaJu]

(c) C 4 versus trees [EFRS4, Bu7, BEFRS4, Chen]

(d) C 4 versus all graphs on six vertices [JR3]

(e) C 4 versus various types of complete bipartite graphs, see [LiuLi2] and Section 3.3.

(f) R (C 4, G) ≤ 2q + 1 for any isolate-free graph G with q ≥ 2 edges, and the equality holds

for G = qK 2 or G = K 3 [RoJa2, JRB].

(g) R (C 4, G) ≤ 2p + q − 2 for any isolate-free graph G on p vertices and q ≥ 2 edges [JRB].

(h) R (C 5, K 4 − e) = 9 [ChRSPS]

(i) R (C 5, K 6 − e) = 17 [JR4]
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(j) C 5 versus all graphs on six vertices [JR4]

(k) R (C 6, K 5 − e) = 17 [JR2]

(l) C 6 versus all stars up to K 1, 12 [ZhaBC5, SunSh]

C 6 versus all graphs on five vertices [JR2]

(m) R (C 2m +1, G) = 2n − 1 for sufficiently large sparse graphs G on n vertices, in particular

R (C 2m +1, Tn ) = 2n − 1 for all n > 1512m + 756, for n -vertex trees Tn [BEFRS2]. The

range of n for trees in the latter was extended to n ≥ 25(2m + 1) in [Bren2]. More on

cycles versus trees [FSS2].

(n) R (Cn , G) ≤ 2q +  n / 2  − 1, for 3 ≤ n ≤ 5, for any isolate-free graph G with q > 3

edges. It is conjectured that it also holds for other n [RoJa2].

(o) Study of conditions for graphs G for which R (Cn , G) = (n − 1)( χ(G) − 1) + σ(G), where

σ(G) is chromatic surplus of G [AllBS, HasHKL].

(p) Cycles versus fans and other graphs [Shi5], large even cycles versus fans [YouLin1].

(q) Exact asymptotics of odd cycles versus generalized fans [LiuLi1],

fans versus generalized books Kk + nK 1 [LiuLi3]

(r) Cycles versus nW 4 [Sudar4]

(s) Monotone paths and cycles [Lef]. This 1993 work was followed by many papers on the

so-called ordered Ramsey numbers, about which only a couple of hints are made in this

survey, and they are not covered here otherwise.

(t) Cycles versus Kn, m and multipartite complete graphs [BoEr, PoSu1, PoSu2]

(u) Cycles versus generalized books and wheels [Shi5, Sur, SuBTB]

(v) Cycles versus special graphs of the form Kn + G with small n ≤ 3 and sparse G [Shi5]
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5. General Graph Numbers in Two Colors

This section includes data with respect to general graph results. We tried to include all

nontrivial values and identities regarding exact results, or references to them, but only those

out of general bounds and other results which, in our opinion, may have a direct connection to

the evaluation of specific numbers. If some small value cannot be found below, it may be

covered by the cumulative data gathered in Section 8, or be a special case of a general result

listed in this section. Note that P 2 = K 2, B 1 = F 1 = C 3 = W 3 = K 3, B 2 = K 4 − e ,

P 3 = K 3 − e , W 4 = K 4 and C 4 = K 2, 2 imply other identities not mentioned explicitly.

5.1. Paths

R (Pm , Pn ) = n + m / 2  − 1 for all n ≥ m ≥ 2 [GeGy]

Complete classification of R (Pm , Pn )-critical graphs [Hook]

Stripes mP 2 [CocL1, CocL2, Lor]

Trails (paths with repeated vertices) [Osu, ConT]

Disjoint unions of paths (also called linear forests) [BuRo2, FS2]

Monotone paths [CaYZ], ordered path powers [Mub2], see also 4.5.s

Asymptotics for powers of paths [AllBS]. Exact values for squares of paths Pn for

sufficiently large n, in particular we have R (P 3n
2 , P 3n

2 ) = R (P 3n +1
2 , P 3n +1

2 ) = 9n − 3 , and

R (P 3n +2
2 , P 3n +2

2 ) = 9n + 1 for large n [AllMRS].

5.2. Wheels

Note: In this survey the wheel graph Wn = K 1 + Cn −1 has n vertices,

while some authors use the definition Wn = K 1 + Cn with n + 1 vertices.

(a) R (W 3, Wn ) = 2n −1 for all n ≥ 6 [BuE3],

All critical colorings for R (W 3, Wn ) for all n ≥ 3 [RaJi].

(b) The graph 3Km −1 is a witness of 3m − 2 ≤ R (Wm , Wn ) for all even n , and the graph

2Km −1 is a witness of 2m − 1 ≤ R (Wm , Wn ) for all m and n . In Table VIII, the lower

bounds without a credit are implied by these inequalities.

(c) R (Wn , Wn ) ≤ 8n − 10 for even n , and R (Wn , Wn ) ≤ 6n − 8 for odd n [MaoWMS].

(d) All critical colorings (2, 1 and 2) for R (Wn , W 6 ), for n = 4, 5, 6 [FM].

(e) R (W 6, W 6 ) = 17, R (4, 4) = 18 and χ(W 6 ) = 4 give a counterexample G = W 6

to the Erdős conjecture (Erd2, see also [GRS]) that R (G, G) ≥ R (K χ(G), K χ(G) ).

(f) The value R (W 5, W 5 ) = 15 was given in the Hendry’s table [He2] without a proof.

Later the proof was published in [HaMe2].
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n 3 4 5 6 7 8 9 10

m

6 9 11 11 13 15 17 19
3

GG Clan BuE3 BuE3 BuE3 BuE3 BuE3

18 17 19 21 22-26 ≥ 25
4

GG He3 FM VO-LidP LidP

15 17 15 17 18 ≥ 21
5

He2 FM We-VO1 VO-LidP VO1 VO

17 19 22-26 ≥ 25
6

FM LidP LidP

19 19-21 ≥ 19 ≥ 21
7

VO-LidP LidP VO VO

22-25 ≥ 25
8

LidP

≥ 21
9

VO

≥ 28
10

Table VIII. Ramsey numbers R ( Wm , Wn ) for m ≤ n ≤ 10.

5.3. Books

The book graph is defined by Bn = K 2 + nK 1.

The generalized book Bk, n is defined by Bk, n = Kk + nK 1, it is also written as Bn
(k).

For cycles versus books see Section 4.4, and books versus other graphs Section 5.9.

(a) R (Bm , Bn ) ≤ R (Bm +1, Bn ) and R (Bm , Bn ) = R (Bn , Bm ) hold for all m, n ≥ 1.

(b) R (B 1, Bn ) = 2n + 3 ≤ R (B 2, Bn ) for all n >1 [RoS1].

(c) R (B 2, Bn ) ≤ 2n + 6 for all n >1 [RoS1], R (B 2, Bn ) ≤ 2n + 5 for 12 ≤ n ≤ 22,

R (B 2, Bn ) ≤ 2n + 4 for 23 ≤ n ≤ 37, R (B 2, Bn ) = 2n + 3 for n ≥ 38 [FRS8].

(d) There are 4 Ramsey-critical graphs for R (B 2, B 3 ), a unique graph for

R (B 3, B 4 ) [ShaXBP], 3 for R (B 2, B 6 ) and 65 for R (B 2, B 7 ) [BlLR].

(e) Unpublished result R (B 2, B 6 ) = 17 [Rou] was confirmed in [BlLR].

R (B 11, B 12 ) = 47 and R (B 12, B 13 ) = 51 were obtained in [VO1].

(f) R (Bn , Bn ) = 4n + 2 for 4n + 1 a prime power.

If 4n + 1 is not the sum of two integer squares, then R (Bn , Bn ) ≤ 4n + 1 [RoS1].

(g) If 2(m + n) + 1 > (n −m)2/ 3, then R (Bm , Bn ) ≤ 2(m + n + 1) and R (Bn −1, Bn ) ≤ 4n − 1.

Furthermore, if n = 2 (mod 3) then R (Bn −2, Bn ) ≤ 4n − 3 [RoS1].

- 31 -



THE ELECTRONIC JOURNAL OF COMBINATORICS (2024), DS1.17

n 1 2 3 4 5 6 7 8 9 10 11

m

6 7 9 11 13 15 17 19 21 23 25
1

ChH2 Clan RoS1 RoS1 RoS1 RoS1 RoS1 RoS1 RoS1 RoS1

10 11 13 16 17 18 21-22 22-24 25-26 28
2

ChH1 Clan Rou RoS1 Rou BlLR VO1-* VO1-* VO1-* FRS8

14 15 17 19
3

RoS1 Sh1+ RoS1 We-Lid

18 19 22 27-28
4

RoS1 We RoS1 5.3.hg

21 23
5

RoS1 VO1

26 27 29
6

5.3.f VO1 VO1

30 31 36 37-38
7

5.3.f VO1 5.3.hg 5.3.hg

33 35
8

VO1 VO1

38 39 41
9

5.3.f VO1 VO1

42 43
10

5.3.f VO1

Table IXa. Ramsey numbers R (Bm , Bn ) for m ≤ 10 and m ≤ n ≤ 11. Upper bounds marked *

follow from 5.3.b/c. Other upper bounds in VO1 follow from 5.3.f/g. See the details of 5.3.b-h

below, their further use leads to other bounds not listed in the table. Sh1+ abbreviates ShaXBP.

m n R (Bm Bn ) v k λ µ

11 11 46 45 22 10 11

14 17 64 63 30 13 15

23 26 100 99 48 22 24

22 37 120 119 54 21 27

29 38 136 135 64 28 32

34 37 144 143 70 33 35

47 50 196 195 96 46 48

46 58 210 209 100 45 50

56 56 226 225 112 55 56

38 82 244 243 110 37 60

62 65 256 255 126 61 63

69 71 281 280 135 70 60

Table IXb. Exact values of R ( Bm , Bn ) from strongly regular (v , k, λ, µ)-graphs on up to

280 vertices, using 5.3.g/h [NiRo3]. It includes only the cases beyond the range of Table IXa,

and excludes the cases of m = n for 4n + 1 prime power, as in 5.3.f.
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(h) Strongly regular graphs often provide good lower bounds. If there exists a strongly regu-

lar graph with the parameters (v , k, λ, µ), then R (B λ+1, Bv −2k +µ−1) ≥ v + 1. The lower

bounds for a number of specific larger cases, like R (B 62, B 65 ) = 256 [RoS1] or

254 ≤ R (B 37, B 88 ) ≤ 255 [Par6], are implied by the existence of a strongly regular

graph with suitable parameters. 12 exact values of R (Bm , Bn ), beyond Table IXa, where

this lower bound meets the upper bound in 5.3.g were collected by Nikiforov and

Rousseau [NiRo3], and they are presented in Table IXb. For a great collection of

strongly regular graphs see the website by A. E. Brouwer [Brou].

(i) R (Bm , Bn ) = 2n + 3 for all n ≥ cm for some c < 106 [NiRo2, NiRo3]. A strengthening

of this result implying that R (B n /4 , Bn ) = (9n /4 + o (1)) n [ChenL], and more lower

and upper bounds for off-diagonal cases are in [ChenLY].

(j) R (Bn , Bn ) = (4 + o (1))n [RoS1, NiRS].

(k) For generalized books Bn
(k) = nK 1 + Kk , Conlon proved that R (Bn

(k), Bn
(k)) = 2k n + ok (n)

[Con4]. A simplified proof, better control of the error term, and a proof that all extremal

colorings for this Ramsey problem are quasirandom are in the follow-up papers: for the

diagonal case [ConFW1], and off-diagonal ConFW2]. All this more than answered some

old questions by Erdős and others. The lower bound R (Bn
(k), Bn

(k)) ≥ 8n + 5, for prime

powers 4n + 1, was established in [LinLi3].

(l) Other general equalities and bounds involving R (Bm , Bn ) can be found in [RoS1, FRS8,

Par6, NiRo2, NiRo3, NiRS, LiRZ2].

5.4. Trees and forests

In this subsection Tn and Fn denote an n -vertex tree and forest, respectively.

(a) R (Tn , Tn ) ≤ 4n + 1 [ErdG]. Note that if Tn were a set of all n -vertex trees, then one

might say that R (Tn , Tn ) = n , since for every graph G at least one of G or G is con-

nected, and thus it contains an n -vertex spanning tree.

(b) R (Tn , Tn ) ≥ (4n − 1) / 3 [BuE2], see also Section 5.15.

(c) Conjecture that R (Tn , Tn ) is at most 2n − 2 for even n and 2n − 3 for odd n [BuE2].

Note that this is the same as asking if R (Tn , Tn ) ≤ R (K 1, n −1, K 1, n −1 ). Zhao [Zhao]

proved that R (Tn , Tn ) ≤ 2n − 2 and thus confirmed the conjecture for even n . Indepen-

dently, Ajtai et al. [AjKSS] announced a full proof for large n . This recent progress

subsumes some of the results pointed to in items (d)-(m) below.

(d) For general discussion of related problems see [Bu7, FSS2, ChGra2], in particular of the

conjecture that R (Tm , Tn ) ≤ n + m − 2 holds for all trees [FSS2].

(e) If Δ(Tm ) = m − 2 and Δ(Tn ) = n − 2 then the exact values of R (Tm , Tn ) are known, and

they are between n + m − 5 and n + m − 3 depending on n and m . In particular, we have

R (Tn , Tn ) = 2n − 5 for even n and R (Tn , Tn ) = 2n − 4 for odd n [GuoV].

(f) Examples of families Tm and Tn (including Pn ) for which R (Tm , Tn ) = n + m − c ,

c = 3, 4, 5 [SunZ1], extending the results in [GuoV].
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(g) View the tree T as a bipartite graph with parts t 1 and t 2, t 2 ≥ t 1, then define

b (T) = max{ 2t 1 + t 2 − 1, 2t 2 − 1}. Then the bound R (T, T) ≥ b (T) holds always,

R (T, T) = b (T) holds for many classes of trees [EFRS3, GeGy], and asymptotically

[HaŁT], but cases for inequality have been found [GrHK].

(h) Comments in [BaLS] about some conjectures on Ramsey saturation of non-star trees,

which would imply that R (Tn , Tn ) ≤ 2n − 2 holds for sufficiently large n .

(i) Formulas for R (Tm , Tn ) for some subcases of when Tm and Tn satisfy Δ(Tm ) = m − 3

and Δ(Tn ) ≥ n − 3 [SunWW].

(j) R (Tm , K 1, n ) ≤ m + n − 1 , with equality for (m − 1) | (n − 1), and for sufficiently large n

for almost all trees Tm [Bu1]. Many cases were identified for which we have

R (Tm , K 1, n ) = m + n − 2 [Coc, ZhZ1], see also [Bu1].

(k) R (Tm , K 1, n ) ≤ m + n if Tm is not a star and (m − 1) |/ (n − 1), and some classes of trees

and stars for which the equality holds [GuoV]. Further classes of trees and stars for

which we have R (Tm , K 1, n ) ≤ m + n − c , and for which the equality holds with c = 3 or

c = 2 [YanP].

(l) In a sequence of papers [SunZ1, SunZ2, SunW, SunWW], Zhi-Hong Sun et al. obtain

several exact results for R (S, T), where the trees S and T have high maximum degree

Δ≥ n −3 , or one of them has high maximum degree and the other is a path.

(m) Formulas for some cases of brooms [EFRS3], where broom is a star with a path attached

to its center. These results were extended to all diagonal cases for brooms [YuLi]. Note

that a tree Tn with Δ(Tn ) = n − 2 is a broom, and this case is listed in 5.4.e.

(n) R (Fn , Fn ) > n + log2n −O (loglog n) [BuE2], forests are tight for this bound [CsKo].

(o) Forests, linear forests (unions of paths) [BuRo2, FS3, CsKo].

(p) Extensive tables of R (Tm , Tn ) for 6 ≤ m, n ≤ 8, for many concrete pairs of trees, which

were obtained through an adiabatic quantum optimization algorithm [RanMCG].

(q) Tristars and fountains [BroNN].

(r) Paths versus trees [FSS2], see also other parts of this survey involving special graphs,

in particular Sections 5.5, 5.6, 5.10, 5.12 and 5.15.

5.5. Stars, stars versus other graphs

R (K 1, n , K 1, m ) = n + m − ε, where ε = 1 for even n and m , and ε = 0 otherwise [Har1].

This is also a special case of multicolor numbers for stars 6.6.e obtained in [BuRo1].

R (K 1, n , Km ) = n (m − 1) + 1 by Chvátal’s theorem [Chv1].

Stars versus C 4 [Par3, Par4, Par5, BEFRS4, Chen, ChenJ], until 2002

Stars versus C 4 [GoMC, MoCa, WuSZR, ZhaBC1, ZhaCC2, ZhaCC3], since 2004

Stars versus K 2, n [Par4, GoMC]

Stars versus Kn, m [Stev, Par3, Par4]

See also Section 3.3
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R (K 1, 4, B 4 ) = 11 [RoS2]

R (K 1, 4, K 1, 2, 3 ) = R (K 1, 4, K 2, 2, 2 ) = 11 [GuSL]

Stars versus paths [Par2, BEFRS2]

Stars versus cycles [Law1, Clark, ZhaBC5, SunSh], see also [Par6] and Section 4.1

Stars versus 2K 2 [MeO]

Stars versus stripes mP 2 [CocL1, CocL2, Lor]

Stars versus bistars [AlmHS]

Stars versus kipas [LiZB]

Stars versus W 5 and W 6 [SuBa1]

nK 1, m versus W 5 [BaHA]

Stars versus W 9 [Zhang2, ZhaCZ1]

Stars versus wheels [HaBA1, ChenZZ2, Kor, LiSch, HagMa]

Stars versus books [ChRSPS, RoS2]

Stars versus fans [ZhaBC3, ZhaoW, HuP2]

Stars versus trees [Bu1, Cheng, Coc, GuoV, SunZ1, SunZ2, SunWW, ZhZ1, YanP]

Stars versus Kn − tK 2 [Hua1, Hua2]

Stars versus almost all connected graphs on 6 vertices [LoM7]

Values and bounds on R (Sn , K 6 − 3K 2 ) [LoM8], see also [LoM10]

Union of two stars [Gros2]

Asymptotics for double stars* [NoSZ, FloS]

Double stars versus K 2, q and sK 2 versus Ks + Cn [SuAUB]

Odd-linked double stars [KarK]

Unions of stars versus C 4 and W 5 [HaABS, Has, HaJu]

Unions of stars versus wheels [BaHA, HaBA2, SuBAU1]

5.6. Paths versus other graphs

Note: for cycles versus Pn see Section 4.1.

P 3 versus all isolate-free graphs [ChH2]

Paths versus stars [Par2, BEFRS2]

Paths versus trees [FS4, FSS2, SunZ1, SunZ2, SunWW]

Paths versus books [RoS2]

Paths versus Kn [Par1]

Paths versus 2Kn [SuAM, SuAAM]

Paths versus Kn, m [Häg]

Paths versus some balanced complete multipartite graphs [Pokr]

Paths versus W 5 and W 6 [SuBa1]

Paths versus W 7 and W 8 [Bas]

* double star is a union of two stars with their centers joined by an edge
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Paths versus wheels [BaSu, ChenZZ1, SaBr3, Zhang1]

Paths versus wheels, the last piece completed [LiNing2]

R (Pn , mW 4) = 2n + m − 2 [Sudar1]

Paths versus beaded wheels [AliBT2]

Paths versus sunflower graphs [AliTJ]

Paths versus powers of paths [Pokr, AllBS, AllMRS]

Paths versus fans [SaBr2]

Paths versus K 1 + Pm [SaBr1, SaBr4]

Paths versus kipas [LiZBBH]

Paths versus K 1 + F , where F is a linear forest [LiNing1]

Paths versus Jahangir graphs [SuTo]

Paths and cycles versus trees [FSS2]

Powers of paths [AllBS, AllMRS], see also Section 5.1

Unions of paths [BuRo2]

Paths and unions of paths versus tKn [Sudar2]

Paths and unions of paths versus Jahangir graphs [AliBas, AliBT1, AliSur]

Paths and unions of paths versus K 2m − mK 2 [AliBB]

Goodness of paths for tKn [Sudar3]

Goodness of paths, results on graphs H for which Pn is H -good [PoSu1]

Sparse graphs versus paths and cycles [BEFRS2]

Graphs with long tails [Bu2, BuG]

Long paths versus other good graphs [PeiLi, PeiCLY]

Paths versus generalized wheels [BieDa]

Monotone paths [Lef, CaYZ, MuSuk5], and monotone cycles [Lef], see also 4.5.s

5.7. Fans, fans versus other graphs

The fan graph Fn is defined by Fn = K 1 + nK 2,

and generalized fan Fk, n is defined by Fk, n = K 1 + nKk .

R (F 2, F 2) = 9 [Bu4]

R (F 3, F 3) = 14 [ZhaoW]

R (F 1, Fn ) = R (K 3, Fn ) = 4n + 1 for n ≥ 2 , and bounds for R (Fm , Fn ) [LiR2, GuGS]

R (F 2, Fn ) = 4n + 1 for n ≥ 2, and

R (Fm , Fn ) ≤ 4n + 2m for n ≥ m ≥ 2 [LinLi1],

R (Fm , Fn ) = 4n + 1 for n sufficierntly larger than m [LinLD].

9n / 2 − 5 ≤ R (Fn , Fn ) ≤ 11n / 2 + 6 for all n ≥ 1 [ChenYZ],

upper bound growth improved to R (Fn , Fn ) ≤ 31n / 6 + 15 for all n ≥ 1 [DvoMe].

R (K 4, Fn ) = 6n + 1 for n ≥ 3 [SuBB3]

R (K 5, Fn ) = 8n + 1 for n ≥ 5 [ZhaCh]

R (K 6, Fn ) = 10n + 1 for n ≥ 6 [KaOS]
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A conjecture that R (Km , Fn ) = 2mn − 2n + 1 for n ≥m ≥ 4 [SuBB3]

Fans versus paths, formulas for a number of cases including R (P 6, Fn ) [SaBr2],

missing case R (P 6, F 4 ) = 12 solved in [Shao].

R (Fm , Kn ) ≤ (1 + o (1))n 2/ log n [LiR2]

Lower bounds on R (F 2, Kn ) from cyclic graphs for n ≤ 9 [Shao]

Fans versus wheels [ZhaBC4, MengZZ]

Fans versus stars [ZhaoW, HuP2]

Fans versus trees and stars [ZhaBC3, Bren1]

Fans versus generalized books Kk + nK 1 [LiuLi3]

Fans versus cycles [Shi5]

Fans versus large even cycles [YouLin1]

Fans versus unicyclic graphs [Bren1]

R (K 3, F 3, n ) = 6n + 1, for n ≥ 3 [HaoLin]

R (K 3, F 4, n ) = 8n + 1, for n ≥ 4 [WaQi]

Km and other graphs versus generalized fans Fk, n [LiR2, WaQi]

nKm versus FG, n = K 1 + nG , where n ≥ 2 and G is a graph [HaHT]

Asymptotics of odd cycles versus generalized fans FG, n [LiuLi1]

Generalized fans versus special chromatic graphs G [JiHou]

5.8. Wheels versus other graphs

Notes: In this survey the wheel graph Wn = K 1 + Cn −1 has n vertices, while some authors use

the definition Wn = K 1 + Cn with n + 1 vertices. For cycles versus Wn see Section 4.3. Con-

sider also similarity of wheels to other graphs, like fans, kipas [LiZBBH], sunflower [AliTJ],

and Jahangir graphs [SuTo].

R (W 5, K 5 − e) = 17 [He2][YH]

R (W 5, K 5 ) = 27 [He2][RaST]

33 ≤ R (W 5, K 6 ) ≤ 36 [ShaoWX, LidP]

45 ≤ R (W 5, K 7 ) ≤ 50 [VO, LidP]

34 ≤ R (W 6, K 6 ) ≤ 40 [VO, LidP]

45 ≤ R (W 6, K 7 ) ≤ 55 [GoeVO, LidP]

W 5 and W 6 versus stars and paths [SuBa1]

W 5 versus nK 1, m [BaHA]

W 5 versus unions of stars [Has]

W 5 versus theta graphs θn [JaBVR]

W 5 and W 6 versus trees [BaSNM]

W 7 and W 8 versus paths [Bas]

W 7 versus trees Tn with Δ(Tn ) ≥ n − 3, other special trees T ,

and Tn for n ≤ 8 [ChenZZ3, ChenZZ5, ChenZZ6]
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W 7 and W 8 versus trees [ChenZZ4, ChenZZ5]

W 9 versus stars [Zhang2, ZhaCZ1, ZhaCC4, ZhaCC7]

W 9 versus trees of high maximum degree [ZhaCZ2]

W 2n versus trees of high maximum degree [HafBa]

R (C 4, Wn ) = R (C 4, K 1, n −1 ) for n ≥ 7 [ZhaBC1].

Wheels versus stars [HaBA1, ChenZZ2, Kor, LiSch, HagMa]

Wheels Wn , for even n , versus star-like trees [SuBB1]

Wheels versus paths [BaSu, ChenZZ1, SaBr3, Zhang1]

Wheels versus paths, the last piece completed [LiNing2]

Wheels versus fans and wheels [ZhaBC4, MengZZ]

Wheels versus some trees [RaeZ, ZhuZL]

Wheels versus books [Zhou3]

Wheels versus unions of stars [BaHA, HaBA2, SuBAU1]

Wheels versus linear forests (disjoint unions of paths) [SuBa2]

Some cases of wheels versus Kn −K 1, s [ChaMR]

Generalized wheels versus cycles [Shi5, BieDa]

Generalized wheels Wk, 6 and Wk, 7 versus trees [Wang2, ChngTW]

Generalized wheels versus trees [WaCh]

Upper asymptotics for R (Wn , Km ) [Song5, SonBL]

Upper asymptotics for generalized wheels versus Kn [Song9]

5.9. Books versus other graphs

The book graph is defined by Bn = K 2 + nK 1.

The generalized book Bk, n is defined by Bk, n = Kk + nK 1, it is also written as Bn
(k).

For cycles versus books see also Section 4.4.

R (B 3, K 4 ) = 14 [He3]

R (B 3, K 5 ) = 20 [He2][BaRT]

R (B 4, K 1, 4 ) = 11 [RoS2]

Cyclic lower bounds for R (Bm , Kn ) for m ≤ 7, n ≤ 9

and for R (B 3, Kn − e) for n ≤ 7 [Shao, ShaoWX]

R (Tn , Bm ) = 2n − 1 for all n ≥ 3m − 3 [EFRS7]

B 4 versus trees [LoM9]

Trees Tn are 2B 2-good for n ≥ 5 [GuoHP]

Books versus paths [RoS2]

Books versus stars [ChRSPS, RoS2]

Books versus trees [EFRS7, ZhaCZ]

Books versus Kn [LiR1, Sud2]

Books versus wheels [Zhou3]

Books versus K 2 + Cn [Zhou3]

Books and (K 1 + tree) versus Kn [LiR1]
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A 2023 paper Ramsey Goodness of Books Revisited [FoxHW] reviews the subject of the

title and proves a result that R (G, Bk, n ) = (p − 1)(n − 1) + 1 for generalized books Bk, n

(also called k -books), where G is a complete p -partite graph with some constraints on

the sizes of its parts. A conjecture on near Ramsey goodness posed in [FoxHW] is

disproved in [FanLin].

B 3, n versus cycles [Shi5]

Bk, n versus Km [NiRo1, NiRo4]

Bk, n versus K 1 + C 4 [LinLiu]

Bk, n versus fans [LiuLi3]

Bk, n versus graphs with small bandwidth [YouLC]

C (2m +1)-goodness of Bk, n and Kk + nH [LiuLi4]

5.10. Trees and forests versus other graphs

In this subsection Tn and Fn denote n -vertex tree and forest, respectively.

R (Tn , Km ) = (n − 1)(m − 1) + 1 [Chv1]

R (C 2m +1, Tn ) = 2n − 1 for all n > 1512m + 756, for n -vertex trees Tn [BEFRS2].

The range of n was extended to n ≥ 25(2m + 1) in [Bren2].

R (Tn , Bm ) = 2n − 1 for all n ≥ 3m − 3 [EFRS7]

R (Fnk , Km ) = (n − 1)(m − 2) + nk for all forests Fnk consisting of k trees with

n vertices each, also exact formula for all other cases of forests versus Km [Stahl]

Exact results for almost all small (n (G) ≤ 5) connected graphs G versus all trees [FRS4]

Stripes versus trees and unicyclic graphs [HuP2]

Large trees are tKm − good for t, m ≥ 3 [LuoP2]

Trees versus stars [Bu1, Cheng, Coc, GuoV, ZhZ1, YanP]

Trees versus unions of complete graphs of different sizes [HuLuo]

Trees versus paths [FS4, FSS2]

Trees versus C 4 [EFRS4, Bu7, BEFRSS5, Chen]

Trees versus cycles [FSS2, EFRS6]

Trees versus books [EFRS7, ZhaCZ]

Trees versus B 4 [LoM9]

Trees Tn are 2B 2-good for n ≥ 5 [GuoHP]

Trees versus fans [ZhaBC3]

Trees versus W 5 and W 6 [BaSNM]

Trees versus W 7 and W 8 [ChenZZ4, ChenZZ5]

Some trees versus wheels [RaeZ, ZhuZL]

Trees versus wheels [ZhaBC4]

Trees Tn with Δ(Tn ) ≥ n − 3, other special trees T ,

and Tn for n ≤ 8 versus W 7 [ChenZZ3, ChenZZ5, ChenZZ6]

Trees Tn with Δ(Tn ) ≥ n − 4 versus W 9 [ZhaCZ2]
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Trees Tn with large Δ(Tn ) versus W 2m [HafBa]

Star-like trees versus odd wheels [SuBB1, ChenZZ3]

Trees versus Kn + Km [RoS2, FSR]

Trees versus generalized wheels Wk, 6 and Wk, 7 [Wang2, ChngTW]

Trees versus generalized wheels [WaCh]

Trees versus bipartite graphs [BEFRS4, EFRS6]

Trees versus almost complete graphs [GoJa2]

Trees versus multipartite complete graphs [EFRS8, BEFRSGJ]

R (T, G) for most non-star trees T and n (G) ≤ 6 [LoM10], see item 8.1.q

Linear forests versus 3K 3 and 2K 4 [SuBAU2]

Linear forests versus 2Km [SuAAM]

Linear forests versus tKn [Sudar2, Sudar3]

Linear forests versus wheels [SuBa2]

Forests versus almost complete graphs [ChGP]

Forests versus complete graphs [BuE1, Stahl, BaHA]

Forests versus disjoint union of complete graphs [HuP1]

Goodness of bounded degree trees [BalPS]

Study of graphs G for which all or almost all trees are G -good [BuF, BEFRSGJ],

see also Section 5.15 and 5.16, item [Bu2], for the definition and more pointers.

See also various parts of this survey for special trees, and Section 5.4.

5.11. Cases for n (G), n (H) ≤ 5

Clancy [Clan], in 1977, presented a table of R (G, H) for all isolate-free graphs G with

n (G) = 5 and H with n (H) ≤ 4, except 5 entries. All five of the open entries have been

solved as follows:

R (B 3, K 4 ) = 14 [He3]

R (K 5, K 4 − e) = 16 [BoH]

R (W 5, K 4 ) = 17 [He2]

R (K 5 − e , K 4 ) = 19 [EHM1]

R (K 5, K 4 ) = R (4, 5) = 25 [MR4]

An interesting case in [Clan] is:

R (K 4, K 5 −P 3) = R (K 4, K 4 + e) = R (4, 4) = 18

Hendry [He2], in 1989, presented a table of R (G, H) for all graphs G and H on 5

vertices without isolates, except 7 entries. Five of the open entries have been solved:

R (K 5, K 4 + e) = R (4, 5) = 25 [Ka1][MR4]

R (K 5, K 5 − P 3 ) = 25 [Ka1][Boza2, CalSR]

R (K 5, B 3 ) = 20 [He2][BaRT]

R (K 5, W 5 ) = 27 [He2][RaST]
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R (W 5, K 5 − e) = 17 [He2][YH]

The still open cases for K 5 versus K 5 − e and K 5 are:

30 ≤ R (K 5, K 5 − e ) ≤ 33 [Ex6][Boza7]

43 ≤ R (K 5, K 5 ) ≤ 48 [Ex4][AnM1]

All critical colorings for the case R (C 5 + e, K 5 ) = 17 were found by Hendry [He5].

5.12. Miscellaneous cases

R (P, P) ≥ 19, where P is the 10-vertex Petersen graph [HaKr2]

R (Q 3, Q 3 ) = 13, where Q 3 is the 8-vertex cube graph [LidP], see also item 5.15.m

30 ≤ R (K 2, 2, 2 , K 2, 2, 2 ) ≤ 31, where K 2, 2, 2 is the octahedron [HaKr2, LidP]

Unicyclic graphs [Gros1, Köh, KrRod, LowKap]

K 2, m and C 2m versus Kn [CaLRZ]

K 2, n versus any isolate-free graph [RoJa2, JRB]

Union of two stars [Gros2]

Double stars [GrHK, BahS, NoSZ, FloS]

Odd-linked double stars [KarK]

Formulas for some cases of brooms+ [EFRS3], extended to all diagonal cases [YuLi]

Graphs with bridge versus Kn [Li1]

Multipartite complete graphs [BFRS, FRS3, Stev]

Multipartite complete graphs versus trees [EFRS8, BEFRSGJ]

Multipartite complete graphs versus sparse graphs [EFRS4]

Graphs with long tails [Bu2, BuG]

5.13. Multiple copies of graphs, disconnected graphs

(a) 2K 2 versus isolate-free graphs [ChH2],

nK 2 versus isolate-free graphs [FSS1].

(b) nK 2 versus mK 2, in particular R (nK 2, nK 2 ) = 3n − 1 for n ≥ 1 [CocL1, CocL2, Lor]

(c) R (nK 3, nK 3 ) = 5n for n ≥ 2, R (mK 3, nK 3 ) = 3m + 2n for m ≥ n ≥ 2, and

R (mKn , mKn ) ≤ (2n − 1)m + cn for n ≥ 4 and some constant cn [BES].

(d) Lorimer and Mullins [LorMu] proved that

R ( nK 3, mK 4) =









2n + 4m + 1

3n + 5

3n + 3m + 1

9

for m ≥ n and m ≥ 2.

for n ≥ 2 and m = 1,

for n ≥ m > 1,

for m = n = 1,

+ broom is a star with a path attached to its center
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(e) R (nK 4, nK 4 ) = 7n + 4 for large n [Bu8]

(f) Stripes mP 2 [CocL1, CocL2, Lor]

(g) mK 1, n versus sK 1, t [LuoP1]

(h) R (nH ) = (2k − α) n + c holds for all sufficiently large n, where H is a k -vertex isolate-

free graph with independence number α=α(H ), and c = c (H ) is a constant dependent on

H [BES]. Now, it is known that there exists C > 0 such that this equality holds for all

n ≥ 2Ck . Further, in the case of complete graphs we have the equality

R (nKk ) = (2k − 1) n + R (Kk −1) − 2 [BucSu]. Significant improvements were obtained

for sparse graphs, in particular those with bounded maximum degree [SulTr].

(i) R (mG, nH) ≤ (m − 1)n (G) + (n − 1)n (H) + R (G, H) [BES]

(j) Formulas for R (nK 3, mG) for all isolate-free graphs G on 4 vertices [Zeng]

(k) Variety of results for numbers of the form R (nG, mH) [Bu1, BES, HaBA2, SuBAU1,

SuAUB, Sudar2, Sudar3].

(l) R (F, G ∪H) ≤ max{ R (F, G) + n (H), R (F, G) } [Par6]

(m) R (G, H) for all disconnected isolate-free graphs H on at most 6 vertices versus all G on

at most 5 vertices, except 3 cases [LoM5]. Missing cases were completed in [KroMe].

(n) nK 1, m versus W 5 [BaHA], cycles versus nW 4 [Sudar4]

(o) Results on R (G, G) for G = Pk ∪K 1, n : exact formulas for k = 2 and k = 3, and lower

and upper bounds for k ≥ 4 [ZhouLMW]. In [ZhouLMW], these results are used as tools

to derive some Gallai-Ramsey numbers.

(p) Trees and forests versus Km ∪Kn [HuP1],

Trees versus unions of complete graphs of different sizes [HuLuo],

Trees Tn are 2B 2-good for n ≥ 5 [GuoHP],

Disjoint unions of paths (linear forests) [BuRo2, FS2],

Linear forests versus 3K 3∪ 2K 4 [SuBAU2]

(q) Forests versus Kn [Stahl, BaHA] and Wn [BaHA]. Generalizations to forests versus

other graphs G in terms of χ(G) and the chromatic surplus of G [Biel4], and for linear

forests versus 2Kn [SuAM].

(r) Disconnected graphs versus other graphs, R (nH, G) [BuE1, GoJa1, BucSu]

(s) Let c (nKk ) denote the set of connected graphs containing n vertex-disjoint Kk ’s. Then

R (c (nK 3 ), c (nK 3 )) = 7n − 2 for n ≥ 2 [GySá3], and for n ≥ R (k, k) and k ≥ 4 we have

R (c (nKk ), c (nKk )) = (k 2 − k + 1) n − k + 1 [Rob]. These are just samples of results on the

so called connected Ramsey numbers, otherwise not covered in this survey.

(t) See Section 4.1 for cases involving unions of cycles.

See also [Bu9, BuE1, LorMu, MiSa, Den2, Biel1, Biel2]
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5.14. General results for special graphs

(a) R (Km
p , Kn

q) = R (Km , Kn ) for m, n ≥ 3, m + n ≥ 8, p ≤ m /(n − 1) and q ≤ n /(m − 1),

where Ks
t is a Ks with an additional vertex connected to it by t edges [BEFS]. Some

applications can be found in [BlLR].

(b) R (K 2, k , G) ≤ kq + 1 for k ≥ 3, for isolate-free graphs G with q ≥ 2 edges [RoJa2, JRB].

(c) R (W 6, W 6 ) = 17 and χ(W 6 ) = 4 [FM]. This gives a counterexample G = W 6 to the

Erdős conjecture (see [GRS]) R (G, G) ≥ R (K χ(G), K χ(G) ), since R (4, 4) = 18.

(d) R (G + K 1, H) ≤ R (K 1, R (G, H), H) [BuE1].

(e) R (K 2 + G, K 2 + G) ≤ 4R (G, K 2 + G) − 2 [LiShen].

(f) For arbitrary fixed graphs G and H , if n is sufficiently large then we have

R (K 2 + G, K 1 + nH ) = (k + 1)mn + 1, where k = χ(G) and m = | V (H) | [LiR2].

(g) Study of nKm versus FG, n = K 1 + nG , where n ≥ 2 and G is a graph [HaHT]. Study of

R (G + K 1, nH + K 1) [LinLD]. Further lower bounds based on the Paley graphs, in par-

ticular for R (K 3 + Kn , K 3 + Kn ) [LinLS].

(h) R (Kp + 1, Bq
r ) = p (q + r − 1) + 1 for generalized books Bq

r = Kr + qK 1, for sufficiently

large q [NiRo1]. Formula for R (K 1 + C 4, Bq
r) for sufficiently large q [LinLiu].

(i) Study of the cases R (Km , Kn −K 1, s ) and R (Km − e , Kn −K 1, s ), with several exact

values for special parameters [ChaMR]. This study was extended to some cases involv-

ing R (Km − K 3) [MonCR].

(j) Study of R (T + K 1, Kn ) for trees T [LiR1]. Asymptotic upper bounds for

R (T + K 2, Kn ) [Song7], see also [SonGQ].

(k) Bounds on R (H + Kn , Kn ) for general H [LiR3]. Also, for fixed k and m , as n→ ∞,

R (Kk + Km , Kn ) ≤ (m + o (1)) n k / (log n)k −1 [LiRZ1].

(l) Asymptotics of R (H + Kn , Kn ). In particular, the order of magnitude of R (Km, n , Kn ) is

n m +1/ (log n)m [LiTZ]. Upper asymptotics for R (Ks + Km, n , Kk ) [Song9].

(m) Study of the largest k such that if the star K 1, k is removed from Kr , r = R (G, H), any

edge 2-coloring of the remaining part still contains monochromatic G or H , as for Kr ,

for various special G and H [HoIs].

(n) Let G ′′ be a graph obtained from G by deleting two vertices with adjacent edges. Then

R (G, H) ≤ A + B + 2 + 2 √( A 2 + AB + B 2 ) / 3 , where A = R (G ′′, H) and B = R (G, H ′′)
[LiRZ2].

5.15. General results for sparse graphs

(a) R (Kn , Tm ) = (n −1)(m −1) + 1 for any tree Tm on m vertices [Chv1].

(b) Graphs yielding R (Kn , G) = (n −1)(n (G) − 1) + 1, called Ramsey n -good [BuE3], and

related results [EFRS5]. An extensive survey and further study of n -goodness appeared

in [NiRo4], 2009. More results on goodness of bounded degree trees [BalPS], 2016, and

paths [PoSu1], 2017.
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(c) R (C 2m +1, G) = 2n − 1 for sufficiently large sparse graphs G on n vertices, little more

complicated formulas for P 2m +1 instead of C 2m +1 [BEFRS2].

(d) Conjecture that R (G, G) ≤ 12n (G) for all planar G , for sufficiently large n [AllBS].

(e) R (G, G) ≤ cd n (G) for all G , where constant cd depends only on the maximum degree d

in G [ChRST]. The constant was improved in [GRR1, FoxSu1]. Tight lower and upper

bounds for bipartite G [GRR2, Con2, ConFS7, ConFS8]. Further improvements of the

constant cd in general were obtained in [ConFS4], and for graphs with bounded

bandwidth in [AllBS].

(f) R (G, G) ≤ cd n for all d -arrangeable graphs G on n vertices, in particular with the same

constant for all planar graphs [ChenS]. The constant cd was improved in [Eaton]. An

extension to graphs not containing a subdivision of Kd [RöTh].

(g) Ramsey numbers grow linearly for degenerate graphs versus some sparser graphs,

arrangeable graphs, crowns, graphs with bounded maximum degree, planar graphs, and

graphs without any topological minor of a fixed clique [Shi3].

(h) Study of L -sets, which are sets of pairs of graphs whose Ramsey numbers are linear in

the number of vertices. Conjecture that Ramsey numbers grow linearly for d -degenerate

graphs (graph is d -degenerate if all its subgraphs have minimum degree at most d )

[BuE1], 1973. Progress towards this conjecture was obtained by several authors, includ-

ing [KoRö1, KoRö2, KoSu, FoxSu1, FoxSu2]. Further progress, and the proof of the

conjecture were obtained in 2017, using its relation to the chromatic number [Lee].

(i) Ramsey number is linear in a class of graphs X if RX ( p, q) ≤ c ( p + q) for some con-

stant c and all p, q , where we color the edges of graphs in X . A conjecture that this

linearity holds for X if and only if the co-chromatic number is bounded in X [AtLZ].

Discussion of various old and new classes of Ramsey linear graphs [NeOs]. A similar

concept of classes of graphs for other constraints on R ( p, q) are studied in [Loz].

(j) Study of graphs G , called Ramsey size linear, for which there exists a constant cG such

that for all H with no isolates R (G, H) ≤ cG e (H) [EFRS9], 1993. An overview and

further results were given in [BaSS], 2002, and more recently in [BraGS], 2024.

(k) R (G, G) < 6n for all n -vertex graphs G , in which no two vertices of degree at least 3

are adjacent [LiRS]. This improves the result R (G, G) ≤ 12n in [Alon1]. In an early

paper by Burr and Erdős [BuE1] it was proved that if any two points of degree at least 3

are at distance at least 3 then R (G, G) ≤ 18n .

(l) R (Ga, b , Ga, b ) = (3/ 2 + o (1))ab , where Ga, b is the rectangular a× b grid graph. Other

similar results follow for bipartite planar graphs with bounded degree and grids of higher

dimension [MoSST].

(m) R (Qn , Qn ) ≤ 22.62n + o (n), for the n -dimensional hypercube Qn with 2n vertices [Shi1].

This bound can also be derived from a theorem in [KoRö1]. An improvement was

obtained in [Shi4], a further one to R (Qn , Qn ) ≤ 22n + 5n in [FoxSu1], then another

decrease of the upper bound to 22n + 6 in [ConFS8], and the latest one to 22n − cn + 1 + 2,

for some positive c and sufficiently large n [Tikh].

A lower bound construction for 12 ≤ R (Q 3, Q 3) was presented in [HaKr2], and
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R (Q 3, Q 3) = 13 was shown in [LidP]. This is not be be confused with the poset Ramsey

numbers for Qn (studied in [BohP], for example, but otherwise not covered in this sur-

vey), where the vertices of Qm are colored and monochromatic copies of Qn are being

avoided.

(n) R (Km , Qn ) = (m − 1)(2n − 1) + 1 for every fixed m and sufficiently large n [FizGMSS].

This improves on the results in [ConFLS] and [GrMFSS]. The apparent contradiction

with publication years is due to the timing of publication processes.

(o) Conjecture that R (G, G) = 2n (G) − 1 if G is unicyclic of odd girth [Gros1].

Further support for the conjecture was given in [Köh, KrRod, LowKap].

(p) Using SAT to compute R (G, G) for several small sparse graphs G [LowKKB].

(q) See also earlier subsections 5.* for various specific sparse graphs.

5.16. General results

(a) R (G, H) ≥ ( χ(G) − 1)(c (H) − 1) + 1, where χ(G) is the chromatic number of G , and

c (H) is the size of the largest connected component of H . [ChH2].

(b) R (G, G) > (s 2 e (G) − 1) ) 1 / n (G) , where s is the number of automorphisms of G . Hence

R (Kn, n , Kn, n ) > 2 n , see also item 6.7.l [ChH3].

(c) R (G, G) ≥ (4n (G) − 1) / 3 for any connected G , and R (G, G) ≥ 2n − 1 for any con-

nected nonbipartite G . These bounds can be achieved for all n ≥ 4 [BuE2].

(d) Graphs H yielding R (G, H) = (χ(G) − 1)(n (H) − 1) + s (G), where s (G) is the chromatic

surplus of G , defined as the minimum number of vertices in some color class under all

vertex colorings in χ(G) colors (such H ’s are called G -good) [Bu2]. This idea is a basis

of a number of exact results for R (G, H) for large and sparse graphs H [BuG, BEFRS2,

BEFRS3, Bu5, FaSi, EFRS4, FRS3, BEFSRGJ, BuF, LiR4, Biel2, SuBAU3, Song6,

AllBS, PeiLi, PeiCLY, LiBie, BalPS, PoSu1, PoSu2, LinLiu]. Surveys of this area

appeared in [FRS5, NiRo4].

(e) Graph G is Ramsey saturated if R (G + e, G + e) > R (G, G) for every edge e in G . The

paper [BaLS] contains several theorems involving cycles, cycles with chords and trees on

Ramsey saturated and unsaturated graphs, and also seven conjectures including one stat-

ing that almost all graphs are Ramsey unsaturated. Some classes of graphs were proved

to be Ramsey unsaturated [Ho]. Special cases involving cycles and Jahangir graphs were

studied in [AliSur]. Discussion of how much R (G, G) can change if one vertex from G

is removed [Wig2].

(f) Relations between R (3, k) and graphs with large χ(G) [BiFJ]. Further detailed study of

the relation between R (3, k) and the chromatic gap [GySeT].

(g) R (G, H) > h (G, d) n (H) for all nonbipartite G and almost every d -regular H , for some

h unbounded in d [Bra3].

(h) Lower asymptotics of R (G, H) depending on the average degree of G and the size of H

[DoLL1]. This continued the study initiated in [EFRS5], later much enhanced for both

lower and upper bounds in [Sud3].
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(i) Lower bound asymptotics of R (G, H) for large dense H [LiZa1].

(j) A conjecture posed by Erdős in 1983 that there exists a constant c such that

R (G, G) ≤ 2 c√ e (G) for all isolate-free graphs G [Erd4]. Discussion of this conjecture

and partial results, proof for bipartite graphs and progress in other cases are included in

[AlKS]. In 2011, Sudakov [Sud4] completed the proof of this conjecture. An extension

of the latter to some off-diagonal cases is presented in [MaOm1], and an improvement of

the constant for bipartite graphs is given in [JoPe]. For the multicolor case see item

6.7.k.

(k) Lower bound on R (G, Kn ) depending on the density of subgraphs of G [Kriv]. This

construction for G = Km produces a bound similar to the best known probabilistic lower

bound by Spencer [Spe2]. Further lower and upper bounds on R (G, Kn ) in terms of n

and e (G) can be found in [Sud3].

(l) Upper bounds on R (G, Kn ) for dense graphs G [Con3].

(m) The graphs Kn and Kn + Kn −1 are Ramsey equivalent for n ≥ 4, i.e. every graph arrows

both of them or neither of them. This equivalence does not hold for n = 3, and every

graph witnessing such nonequivalence contains K 6 [BlLi]. See references therein for his-

tory and further results on Ramsey equivalent and nonequivalent pairs of graphs.

(n) Relations between the cases of G or G + K 1 versus H or H + K 1 [BuE1].

(o) Study of cyclic graphs yielding lower bounds for Ramsey numbers. Exact formulas for

paths and cycles, and values for small complete graphs and for graphs with up to five

vertices [HaKr1].

(p) Relations between some Ramsey graphs and block designs [Par3, Par4].

(q) Lidický and Pfender used flag algebras to constrain the space of feasible Ramsey color-

ings of various types. This was implemented, and then led to a number of new upper

bounds listed throughout this survey [LidP].

(r) Relations between the Shannon capacity of noisy communication channels and graph

Ramsey numbers [Li2]. See also Section 6 in [Ros2], and [XuR3].

(s) Given integer m and graphs G and H , determining whether R (G, H) ≤ m holds is

NP − hard [Bu6]. Further early complexity results related to Ramsey theory were

presented by Burr in [Bu10]. Complexity classification of (Pk , Pl )-goodness was com-

pleted in [HasHR].

(t) Ramsey arrowing is Π 2
p − complete, a rare natural example of a problem higher than NP

in the polynomial hierarchy of computational complexity theory [Scha]. Superpolyno-

mial lower bound on the length of resolution proofs that a graph is Ramsey is obtained

in [LauPRT].

(u) Ramsey numbers with prescribed rate of growth [PavPS].

(v) Special cases of multicolor results listed in Section 6.

See also surveys listed in Section 8.
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6. Multicolor Ramsey Numbers

Until 2016, the only known value of a multicolor classical Ramsey number was:

R 3(3) = R (3, 3, 3) = R (3, 3, 3 ; 2) = 17 [GG]

2 critical colorings (on 16 vertices) [KaSt, LayMa]

2 colorings on 15 vertices [Hein]

115 colorings on 14 vertices [PR1]

Now, we know one more case, namely R (3, 3, 4) = 30. For some details see 6.1.c.

6.1. Bounds for classical numbers

General upper bound, implicit in [GG]:

R (k 1, ... , kr ) ≤ 2 − r +
i = 1
Σ
r

R (k 1, ... , ki − 1, ki − 1, ki + 1, ... , kr ) (a)

The inequality in (a) is strict if the right hand side is even and at least one of the terms in the

summation is even. It is suspected that this upper bound is never tight for r ≥ 3 and ki ≥ 3,

except for r = k 1 = k 2 = k 3 = 3. However, only two parameter cases are known to improve

over (a), namely R 4(3) ≤ 62 [FeKR], and R (3, 3, 4) ≤ 31 [PR1, PR2], R (3, 3, 4) ≤ 30 [Cod-

FIM], for which (a) produces the bounds of 66 and 34, respectively.

Diagonal Cases

m 3 4 5 6 7 8 9 10

r

17 128 454 1106 3214 7174 15041 23094
3

GG HiIr Ex23 Row3 XuR1 Row5 Row5 Row5

51 634 4073 23502 94874 182002 719204
4

Chu1 XXER Row3 Row5 Row5 Row5 Row5

162 4176 41626 258506
5

Ex10 Row1 Row5 Row5

538 32006 441606
6

FreSw Row1 Row5

1698 160024
7

Row4 Row1

5288
8

Row3

17805
9

AgCP+

Table X. Known lower bounds for small parameter diagonal

multicolor Ramsey numbers Rr (m), with references.
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A general construction of linear Ramsey graphs as described by Rowley [Row2, Row3] in

2020 leads to lower bounds in higher cases, such as R 6(6) ≥ 4515702. The templates by

Rowley were generalized, which yielded many new lower bound constructions for Schur

numbers, which in turn give lower bounds for Ramsey numbers Rk (3) for 10 ≤ k ≤ 15

[AgCP+]. Other lower bounds, implied by general constructions such as those in Section 6.2,

are not listed.

The most studied and intriguing open case is

[Chu1] 51 ≤ R 4(3) = R (3, 3, 3, 3) ≤ 62 [FeKR]

The construction for 51 ≤ R 4(3) as described in [Chu1] is correct, but be warned of a typo

found by Christopher Frederick in 2003 (there is a triangle (31, 7, 28) in color 1 in the

displayed matrix). It was shown that the bound 51 cannot be improved by using group parti-

tioning into disjoint union of symmetric product-free sets [Ana1], neither by some other group

partition means [Ana2]. The inequality 6.1.a implies R 4(3) ≤ 66, Folkman [Fol] in 1974

improved this bound to 65, and Sánchez-Flores [Sán] in 1995 proved R 4(3) ≤ 64.

The upper bounds in 162 ≤ R 5(3) ≤ 307, 538 ≤ R 6(3) ≤ 1838, 1698 ≤ R 7(3) ≤ 12861,

128 ≤ R 3(4) ≤ 230 and 634 ≤ R 4(4) ≤ 6306 are implied by 6.1.a (we repeat lower bounds

from Table X just to see easily the ranges). All the latter and other upper bounds obtainable

from known smaller bounds and 6.1.a can be computed with the help of a LISP program writ-

ten by Kerber and Rowat [KerRo].

Off-Diagonal Cases

Three colors:

m 4 5 6 7 8 9 10 11 12 13 14 15 16

k

30 45 61 85 103 129 150 174 194 217 242 269 291
3

Ka2 Ex2 ExT Ex18 Ex18 Ex18 ExT ExT ExT ExT ExT ExT ExT

55 89 117 152 193 242
4

KrLR Ex17 Ex17 ExT 6.2.g ExT

89 139 181 241
5

Ex17 Ex17 Ex17 6.2.g

Table XI. Known nontrivial lower bounds for 3-color Ramsey numbers

of the form R (3, k, m), with references. See also 6.1.b/c/d below.

(b) In several past revisions of this survey we wrote: "The other most studied, and perhaps

the only open case of a classical multicolor Ramsey number, for which we can anticipate

exact evaluation in the not-too-distance future is

[Ka2] 30 ≤ R (3, 3, 4) ≤ 31 [PR1, PR2]
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In [PR1] it was conjectured that R (3, 3, 4) = 30, and the results in [PR2] eliminate some

cases which could give R (3, 3, 4) = 31". Since 2016, we can write that R (3, 3, 4) = 30

due to the computations completed by Codish, Frank, Itzhakov and Miller [CodFIM].

(c) In addition to Table XI, the bounds 303 ≤ R (3, 6, 6), 609 ≤ R (3, 7, 7) and

1689 ≤ R (3, 9, 9) were derived in [XXER] (used there for building other lower bounds

for some diagonal cases). These three bounds were improved to 338, 674 and 1844,

respectively, by Rowley [Row5].

(d) The upper bounds in the inequalities 45 ≤ R (3, 3, 5) ≤ 57, 55 ≤ R (3, 4, 4) ≤ 77 and

89 ≤ R (3, 4, 5) ≤ 158 are implied by 6.1.a. We repeat lower bounds from Table XI to

show explicitly the current ranges.

(e) In 2015, Exoo and Tatarevic obtained several lower bounds improvements which are

marked as [ExT] in Table XI. The same paper improves also on several classical two-

color cases in Table I, see also comments 2.1.n and 2.1.o.

(f) For three colors, Rowley [Row5] gives also the lower bounds:

338 ≤ R (3, 6, 6) 674 ≤ R (3, 7, 7)

941 ≤ R (3, 8, 8) 1844 ≤ R (3, 9, 9)

2841 ≤ R (3, 10, 10) 10769 ≤ R (8, 8, 9)

(g) Four colors:

97 ≤ R (3, 3, 3, 4) ≤ 149 [Ex17], 6.1.a

174 ≤ R (3, 3, 4, 4) ≤ 450 [Row2], 6.1.a

381 ≤ R (3, 4, 4, 4) ≤ 1577 6.2.j, 6.1.a

162 ≤ R (3, 3, 3, 5) [XXER]

513 ≤ R (3, 3, 3, 10) 6.2.g

597 ≤ R (3, 3, 3, 11) 6.2.g

729 ≤ R (3, 4, 5, 5) [Row2]

1430 ≤ R (3, 5, 5, 5) [Row5]

Lower bounds for higher numbers can be obtained by using general constructive results

from Section 6.2 below. For example, the bounds 261 ≤ R (3, 3, 15) and 247 ≤ R (3, 3, 3, 7)

were not published explicitly but are implied by 6.2.g and 6.2.h, respectively.

6.2. General results for complete graphs

(a) R (k 1, ... , kr ) ≤ 2 − r +
i = 1
Σ
r

R (k 1, ... , ki − 1, ki − 1, ki + 1, ... , kr ) [GG].

(b) Rr (3) ≥ 3Rr − 1(3) + Rr − 3 (3) − 3 [Chu1].

(c) Rr (m) ≥ cm (2m − 3)r , and some slight improvements of this bound for small values of m

were described in [AbbH, Gi1, Gi2, Song2]. For m = 3, the best known lower bound is

Rr (3) ≥ (3.28...) r [AgCP+].
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(d) Rr (3) ≤ r !(e − e − 1 + 3 ) / 2 ∼∼ 2.67 r ! [Wan] improved over the classical upper bound 3r !

in [GG, GRS]. This was further improved to Rr (3) ≤ r ! (e −1/ 6) + 1 ∼∼ 2.55 r ! for all

r ≥ 4 [XuXC]. Drawing from the latter, further conditional upper bounds depending on

the value of R 4(3) were obtained in [Eli]. In particular, assuming that R 4(3) = 51, we

have Rr (3) ≤ r ! (e −5/ 8) + 1 ∼∼ 2.09 r ! for all r ≥ 4.

(e) The limit L =
r→∞
lim Rr (3)1/ r exists, though it can be infinite [ChGri]. It is known that

3.28... < L , as implied by (c) above. The lower bounds on the limits
r→∞
lim Rr (k)1/ r for

small fixed k are gathered in [Row1, Row3, Row5], see also 6.2.v. The best lower

bounds for Rr (k) from the k -th residue Paley graphs for k = 3 and k = 4 are described in

[DawMc], though they are much weaker than those in Table X. For some older related

results, mostly on the asymptotics of Rr (3) , see [AbbH, Fre, Chu2, GRS, GrRö].

(f) In 2020, the limit
r→∞
lim Rr (3)1/ r was studied by Fox, Pach and Suk [FoxPS1] assuming a

conjecture for multicolorings with bounded VC-dimension, and further for
r→∞
lim Rr (k)1/ r

when restricted to the so-called semi-algebraic colorings [FoxPS2].

(g) R (3, k, l) ≥ 4R (k, l − 1) − 3 for k ≥ 3, l ≥ 5, and in general for r ≥ 2 and ki ≥ 2 it holds

R (3, k 1, ... , kr ) ≥ 4R (k 1 − 1, k 2, ... , kr ) − 3 for k 1 ≥ 5, and

R (k 1, 2k 2 − 1, k 3, ... , kr ) ≥ 4R (k 1 − 1, k 2, ... , kr ) − 3 for k 1 ≥ 5 [XuX2, XXER].

(h) R (3, 3, 3, k 1, ... , kr ) ≥ 3R (3, 3, k 1, ... , kr ) + R (k 1, ... , kr ) − 3 [Rob2].

For r + 1 colors, avoiding K 3 in the first r colors and avoiding Km in the last color,

R (3, ... , 3, m) ≤ r ! m r + 1 [Sár1].

(i) R (k 1, ... , kr ) ≥ S (k 1, ... , kr ) + 2, where S (k 1, ... , kr ) is the generalized Schur number

[AbbH, Gi1, Gi2]. In particular, the special case k 1 = ... = kr = 3 has been widely studied

[Fre, FreSw, Ex10, Rob3, Row4, AgCP+].

(j) R (k 1, ... , kr ) ≥ L (k 1, ... , kr ) + 1, where L (k 1, ... , kr ) is the maximal order of any cyclic

(k 1, ... , kr )−coloring, which can be considered a special case of Schur partitions defining

(symmetric) Schur numbers. Many lower bounds for Ramsey numbers were established

by cyclic colorings. The following recurrence can be used to derive lower bounds for

higher parameters. In 1968, Giraud [Gi2] showed that for ki ≥ 3 we have

L (k 1, ... , kr , kr + 1 ) ≥ (2kr + 1 − 3)L (k 1, ... , kr ) − kr + 1 + 2.

In 2017, this was superseded by a result obtained by Rowley [Row1]:

L (k 1, ... , kp + q ) ≥ ((2L (k 1, ... , kp ) − 1)(2L (k 1, ... , kq ) − 1) + 1) / 2.

It applies not only to cyclic but also to general linear graphs. In many cases it can be

surpassed by constructions involving special templates [Row3], which in turn are further

enhanced for Schur numbers [AgCP+].

(k) Rr (m) ≥ p + 1 and Rr (m + 1) ≥ r ( p + 1) + 1 if there exists a Km −free cyclotomic r − class

association scheme of order p [Math].
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(l) If the quadratic residues Paley graph Qp of prime order p = 4t + 1 contains no Kk , then

R (s, k + 1, k + 1) ≥ 4ps − 6p + 3 [XXER].

(m) Rr ( pq + 1) > (Rr ( p + 1) − 1)(Rr (q + 1) − 1) [Abb1]

(n) Rr ( pq + 1) > Rr ( p + 1)(Rr (q + 1) − 1) for p ≥ q [XXER]

(o) R ( p 1q 1+ 1, ... , pr qr + 1) > (R ( p 1+ 1, ... , pr + 1) − 1)(R (q 1+ 1, ... , qr + 1) − 1) [Song3]

(p) Rr + s (m) > (Rr (m) − 1)(Rs (m) − 1) [Song2]

(q) R (k 1, k 2, ... , kr ) > (R (k 1, ... , ki ) − 1)(R (ki +1, ... , kr ) − 1) in [Song1], see [XXER].

(r) R (k 1, k 2, ... , kr ) > (k 1 + 1)(R (k 2 − k 1 + 1, k 3, ... , kr ) − 1) [Rob4]

(s) Further lower bound constructions, though with more complicated assumptions, were

presented in [XuX2, XXER].

(t) Grolmusz [Grol1] generalized the classical constructive lower bound by Frankl and Wil-

son [FraWi] (item 2.4.7) to more colors and to hypergraphs [Grol3] (item 7.4.n).

All lower bounds in (b) through (t) above are constructive. Item (h) generalizes (b), (o)

generalizes both (m) and (q), and (q) generalizes (p). (n) is stronger than (m). Finally, we

note that the construction in (o) with q 1 = ... = qi = 1 = pi +1 = ... = pr is the same as (q).

(u) R (n, n, n) ≤ R (n − 2, n, n) + 8R (n − 1, n − 1, n) − 6 for n ≥ 3 [HTHZ2].

(v) A conjecture that R (k 1, k 2, ... , kr ) ≥ R (k 1, k 2, ... , kr −2, kr −1 − 1, kr + 1) holds for all

kr ≥ kr −1 ≥ 3 (called DC), its implications, evidence for validity, and related problems

[LiaRX]. For two-color case see also item 2.3.f. If we set Lk =
r→∞
lim Rr (k)1/ r , then the

limit Lk exists, finite or infinite, for every k ≥ 3 [ChGri]. If DC holds, then all Lk ’s are

finite or all of them are infinite [LiaRX]. See also 6.2.e.

(w) In 2020, Conlon and Ferber [ConFer] showed constructively that R 3(k) > 27k / 8 + o (k) and

R 4(k) > 2k / 233k / 8 + o (k), and they discussed more general best known lower and upper

bounds on Rr (k). An improvement to their construction by Wigderson [Wig1] yields

Rr (k) ≥ (23r / 8−1/4 ) k − o (k), for any fixed r ≥ 2, and a further improvement by Sawin

[Saw] to 0.383796 in the exponent in place of 3/8 (= 0.375).

(x) Exact asymptotics of a very special but important case is known, namely we have

R (3, 3, n) = Θ(n 3 poly−log n) [AlRö]. Generalizations to other parameters and more

colors are studied in [HeWi].

(y) Mattheus and Verstraëte [MatVer] established the lower bound, and He and Wigderson

[HeWi] the upper bound, as in

c 1 k 5/ log8k ≤ R (4, 4, k) ≤ c 2 k 5/ log4k ,

see also 6.6.o/p. Generalizations to other parameters and more colors are discussed in

[HeWi]. For earlier results on general upper bounds and more asymptotics see [Chu4,

ChGra2, ChGri, GRS, GrRö].
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6.3. Cycles

Note: The paper Ramsey Numbers Involving Cycles [Ra4] is based on the revision #12 of this

survey. It collects and comments on the results involving cycles versus any graphs, in two or

more colors. It contains some more details than this survey, but only until 2009.

6.3.1. Three colors

(a) One long cycle.

The first larger paper in this area by Erdős, Faudree, Rousseau and Schelp [EFRS1]

appeared in 1976. It gives several formulas and bounds for R (Cm , Cn , Ck ) and

R (Cm , Cn , Ck , Cl ) for large m . For three colors [EFRS1] includes:

R (Cm , C 2p +1, C 2q +1) = 4m − 3 for p ≥ 2, q ≥ 1,

R (Cm , C 2p , C 2q +1) = 2(m + p) − 3 and

R (Cm , C 2p , C 2q ) = m + p + q − 2 for p, q ≥ 1 and large m .

(b) Triple even cycles.

R 3 (C 2m ) ≥ 4m for all m ≥ 2 [DzNS], see also 6.3.2.d/e/f. It was proven that

R (Cn , Cn , Cn ) = (2 + o (1)) n for even n [FiŁu1, GyRSS], which was improved to

exactly 2n , for large n , by Benevides and Skokan [BenSk]. In 2005, Dzido [Dzi1] con-

jectured that R 3(C 2m ) = 4m for all m ≥ 3. The first open case is for R 3(C 10), known to

be at least 20. A more general result holds for some off-diagonal cases [FiŁu1]:

R (C 2 α1n , C 2 α2n , C 2 α3n ) =
(α1 + α2 + α3 + max{α1, α2, α3} + o (1)) n, for all α1, α2, α3 > 0.

The conjectured equality R 3(C 2m ) = 4m , whenever true, implies R 3(P 2m +1) = 4m + 1

[DyDR] (see also Section 6.4). For general mixed-parity case see 6.3.1.d/e below.

(c) Triple odd cycles.

Bondy and Erdős conjectured that R (Cn , Cn , Cn ) ≤ 4n − 3 for all n ≥ 4 (see for example

[Erd2]). If true, then for all odd n ≥ 5 we have R (Cn , Cn , Cn ) = 4n − 3. The first open

case is for R 3(C 9), known to be at least 33. Erdős [Erd3] and other authors credit this

conjecture to Bondy and Erdős, often pointing to a 1973 paper [BoEr]. Interestingly,

however, the conjecture is not mentioned in this paper.

Łuczak proved that R (Cn , Cn , Cn ) ≤ (4 + o (1)) n , with equality for odd n [Łuc]. The

result R 3(C 2m +1 ) = 8m + 1 for all sufficiently large m , or equivalently

R (Cn , Cn , Cn ) = 4n − 3 for large odd n , was announced with an outline of the proof by

Kohayakawa, Simonovits and Skokan [KoSS1], followed by the full proof in [KoSS2].
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m n k R (Cm , Cn , Ck ) references general results

3 3 3 17 GG 2 critical colorings [KaSt, LayMa]

3 3 4 17 ExRe

3 3 5 21 Sun1+/Tse3 5k − 4 for k ≥ 5, m = n = 3 [Sun1+]

3 3 6 26 Sun1+

3 3 7 31 Sun1+

3 4 4 12 Schu

3 4 5 13 Sun1+/Rao/Tse3

3 4 6 13 Sun1+/Tse3

3 4 7 15 Sun1+/Tse3

3 5 5 17 Tse3/LidP

3 5 6 21 Sun1+

3 5 7 25 Sun1+

3 6 6 15-18 LidP

3 6 7 21 Sun1+

3 7 7

4 4 4 11 BiaS 1000 critical colorings [Ra4]

4 4 5 12 Sun2+/Tse3

4 4 6 12 Sun2+/Tse3 k + 2 for k ≥ 11, m = n = 4 [Sun2+]

4 4 7 12 Sun2+/Tse3 values for k = 8, 9, 10 are 12, 13, 13 [Sun2+]

4 5 5 13 Tse3

4 5 6 13 Sun1+

4 5 7 15 Sun1+

4 6 6 11 Tse3

4 6 7 13 Sun1+/Tse3

4 7 7

5 5 5 17 YR1 1701746176 critical colorings [Nar]

5 5 6 21 Sun1+

5 5 7 25 Sun1+

5 6 6 15-17 LidP

5 6 7 21 Sun1+

5 7 7

6 6 6 12 YR2 R 3 (C 2q ) ≥ 4q for q ≥ 2 [DzNS]

6 6 7 15 Sun1+ see 6.3.1.a for larger parameters

6 7 7 see 6.3.1.a for larger parameters

7 7 7 25 FSS3 R 3 (C 2q +1 ) = 8q + 1 for large q [KoSS1, KoSS2]

8 8 8 16 Sun/SunY R 3 (C 2q ) = 4q for large q [BenSk]

Table XII. Ramsey numbers R (Cm , Cn , Ck ) for m, n, k ≤ 7 and m = n = k = 8;

Sun1+ abbreviates SunYWLX, Sun2+ abbreviates SunYLZ2,

the work in [SunYWLX] and [SunYLZ2] is independent from [Tse3].

(d) Three mixed-parity cycles.

Ferguson [Ferg] shows that R (Cm , Cn , Ck ) = max{2m + n, 2n + m, (n + m)/ 2 + k − 2}, for

all m, n, k sufficiently large, which generalizes and improves on all even case in

[FiŁu1]. The reference [Ferg] consists of a Ph.D. thesis and three long arXiv preprints.

(e) Asymptotics for triples of cycles of mixed parity similar in form to (b) [FiŁu2].

(f) R (C 3, C 3, Ck ) = 5k − 4 for k ≥ 5 [SunYWLX], and R (C 4, C 4, Ck ) = k + 2 for k ≥ 11

[SunYLZ2]. All exceptions to these formulas for small k are listed in Table XII.

(g) Almost all of the off-diagonal cases in Table XII required the use of computers.
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6.3.2. More colors

m 3 4 5 6 7 8

k

3 17 11 17 12 25 16

51 33 18 49 20
4

62
18

77 20

162 27 65 97 28
5

307 29
26

538 34 129 193
6

1838 38

Table XIII. Known values and bounds for Rk (Cm ) for small k, m ;

(a) For the entries in the row k = 3 and in the column m = 3 in Table XIII, more details and

all corresponding references are in Sections 6.3.1 and 6.1, respectively. The lower

bounds for m = 5, 7 are implied by 6.3.2.l. The bound R 4(C 5) ≤ 158 follows from

6.3.2.k, and using a reasoning as in [Li4] and the equality R 3(C 5) = 17 one can obtain

R 4(C 5) ≤ 137. The bound R 4(C 5) ≤ 77 was obtained in 2020 with the help of flag alge-

bras [LidP]. The references to other cases with k, m ≥ 4 can be found below in this sec-

tion.

R 4(C 4 ) = 18 [Ex2] [SunYLZ1]

33 ≤ R 4(C 5 ) ≤ 77 [6.3.2.l] [LidP]

18 ≤ R 4(C 6 ) ≤ 20 [SunYJLS] [ZhaSW]

27 ≤ R 5(C 4 ) ≤ 29 [LaWo1]

R 5(C 6 ) = 26 [SunYJLS] [SunYW]

34 ≤ R 6(C 4 ) ≤ 38 [Ex22] [Boza8]

24 ≤ R (C 3, C 4, C 4, C 4 ) ≤ 27 [DyDz1] [XuR2]

30 ≤ R (C 3, C 3, C 4, C 4 ) ≤ 36 [DyDz1] [XuR2]

49 ≤ R (C 3, C 3, C 3, C 4 ) ≤ 57 [6.7.h] [BoRa]

18 ≤ R (C 4, C 6, C 6, C 6 ) ≤ 20 [ZhaSW]

18 ≤ R (C 4, C 4, C 6, C 6 ) ≤ 20 [ZhaSW]

R (C 4, C 4, C 4, C 6 ) = 19 [ZhaSW]

(b) Rk (C 4 ) ≤ k 2 + k + 1 for all k ≥ 1, Rk (C 4 ) ≥ k 2 − k + 2 for all k − 1 which is a prime

power [Ir, Chu2, ChGra1], and Rk (C 4 ) ≥ k 2 + 2 for odd prime power k [LaWo1]. The

latter was extended to any prime power k in [Ling, LaMu]. For even number of colors k

we have Rk (C 4 ) ≤ k 2 + k [Boza8].

(c) Formulas for R (Cm , Cn , Ck , Cl ) for large m [EFRS1].
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Bounds in (d)-(j) below cover different situations and each is interesting in some respect.

(d) Rk (C 2m ) ≥ (k + 1) m for odd k and m ≥ 2, and

Rk (C 2m ) ≥ (k + 1) m − 1 for even k and m ≥ 2 [DzNS].

(e) Rk (C 2m ) ≥ 2(k − 1)(m − 1) + 2 [SunYXL].

(f) Rk (C 2m ) ≥ k 2 + 2m − k for 2m ≥ k + 1 and prime power k [SunYJLS].

(g) Rk (C 2m ) = Θ(k m /(m − 1)) for fixed m = 2, 3 and 5 [LiLih].

(h) Rk (C 2m ) ≤ 201km for k ≤ 10 m / 201 m [ErdG].

(i) Rk (C 2m ) ≤ 2km + o (m) for all fixed k ≥ 2 [ŁucSS].

(j) Rk (C 2m ) ≤ 2(k − ck ) m + o (m) for some small ck > 0, for all fixed k ≥ 2 [Sár2]. This

was improved to an absolute constant c = ck = 1/ 4 in [DavJR], and further to c = 1/ 2 in

[KniSu]. See also 6.4.2.d.

(k) Rk (C 5 ) < (18k k !)1/2 / 10 [Li4].

(l) 2k m < Rk (C 2m +1 ) ≤ (k + 2)!(2m + 1) [BoEr].

Better upper bound Rk (C 2m +1 ) < 2(k + 2)! m was obtained in [ErdG].

Still better upper bound Rk (C 2m +1 ) ≤ (c k k !)1/ m , for some positive constant c ,

if all Ramsey-critical colorings for C 2m +1 are not far from regular, was obtained in [Li4].

(m) For each fixed m ≥ 3, there exists a positive constant c such that for every k ≥ 3,

Rk (C 2m +1 ) < c k −1(k !)1/2 + δ, where δ is approaching 0 for large m [LinCh].

(n) Rk (C 2m +1 ) ≤ k 2k (2m + 1) + o (m) for all fixed k ≥ 4 [ŁucSS].

(o) Conjecture that Rk (C 2m +1 ) = 2k m + 1 for all m ≥ 2 was credited by several authors to

Bondy and Erdős [BoEr], though only lower bound, not the conjecture, is in this paper.

After more than 40 years, in 2016, Jenssen and Skokan [JenSk] posted a preprint on

arXiv (which appeared in Advances in Mathematics in 2021) containing a proof of the

conjecture for each fixed k with sufficiently large m . On the other hand, the work by

Day and Johnson [DayJ] shows that the lower bound of the conjecture does not hold for

each m and sufficiently large k .

(p) R (Cn , Cl 1
, ... , Clk

) = 2k (n − 1) + 1 for all li ’s odd with li > 2i , and sufficiently large n ,

and support for the conjecture that Rk (Cn ) = 2k −1(n − 1) + 1 for large odd n [AllBS].

(q) Rl (C ≤ l +1) = 2l + 3 for all odd l ≥ 3. For even l we have: R 4(C ≤ 5) = 12, R 6(C ≤ 7) = 12,

and Rl (C ≤ l +1) = 2l + 3 for l = 8, 10 and 12 [ZhuSWZ].

(r) Other asymptotic bounds for Rk (Cn ) [Bu1, GRS, ChGra2, Li4, LiLih, ŁucSS].

(s) Survey of multicolor cycle cases [Li3].
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6.3.3. Cycles versus other graphs

(a) Some cases involving C 4:

20 ≤ R (C 4, C 4, K 4 ) ≤ 21 [DyDz1] [LidP]

27 ≤ R (C 3, C 4, K 4 ) ≤ 29 [DyDz1] [BoRa]

52 ≤ R (C 4, K 4, K 4 ) ≤ 66 [XSR1] [BoRa]

34 ≤ R (C 4, C 4, C 4, K 4 ) ≤ 48 [DyDz1] [LidP]

43 ≤ R (C 3, C 4, C 4, K 4 ) ≤ 75 [DyDz1] [BoRa]

87 ≤ R (C 4, C 4, K 4, K 4 ) ≤ 177 [XSR1] [BoRa]

R (K 1, 3, C 4, K 4 ) = 16 [KlaM2]

R (C 4, C 4, K 4 − e ) = 16 [DyDz1]

R (C 4, C 4, C 4, T) = 16 for T = P 4 and T = K 1, 3 [ExRe]

(b) Study of R (Cn , K t 1
, ... , K tk

) and R (Cn , K t 1, s 1
, ... , K tk , sk

) for large n [EFRS1].

(c) R (Cn , K t 1
, ... , K tk

) = (n − 1)(r − 1) + 1 for n ≥ 4r + 2, where r = R (K t 1
, ... , K tk

) . This

equality was obtained as a special case of more general results in [OmRa2]. Similar

proof was presented later in [Mad]. Further, see items 6.6.f and 6.7.f.

(d) Study of asymptotics for R (Cm , ... , Cm , Kn ), in particular for any fixed number of

colors k ≥ 4 we have R (C 4, C 4, ... , C 4, Kn ) = Θ( n 2 / log2n) [AlRö].

(e) Study of asymptotics for R (C 2m , C 2m , Kn ) for fixed m [AlRö, ShiuLL], in particular

R (C 4, C 4, Kn ) = Θ( n 2 poly−log n) [AlRö].

(f) For fixed m and large n, Ω (n 1+ 2 / (2m −1) / (log n)4 / (2m − 1)) ≤ R (C 2m +1, C 2m +1, Kn )

≤ O (n (1+1 / m)2

/ (log n) (2m +1) / m 2

) [LiuLi5].

(g) Study of the general upper bound on R (C 4, ... , C 4, K 1, n ), which for 3 colors implies

R (C 4, C 4, K 1, n ) ≤ n + 3 + √4n + 5 [ZhaCC4]. This was extended to hold for wheel

graphs as in R (C 4, C 4, Wn ) ≤ n + 3 + √4n + 5 for all n ≥ 56 or n equal to 42, 48, 49,

50, 51 or 52. Furthermore, R (C 4, C 4, Wk 2 − k ) ≤ k 2 + k + 2 for k ≥ 9, with equality for

prime powers k [ZhaCC5].

(h) Lower and upper bounds on R (C 4, ... , C 4, K 1, n ) [ZhaCC4, ZhaCC6, Boza8]. The equal-

ity R (C 4, ... , C 4, K 1, n ) = R (C 4, ... , C 4, W 1, n ) for large n was obtained in [ZhaCC6],

note that it generalizes item 4.3.e.

(i) Upper bounds for R (C 4, ... , C 4, G 1, ... , Gk ), when certain constraints on graphs Gi are

known, applicable in particular to stars [BoRa].

(j) R (C 4, C 4, K 1, n ) = 6, 8, 9, 11, 13, 14 for n = 1, 2, 3 [ArKM], and n = 4, 5, 6 [ZhaCC4].

(k) Study of R (H , H, Cn ), for sufficiently large odd n , and for suitably defined balanced

bipartite graphs H with small bandwidth [YouLin2].

(l) Study of R (C 4, K 1, m , Pn ) [ZhZC, SunSh].

(m) Monotone paths and cycles [Lef], see also 4.5.s.

(n) For combinations of C 3 and Kn see Sections 2.2, 3.2, 4.2, 6.1 and 6.2.
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6.4. Paths, paths versus other graphs

In 2007, Gyárfás, Ruszinkó, Sárközy and Szemerédi [GyRSS] established that for all n large

enough we have

R (Pn , Pn , Pn ) = 2n − 2 + (n mod 2).

Faudree and Schelp [FS2] conjectured that the latter holds for all n ≥ 1. It is true for n ≤ 9

(see (c) below), and the first open case is that for P 10. The conjectured equality

R (C 2m , C 2m , C 2m ) = 4m (see 6.3.1.a), whenever true, implies the above for three paths

P 2m +1 case [DyDR].

6.4.1. Three-color path and path-cycle cases

(a) R (Pm , Pn , Pk ) = m +  n / 2  +  k / 2  − 2 for m ≥ 6( n + k) 2 [FS2],

the equality holds asymptotically for m ≥ n ≥ k with an extra term o ( m) [FiŁu1],

extensions of the range of m, n, k for which (a) holds were obtained in [Biel3].

(b) R (P 3, Pm , Pn ) = m +  n / 2  − 1 for m ≥ n and (m, n) =/ (3, 3), (4, 3) [MaORS2].

(c) R 3(P 3 ) = 5 [Ea1], R 3(P 4 ) = 6 [Ir],

R (Pm , Pn , Pk ) = 5 for other m −n −k combinations with 3 ≤ m, n, k ≤ 4 [ArKM],

R 3(P 5 ) = 9 [YR1], R 3(P 6 ) = 10 [YR1], and R 3(P 7) = 13 [YY],

R 3(P 8 ) = 14, R 3(P 9) = 17 [DyDR].

(d) R (P 4, P 4, P 2n ) = 2n + 2 for n ≥ 2,

R (P 5, P 5, P 5 ) = R (P 5, P 5, P 6 ) = 9,

R (P 5, P 5, Pn ) = n + 2 for n ≥ 7,

R (P 5, P 6, Pn ) = R (P 4, P 6, Pn ) = n + 3 for n ≥ 6 ,

R (P 6, P 6, P 2n ) = R (P 4, P 8, P 2n ) = 2n + 4 for n ≥ 14 [OmRa1].

(e) R (Pm , Pn , Ck ) = 2n + 2 m / 2  − 3 for large n and odd m ≥ 3 [DzFi2],

improvements on the range of m, n, k [Biel3, Fid1].

(f) R (P 3, P 3, Cm ) = 5, 6, 6, for m = 3, 4 [ArKM], 5,

R (P 3, P 3, Cm ) = m for m ≥ 6 [Dzi2].

R (P 3, P 4, Cm ) = 7 for m = 3, 4 [ArKM] and 5,

R (P 3, P 4, Cm ) = m + 1 for m ≥ 6 [Dzi2].

R (P 4, P 4, Cm ) = 9, 7, 9 for m = 3, 4 [ArKM] and 5 [Dzi2],

R (P 4, P 4, Cm ) = m + 2 for m ≥ 6 [DzKP].

(g) R (P 3, P 5, Cm ) = 9, 7, 9, 7, 9 for m = 3, 4, 5, 6, 7 [Dzi2, DzFi2],

R (P 3, P 5, Cm ) = m + 1 for m ≥ 8 [DzKP].

A table of R (P 3, Pk , Cm ) for all 3 ≤ k ≤ 8 and 3 ≤ m ≤ 9 [DzFi2].

(h) R (P 4, P 5, Cm ) = 11, 7, 11, 11, and m + 2 for m = 3, 4, 5, 7 and m ≥ 23 ,

R (P 4, P 6, Cm ) = 13, 8, 13, 13, and m + 3 for m = 3, 4, 5, 7 and m ≥ 18 [ShaXSP].
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(i) R (P 3, Pn , C 4 ) = n + 1 for n ≥ 6 [DzFi2],

R (P 3, Pn , C 6 ) = n + 2 for n ≥ 6 ,

R (P 3, Pn , C 8 ) = n + 3 for n ≥ 7 [Fid1],

R (P 3, Pn , Ck ) = 2n − 1, and

R (P 4, Pn , Ck ) = 2n + 1 for odd k ≥ 3 and n ≥ k [DzFi2].

(j) R (P 3, P 6, Cm ) = m + 2 for m ≥ 23,

R (P 6, P 6, Cm ) = R (P 4, P 8, Cm ) = m + 4 for m ≥ 27,

R (P 6, P 7, Cm ) = m + 4 for m ≥ 57,

R (P 4, Pn , C 4 ) = R (P 5, Pn , C 4 ) = n + 2 for n ≥ 5 [OmRa1].

(k) R (P 3, C 3, C 3 ) = 11 [BuE3], R (P 3, C 4, C 4 ) = 8 [ArKM], R (P 3, C 6, C 6 ) = 9 [Dzi2],

R (P 3, Cm , Cm ) = R (Cm , Cm ) = 2m − 1 for odd m ≥ 5 [DzKP] (for m = 5, 7 [Dzi2]),

(l) R (P 3, Cn , Cm ) = R (Cn , Cm ) for n ≥ 7 and odd m , 5 ≤ m ≤ n , and

some values and bounds on R (P 3, Cn , Cm ) in other cases [Fid1].

(m) R (P 3, C 3, C 4 ) = 8 [ArKM], R (P 3, C 3, C 5 ) = 9, R (P 3, C 3, C 6 ) = 11,

R (P 3, C 3, C 7 ) = 13, R (P 3, C 4, C 5 ) = 8, R (P 3, C 4, C 6 ) = 8,

R (P 3, C 4, C 7 ) = 8, R (P 3, C 5, C 6 ) = 11, R (P 3, C 5, C 7 ) = 13 and

R (P 3, C 6, C 7 ) = 11 [Dzi2].

(n) R (P 4, C 3, C 5 ) = 13, R (P 4, C 4, C 5 ) = 10, R (P 4, C 4, C 6 ) = 9,

R (P 4, C 5, C 5 ) = 13, R (P 4, C 6, C 6 ) = 10 [SunSh].

(o) A formula for R (Pm , Pn , Ck ) for k large enough and m, n satisfying some constraints.

In addition, some cases involving tK 2 instead of Ck are derived as side results [KhoDz].

(p) Study of R (Pn , C 4, K 1, m ) [ZhZC, SunSh].

(q) Formulas for R ( pP 3, qP 3, rP 3 ) and R ( pP 4, qP 4, rP 4 ) [Scob].

(r) Lower and upper bounds on R 3(Pm ∪K 1, n ) [ZhouLMW].

(s) R (P 3, K 4 − e, K 4 − e ) = 11 [Ex7]. All colorings which can form any color neighbor-

hood for the case R 3(K 4 − e) (see Section 6.5) were found in [Piw2].

6.4.2. More colors

(a) Rk (P 3 ) = k + 1 + ( k mod 2), Rk (2P 2 ) = k + 3 for all k ≥ 1 [Ir].

(b) Rk (P 4 ) = 2k + ck for all k and some 0 ≤ ck ≤ 2. If k is not divisible by 3 then

ck = 3 − k mod 3 [Ir]. Wallis [Wall] showed R 6(P 4 ) = 13, which already implied

R 3t (P 4 ) = 6t + 1, for all t ≥ 2. Independently, the case Rk (P 4 ) for k =/ 3m was com-

pleted by Lindström in [Lind], and later Bierbrauer proved R 3m (P 4 ) = 2(3m ) + 1 for all

m > 1. R 3(P 4 ) = 6 [Ir].

(c) R 3(P 5 ) = 9 [YR1] and R 4(P 5 ) = 11 [LiuMS]. Furthermore, for all k > 4 we have

Rk (P 5 ) = 3k + c , where c = 0 for k equal to 2 or 3 mod 4, c = 1 for k = 0 mod 4, and

c = 2 for k = 1 mod 4 [LiuMS].
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(d) Rk (Pn ) ≤ (k − ck ) n + o (n) for some small ck > 0, for all fixed k ≥ 2 [Sár2]. This was

improved to an absolute constant c = ck = 1/ 4 in [DavJR], and further to c = 1/ 2 in

[KniSu]. See also 6.3.2.j/o.

(e) Formula for R (Pn 1
, ... , Pnk

) for large n 1 [FS2], and some extensions [Biel3].

Conjectures about R (Pn 1
, ... , Pnk

) when all or all but one of ni ’s are even [OmRa1].

(f) Formulas for R (Pn 1
, ... , Pnk

, Cm ) for some cases, for large m [OmRa1].

(g) Formula for R (n 1P 2, ... , nk P 2 ), in particular R (nP 2, nP 2, nP 2 ) = 4n − 2 [CocL1].

New proof with characterization of all critical graphs [XuYZ]. Note how close the latter

is to R (C 2n , C 2n , C 2n ) = 4n , and see an earlier item 6.3.1.b.

(h) Cockayne and Lorimer [CocL1] found the exact formula

R (n 1P 2, ... , nk P 2 ) = n 1 + 1 +
i = 1
Σ
k

(ni − 1) , where n 1 = max{n 1, ... , nk }.

Later, Lorimer [Lor] extended it to a more general case of R (Km , n 1P 2, ... , nk P 2 ).

More general cases of the latter, with multiple copies of the complete graph, paths, stars

and forests, were studied in [Stahl, LorSe, LorSo, GyRSS]. A special 3-color case

R (P 3, mP 2, nP 2 ) = 2m + n − 1 for m ≥ n ≥ 3 is given in [MaORS2], and some other

cases in [KhoDz]. The general case of multicolor combinations of stars and stripes is

completed in [OmRR]. Ramsey numbers for path-matchings and covering designs, gen-

eralizing R (n 1P 2, ... , nk P 2 ), are studied in [DeBGS].

(i) Multicolor cases for one large path or cycle involving small paths, cycles, complete and

complete bipartite graphs [EFRS1].

(j) See Sections 6.5 and 8.2, especially [ArKM, BoDD], for a number of cases for triples of

small graphs.

6.5. Special cases

(a) Denote K 3 + e = K 4 − P 3.

R 3(K 3 + e) = R 3(K 3) [= 17] [YR3, ArKM]

R (K 3 + e , K 3 + e , K 4 − e) = R (K 3, K 3, K 4 − e) = 17 [ShWR]

R (K 3 + e , K 3 + e , K 5 −P 3) = R (K 3, K 3, K 4) [= 30] [ShWR]

If R 4(K 3) = 51 then R 4(K 3 + e) = 52, and

if R 4(K 3) > 51 then R 4(K 3 + e) = R 4(K 3) [ShWR]

(b)
R 3(K 4 − e) = 28 [Ex7] [LidP]

R (P 3, K 4 − e, K 4 − e ) = 11 [Ex7], all colorings [Piw2]

R (P 3, K 4 − e, K 4) = 17 [ArKM]

R (P 3, K 4, K 4) = 35 [BuE3], special case of 6.7.e
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472 ≤ R 3(K 6 − e) [HeLD]

1102 ≤ R 3(K 7 − e) [HeLD], superseded by

1106 ≤R 3(6) [Row3]

(c)
21 ≤ R (K 3, K 4 − e, K 4 − e ) ≤ 22 [ShWR] [LidP]

31 ≤ R (K 3, K 4, K 4 − e ) ≤ 40 [VO] [LidP]

33 ≤ R (K 4, K 4 − e, K 4 − e ) ≤ 47 [ShWR] [LidP]

55 ≤ R (K 4, K 4, K 4 − e ) ≤ 94 [Ea1] [LidP]

(d)

R (C 4, P 4, K 4 − e ) = 11 [ArKM]

R (C 4, P 4, K 4) = 14 [BoDD]

R (C 4, C 4, K 4 − e ) = 16 [DyDz1]

R (C 4, K 3, K 4 − e ) = 17 [BoDD]

R (C 4, K 4 − e, K 4 − e ) = 19 [BoDD]

29 ≤ R (C 4, K 4, K 4 − e ) ≤ 36 [VO] [BoDD]

52 ≤ R (C 4, K 4, K 4) ≤ 66 [XSR1] [BoRa]

(e) For prime p = 3q + 1, if the cubic residues Paley graph Qp contains no Kk − e , then

R 3(Kk +1 − e) > 3p [HeLD]. The cases k = 5 and k = 6 give two bounds listed in (b).

Also based off Paley graphs, several new lower bounds for R 3(K 1 + G), and in particular

for R 3(Bn ), were derived in [LinLS].

(f) If Tn is the set of all n -vertex trees (and all monochromatic n -vertex trees are avoided),

then R 3 (Tn ) = 2n − 2 for even n, and R 3 (Tn ) = 2n − 1 for odd n [GeGy].

(g) R 3(Ga, b ) = (2 + o (1))ab , where Ga, b is the rectangular a× b grid graph. Lower and

upper bounds on R 3(G) for graphs G with small bandwidth and bounded Δ(G)

[MoSST].

(h) See also Section 8.2 for pointers to cumulative data for three colors.

6.6. General results for special graphs

(a) Formulas for Rk (G), where G is one of the graphs P 3, 2K 2 and K 1, 3, for all k , and for

P 4 if k is not divisible by 3 [Ir]. For some details see Section 6.4.2.b.

(b) tk 2 + 1 ≤ Rk (K 2, t +1) ≤ tk 2 + k + 2, where the upper bound is general, and the lower

bound holds when both t and k are prime powers [ChGra1, LaMu].

(c) (m − 1) (k +1) / 2 < Rk (Tm ) ≤ 2km +1 for any tree Tm with m edges [ErdG], see also

[GRS]. The lower bound can be improved for special large k [ErdG, GRS]. The upper

bound was improved to Rk (Tm ) < (m − 1)(k + √k (k − 1) ) + 2 in [GyTu].

(d) k (√m − 1) / 2 < Rk (Fm ) < 4km for any forest Fm with m edges [ErdG], see [GRS]. See

also pointers in other items below which involve special forests (like trees and stars).
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(e) R (S 1, ... , Sk ) = n + ε, where Si ’s are arbitrary stars, n = n (S 1) + ... + n (Sk ) − 2k , and we

set ε = 1 if n is even and some n (Si ) is odd, and ε = 2 otherwise [BuRo1]. See also

[GauST, Par6]. Note that for graph G (here the set of edges in a given color), to avoid

star S = K 1, n is equivalent to have δ(G) < n .

(f) Formula for R (S 1, ... , Sk , Kn ), where Si ’s are arbitrary stars [Jaco]. It was generalized

to a formula for R (S 1, ... , Sk , Kk 1
, ... , Kkr

) expressed in terms of R (k 1, ... , kr ) and star

orders [BoCGR]. A much shorter proof of the latter was presented in [OmRa2]. Special

cases for bistars [AlmHS], and bounds for stars and trees instead of stars [Bai].

(g) Formula for R (S 1, ... , Sk , nK 2), where Si ’s are arbitrary stars [CocL2], and a formula

for R (n 1K 2, ... , nk K 2) [CocL1]. A new proof with characterization of all critical graphs

[XuYZ]. See also cases involving P 2 in Section 6.4.2.

(h) Formula for R (S 1, ... , Sk , G), where Si ’s are stars and G is a tree [ZhZ1], or G is a

cycle or wheel [RaeZ], for G of some orders depending on stars. Extension of these

results to larger ranges of orders of G , and for G being a path [Wang1, ZhaHou]. Spe-

cial cases when Si ’s are trees and G is a wheel [RaeZ].

(i) Formulas for R (S 1, ... , Sk ), where each Si ’s is a star or mi K 2 [ZhZ2, ErdG, OmRR],

formula for the case R (S, mK 2, nK 2) [GySá2]. Several cases of formulas and asymptot-

ics for Rk (S (n, m)), for sufficiently large n , where S (m, n) is a double star [RuoS, Sár3].

The relation of Rk (S (n, m)) to the corresponding list Ramsey numbers [RuoS].

(j) Formula for R (F, Kk 1
, ... , Kkr

) in terms of R (Kk 1
, ... , Kkr

) and the size and structure of

any forest F [KamRa]. This corrects a claim in an earlier version of [AlmBCL]. The

latter studies the concept of p -goodness.

(k) Bounds on Rk (G) for unicyclic graphs G of odd girth.

Some exact values for special graphs G , for k = 3 and k = 4 [KrRod].

(l) Rk (K 3, 3 ) = (1 + o (1)) k 3 [AlRóS].

(m) Bounds on Rk (Ks, t ), in particular for K 2, 2 = C 4 and K 2, t [ChGra1, AxFM]. Asymptot-

ics of Rk (Ks, t ) for fixed k and s [DoLi, LiTZ]. Upper bounds on Rk (Ks, t ) [SunLi].

Upper bounds on multicolor numbers where all but the last color involve Ks, t while the

last color avoids a star or another bipartite graph [WaLL]. Upper bounds in the case

when the last color is avoiding generalized books [LiLW]. Upper bounds in the case

when the last color is avoiding fans [LiZZ].

(n) Asymptotics of R (k, ... , k, n) in k , n and the number of colors [HeWi]. Exact asymp-

totics R (Kt, s , Kt, s , Kt, s , Km ) = Θ(m t / logt m), for any fixed t > 1 and large

s ≥ (t − 1)! + 1 [AlRö].

(o) Variety of asymptotic results on R (K 2, s , ... , K 2, s , Km ) [LeMu]. Asymptotic upper

bounds on R (G, ... , G, H) in two cases: G = Km, n , H is any nonempty graph, and

G = Bn , H = Km, n [LiW].

(p) Bounds on Rk (G) for trees, forests, stars and cycles [Bu1].

Bounds for trees Rk (T) and forests Rk (F) [ErdG, GRS, BierB, GyTu, Bra1, Bra2, SwPr].
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(q) Study of the case R (Km , n 1P 2, ... , nk P 2) [Lor]. Other similar results include

R (P 3, mK 2, nK 2 ) = 2m + n − 1 for m ≥ n ≥ 3 [MaORS2] and R (Sn , nK 2, nK 2 ) =
3n − 1 [GySá2]. More general cases, with multiple copies of the complete graph, stars

and forests, were investigated in [Stahl, LorSe, LorSo, GyRSS, OmRR]. See also Section

6.4.2.

(r) See Section 8.2, especially [ArKM, BoDD], for a number of cases for other small

graphs, similar to those listed in Sections 6.3 and 6.4.

6.7. General results

(a) In 2001, Nes̆etr̆il and Rosenfeld [NeRo] in an overview paper withs numerous historical

comments discuss the connections between the Ramsey numbers Rr (3), Schur partitions

and Shannon capacity of graphs.

(b) In 2020, the limit
r→∞
lim Rr (3)1/ r was studied by Fox, Pach and Suk [FoxPS1] assuming a

conjecture for multicolorings with bounded VC-dimension, and further for
r→∞
lim Rr (k)1/ r

when restricted to the so-called semi-algebraic colorings [FoxPS2].

(c) Szemerédi’s Regularity Lemma [Szem] states that the vertices of every large graph can

be partitioned into similar size parts so that the edges between these parts behave almost

randomly. This lemma has been used extensively in various forms to prove the upper

bounds, including those studied in [BenSk, GyRSS, GySS1, HaŁP1+, HaŁP2+, KoSS1,

KoSS2].

(d) R (m 1G 1, ... , mk Gk ) ≤ R (G 1, ... , Gk ) +
i = 1
Σ
k

n (Gi )(mi − 1), exercise 8.3.28 in [West].

(e) If G is connected and R (Kk , G) = (k − 1)(n (G) − 1) + 1, in particular if G is any n -

vertex tree, then R (Kk 1
, ... , Kkr

, G) = (R (k 1, ... , kr ) − 1)(n − 1) + 1 [BuE3]. A general-

ization for connected G 1, ... , Gn in place of G appeared in [Jaco].

(f) Conjecture that R 3(H) ≤ 2Δ
1 + o (1)

n , where Δ = Δ(H) [ConFS7].

(g) For connected graphs G 1, ... , Gn with s = R (G 1, ... , Gn ) and t = R (Kk 1
, ... , Kkr

), if

m ≥ 2 and R (G 1, ... , Gn , Km ) = (s − 1)(m − 1) + 1, then R (G 1, ... , Gn , Kk 1
, ... , Kkr

) =
(s − 1)(t − 1) + 1 [OmRa2]. The latter implies that R (Tk , Kk 1

, ... , Kkr
) = (k − 1)(t − 1) + 1

for any k -vertex tree Tk . The same result as in [OmRa2] was presented much later in

[Mad]. It also generalizes a result in [BoCGR].

(h) If F, G, H are connected graphs then R (F, G, H) ≥ (R (F, G) − 1)(χ(H) − 1) +
min{ R (F, G), s (H) }, where s (G) is the chromatic surplus of G (see item [Bu2] in Sec-

tion 5.16). This leads to several formulas and bounds for F and G being stars and/or

trees when H = Kn [ShiuLL].

(i) R (Kk 1
, ... , Kkr

, G 1, ... , Gs ) ≥ (R (k 1, ... , kr ) − 1)(R (G 1, ... , Gs ) − 1) + 1 for arbitrary

graphs G 1, ... , Gs [Bev]. This generalizes 6.2.q, but is a special case of 6.7.g.
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(j) Constructive bound R (G 1, ..., Gt n −1 ) ≥ t n + 1 for decompositions of Kt n [LaWo1,

LaWo2].

(k) R (G 1, ... , Gk ) ≤ 32Δ kΔ n , where n ≥ n (Gi ) and Δ ≥ Δ(Gi ) for all 1 ≤ i ≤ k ,

R (G 1, ... , Gk ) ≤ k 2 kΔ q n , where q ≥ χ(Gi ) for all 1 ≤ i ≤ k [FoxSu1].

(l) Rk (G) ≤ k 6e (G)2/ 3k for all isolate-free graphs G and k ≥ 3 [JoPe].

For the original two-color conjecture, now a theorem, see item 5.16.j [Erd4].

(m) Rk (G) > (sk e (G) − 1) ) 1 / n (G) , where s is the number of automorphisms of G [ChH3].

Other general bounds for Rk (G) [ChH3, Par6].

(n) Study of R (G 1, ... , Gk , G) for large sparse G [EFRS1, Bu3].

(o) Study of asymptotics for R (H, ... , H, Km ), in particular when H is a fixed bipartite

graph, and for R (Cn , ... , Cn , Km ) [AlRö]. An improvement of the lower bound asymp-

totics for C 5 and C 7 was obtained in [XuGe]. See also Sections 6.3.3.d/e.

(p) Relations between the Shannon capacity of noisy communication channels and graph

Ramsey numbers. A lower bound construction for Rk (m) implying that supremum of the

Shannon capacity over all graphs with bounded independence cannot be achieved by any

finite graph power [XuR3]. For some other links between Shannon capacity and Ramsey

numbers see Section 6 in [Ros2], and [Li2].

(q) See surveys listed in Section 8.
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7. Hypergraph Numbers

7.1. Values and bounds for numbers

The only known value of a nontrivial classical Ramsey number for hypergraphs:

R (4, 4 ; 3) = 13 [MR1]

There are exactly 434714 critical colorings on 12 points, none of which

extend to a 2-coloring of all triples in K 13 − t without monochromatic K 4 [McK2]

The computer evaluation of R (4, 4 ; 3) in 1991 consisted of an improvement of the upper

bound from 15 to 13. This result followed an extensive theoretical study of this number by

several authors [Gi4, Isb1, Sid1].

(a) 35 ≤ R (4, 5 ; 3) [Dyb2]

63 ≤ R (4, 6 ; 3) [Dyb3]

88 ≤ R (5, 5 ; 3) [Dyb3]

79 ≤ R (4, 4, 4 ; 3) [Dyb3]

35 ≤ R (5, 5 ; 4) [Ex24]

163 ≤ R (5, 5, 5 ; 3) [BudHR1]

The last bound can be much improved to 7570 ≤ R (5, 5, 5 ; 3) by using 88 ≤ R (5, 5 ; 3) and a

general constructive result in [BrBH], which yields Rk (5; 3) ≥ 872k −2

.

(b) R (K 4 − t, K 4 − t ; 3) = 7 [Ea2]

R (K 4 − t, K 4 ; 3) = 8 [Sob, Ex1, MR1]

R (K 4 − t, K 5 − t ; 3) = 12 [LidP]

14 ≤ R (K 4 − t, K 5 ; 3) ≤ 16 [Ex1] [LidP]

13 ≤ R (K 4 − t, K 4 − t, K 4 − t ; 3) ≤ 14 [Ex1] [LidP]

(c) The first bound on R (4, 5 ; 3) ≥ 24 was obtained by Isbell [Isb2]. Shastri [Shas] gave a

weak bound R (5, 5 ; 4) ≥ 19 (after a few improvements, now 35 in [Ex24]), nevertheless

his lemmas, the stepping-up lemmas by Erdős and Hajnal (see [GRS, GrRö], also item

7.4.a), and others in [Ka3, Abb2, GRS, GrRö, HuSo, SonYL] can be used to derive

better lower bounds for higher numbers.

(d) Several lower bound constructions for 3-uniform hypergraphs were presented in [HuSo].

Study of lower bounds on R ( p, q ; 4) can be found in [Song3] and [SonYL, Song4] (the

latter two papers are almost the same in contents). Most of the concrete lower bounds in

these papers can be easily improved by using the same techniques, but starting with

better constructions for small parameters as listed above.

(e) R ( p, q ; 4) ≥ 2R ( p − 1, q ; 4) − 1 for p, q > 4, and

R ( p, q ; 4) ≥ ( p − 1)R ( p − 1, q ; 4) − p + 2 for p ≥ 5, q ≥ 7 [SonYL].

Lower bound asymptotics for R ( p, q ; 4) [SonLi].
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(f) Recurrence relations in the form R (p, q ; r) ≥ d (R (p − 1, q ; r) − 1) + 1, where d depends

on p, q and r , including the following: There exists c ≥ 25, such that for k , 5 ≤ k ≤ c ,

and any p ≥ k + 2 and q ≥ k + 1, we have R (p, q ; r) ≥ (p − 1)(R (p − 1, q ; r) − 1) + 1 [Liu].

Such relations lead to the following bounds:

R (5, 6 ; 4) ≥ 67, R (6, 6 ; 4) ≥ 133, R (7, 6 ; 4) ≥ 661,

R (7, 7 ; 4) ≥ 3961, R (8, 8 ; 4) ≥ 194041, R (13, 6 ; 4) ≥ 50689,

R (6, 6 ; 5) ≥ 72.

(g) R (K 1, 1, c , K 1, 1, c ; 3) = c + 2 for 2 ≤ c ≤ 4, and a conjecture that this equality holds for

all c ≥ 5. The lower and upper bounds are closely related to the existence of appropriate

BIBDs (balanced incopmplete block designs) with block size 3. The conference and

journal versions of this work [MiPal] differ on some results. See also item 7.3.g.

(h) Lower bound asymptotics for R (4, n ; 3) [ConFS2],

lower bound asymptotics for R (5, n ; 4) [MuSuk2, MuSuk3], and

lower bound asymptotics for R (6, n ; 4) [MuSuk3].

(i) Lower and upper bounds on R (K 4 − t, Kn ; 3) [ErdH, MuSuk2]. Extensions to r -half-

graph B r , where B 3 = K 4 − t [MuSuk2].

(j) Several constructive lower bounds for hypergraph numbers, including constructions

which introduce a new color. In particular, they imply that Rk (5; 3) is equal to at least

82, 163, 131073, 262145 or 524289, for k = 2, 3, 4, 5 and 6 colors, respectively

[BudHR1]. Using 7.1.e and other known concrete lower bounds, R (5, 6; 4) ≥ 67 and

R (4, 4, 5, 5, 5, 5; 3) ≥ 17179869185 are noted in [BudHP].

7.2. Cycles and paths

Definitions. Pn
r, s is called an s -path in an r -uniform hypergraph H , if it consists of n

hyperedges {e 1, ..., en } in E (H), such that | ei∩ ei +1 | = s for all 1 ≤ i < n , and all other ver-

tices in ej ’s are distinct [Peng]. An s -cycle Cn
r, s is defined analogously. Several authors use

the terms of loose paths and loose cycles, which are 1-path and 1-cycles, and tight paths and

tight cycles, the latter most often for 3-uniform hypergraphs when they are 2-paths and 2-

cycles, respectively. A 3-uniform Berge cycle is formed by n distinct vertices, such that all

consecutive pairs of vertices are in an edge of the cycle, and all of the cycle edges are dis-

tinct. Berge cycles are not determined uniquely.

In the following items (b) to (i), when r = 3 or r is implied by the context, we write Cn and

Pn for the r -uniform loose cycles and paths, Cn
r, 1 and Pn

r, 1, respectively. In other cases spe-

cial comments are added.
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Two colors

(a) Tetrahedron is formed by four triples on the set of four points. The Ramsey number of

tetrahedron is R (4, 4 ; 3) = 13 [MR1].

(b) For loose cycles and paths, R (C 3, C 3 ; 3) = 7, R (C 4, C 4 ; 3) = 9, and for the r -uniform

case we have in general R (P 3, P 3 ; r) = R (P 3, C 3 ; r) = R (C 3, C 3 ; r) + 1 = 3r − 1 and

R (P 4, P 4 ; r) = R (P 4, C 4 ; r) = R (C 4, C 4 ; r) + 1 = 4r − 2, for r ≥ 3. These results and

discussion of several related cases were presented in [GyRa].

(c) R (Pm , Pn ; 3) = R (Cm , Cn ; 3) + 1 = R (Pm , Cn ; 3) = 2m + (n + 1)/ 2, for all m ≥ n ,

and R (Cm , Pn ; 3) = 2m + (n − 1)/ 2, for m > n [MaORS1, OmSh1]. The formulas

for 3-uniform two-color cases of some loose paths versus stars are derived in [ZhCh].

(d) For loose cycles, R (C 2n , C 2n ; 3) > 5n − 2 and R (C 2n +1, C 2n +1; 3) > 5n + 1, and asymp-

totically these lower bounds are tight [HaŁP1+]. Generalizations to r -uniform hyper-

graphs and graphs other than cycles appeared in [GySS1].

(e) For loose cycles, R (Cn , Cn ; r) = (r − 1)n + (n − 1)/ 2 for n ≥ 2, r ≥ 8 [OmSh2], and it

also holds for r = 4 [OmSh3]. Further extensions to off-diagonal cases as in (c) are

obtained in [OmSh4]. Based on these results, it was conjectured that for n ≥ m ≥ 3 and

r ≥ 3, we have R (Cn , Cm ; r) = (r − 1)n + (m − 1)/ 2. In [Shah], the known cases of

this conjecture are discussed, and it is shown that it holds for r = 5 with large n .

(f) For tight cycles, R (C 3n , C 3n ; 3) ∼∼ 4n and R (C 3n + i , C 3n + i ; 3) ∼∼ 6n for i = 1 or 2, and

for tight paths R (Pn , Pn ; 3) ∼∼ 4n / 3 [HaŁP2+]. Some related results are discussed in

[PoRRS]. Also for tight paths and cycles, but 4-uniform, we have R (Pn , Pn ; 4) ∼∼ 5n /4

and R (C 4n , C 4n ; 4) ∼∼ 5n [LoPfe].

(g) Exact values for Ramsey numbers involving s -paths for even r and s = r / 2 , in particu-

lar for Pn
r, s versus P 3

r, s and P 4
r, s , when this value is (n + 1)s + 1 [Peng].

(h) For 3-uniform Berge cycles and two colors, we have R (Cn , Cn ; 3) = n for n ≥ 5

[GyLSS]. Some results for Berge-cycle versus Berge-complete numbers are obtained in

[MahS], and the asymptotics of Berge-cycles versus complete hypergrap is derived in

[NieVer].

(i) Lower and upper asymptotic bounds for R (C 3
3, 1, Km ; 3) and R (C 3

r, 1 , Km ; r) [KosMV2].

(j) Lower and upper asymptotic bounds for R (Cs , Km ; 3) for tight cycles Cs [MuR].

An improvement of the upper bound from the latter [Mub1].

(k) Gyárfás, Sárközy and Szemerédi proved that, for sufficiently large n , every 2-coloring of

the edges of the complete 4-uniform hypergraph Kn contains a monochromatic 3-tight

Berge cycle Cn [GySS2]. Exact formulas and bounds for Berge-Kn hypergraphs,

including higher uniformity r [SaTWZ].

(l) Upper bounds on asymptotics of R (Cn
r, 1, Km ; r) for even and odd n [ColGJ]. Improve-

ments of the results from the latter, in particular for the case of n = 5 and r = 3, and for

general n [Mér].

(m) Summary of known values and ranges for hypergraph numbers for loose paths (and some

other trees) versus complete hypergraphs, R (Pm , Kn ; 3), for n ≤ 10 and odd m [BudP].
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(n) Study of the growth rate of R (Pm , Kn ; r) for tight paths Pm with m ≥ r + 3, and links

between the growth of R (Pr +1, Kn ; r) and R (n, n ; r) [MuSuk1]. The correct tower

growth rate for ordered tight paths versus cliques [Mub2].

(o) Study of R (G, nH ; r) and R (mG, nH ; r) for G and H being loose/tight path, cycles and

stars, including several exact results for large m or n [OmRa3]. The case of loose t -

tight paths versus stars and some tripartite hypergraphs is explored in [BudHR2].

(p) Let F be the Fano plane, seen as a 3-uniform hypergraph of 7 hyperedges. If Pn and Cn

are tight path and cycle on n vertices, respectively, then for sufficiently large n we have

R (Pn , F ; 3) = 2n − 1 and R (Cn , F ; 3) = 2n − 1 [BalCSW].

More colors

(q) For loose cycles, R 3(C 3 ; 3) = R (C 3, C 3, C 3 ; 3) = 8, and in general for k ≥ 4 colors

Gyárfás and Raeisi established the bounds k + 5 ≤ Rk (C 3 ; 3) ≤ 3k [GyRa].

(r) For loose paths, we have R 3(P 3 ; 3) = 9 and 10 ≤ R 4(P 3 ; 3) ≤ 12 [Jack]. This was

improved to Rk (P 3 ; 3) = k + 6 for all 2 ≤ k ≤ 9 [JacPR, PoRu], and extended to k = 10

[Pol]. The general upper bound Rk (P 3 ; 3) ≤ 2k + √18k + 1 + 2 was obtained in [ŁuPo1],

then improved to Rk (P 3 ; 3) ≤ 1.975k + 7√k + 2 [ŁuPo2], and then further improved to

Rk (P 3 ; 3) ≤ 1.546k for large k [BohZ]. For the messy path M 3 = {abc, bcd, def }, we

have Rk (M 3 ; 3) ≤ 1.6k for large k [BohZ].

(s) The case of Rk (P 3 ; r) for loose path was asymptotically solved in [ŁuPR]. A general

upper bound Rk (Pn ; r) ≤ (r − 1)kn , for all k, r ≥ 2 and n ≥ 3, was obtained in [DuRu].

Do not be confused by notation in some of the papers when their bounds are expressed

in terms of r colors and k -uniform paths (in contrast to k -colors and r -uniform used in

this survey).

(t) For tight paths Pmi
, study of the growth rate of R (Pm 1

, ..., Pmk
, Km ; r) [MuSuk1].

(u) For 3-uniform Berge cycles, we have R 3(Cn ; 3) = (1 + o (1))5n /4 [GySá1], and also

R (Cn , Cn , C 3 ; 3) = n + 1 [MahS]. Some special cases for r -uniform hypergraphs with

respect to Berge cycles were studied in [GyLSS], and for small uniformity r in

[DeMST]. See also 7.3.l and 7.4.f.

(v) Study of Turán and Ramsey numbers of sets of minimal 3-uniform paths of length 4 for

up to 4 colors [HanPR]. Minimality of path here means that there are no redundant edge

intersections, in particular no vertex belongs to more than two edges.

7.3. General results for 3-uniform hypergraphs

(a) 2cn 2
< R (n, n ; 3) < 22n

is credited to Erdős, Hajnal and Rado (see [ChGra2] p. 30).

(b) For some a, b the numbers R (m, a, b ; 3) are at least exponential in m [AbbS].

(c) Improved lower and upper asymptotics for R (s, n ; 3) for fixed s and large n , proof of

related Erdős and Hajnal conjecture on the growth of R (4, n ; 3), and the lower bound

2n c ln n

< R (n, n, n ; 3) [ConFS2].
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(d) Let Sn denote the 3-uniform star on n + 1 vertices consisting of all n (n − 1) / 2 triangles

sharing one vertex. Then we have 2c log2n ≤ R (K 4, Sn ; 3) ≤ 2c′n 2 / 3 log n , for some positive

constants c, c′ [ConFH+]. Study of the rate of growth of R (Kn , H ; 3) for fixed hyper-

graph H [ConFG+].

(e) The hedgehog Ht is a 3-uniform hypergraph with t + t (t − 1) / 2 vertices such that for

every (i, j) with 1 ≤ i < j ≤ t there exists a unique vertex k > t such that ijk is an edge,

and Ht has no other edges. Conlon, Fox and Rödl studied the bounds on Rk (Ht ; 3) for

2 ≤ k ≤ 4 and large t [ConFR]. The hypergraphs Ht constitute the first family of hyper-

graphs whose Ramsey numbers show a strong dependence on the number of colors: their

2-color Ramsey numbers grow polynomially in t , while in the 4-color case they grow

exponentially. Rk (Ht ; 3) = O (t 2 ln t) was obtained in [FoxLi].

(f) R(G, G ; 3) ≤ cn (H) for some constant c depending only on the maximum degree of a 3-

uniform hypergraph H [CooFKO1, NaORS]. Similar results were proved for r -uniform

hypergraphs in [KüCFO, Ishi, CooFKO2, ConFS1], see also item 7.4.i.

(g) Asymptotic lower bounds for R (Ka, b, c , Ka, b, c ; 3), where Ka, b, c is formed by all abc tri-

ples on sets of orders a, b, c . The conference and journal versions of this work

[MiPal] differ on some results. See also item 7.1.g.

(h) Asymptotic or exact values of Rk (H ; 3) when H is a bow {abc, ade }, kite {abc, abd },

tight path P 3
3, 2 = {abc, bcd, cde }, or windmill {abc, bde, cef , bce }, and a special con-

crete case for 6-color kite, R 6(kite ; 3) = 8.

(i) Rk (K 3 ; 2) ≤ R 4k (K 4 − t ; 3) ≤ R 4k (K 3 ; 2) + 1 [AxGLM].

(j) Variety of general lower bound constructions for 3-uniform complete or complete miss-

ing one hyperedge hypergraphs from liftings of graphs, for two and more colors. For

example, we have R (K 2s 1 − 1 − t, K 2s 2 − 1, K 2s 3 − 1; 3) ≥ R (s 1, s 2, s 3 ) [BudHMP] and

R (K 5, K 43 − t, K 43 − t, K 43 − t ; 3) > 1257480 [BudHLS].

(k) If G is a 3-uniform H -free hypergraph, then G contains a complete or empty tripartite

subgraph with parts of order (log n (H))c + 1/ 2, where c > 0 depends only on H . Further-

more, for k ≥ 4 no analogue of it can hold for k -uniform hypergraphs [ConFS5].

(l) Study of 3-uniform Berge-G graphs in r colors: asymptotic lower and upper bounds, and

several exact values for small r with G = K 3 or G = K 4. Some asymptotics in the

nonuniform case [AxGy]. This extends the results in 7.2.h [GyLSS] and 7.2.u [GySá1].

(m) Upper bounds on Rk (H ; 3) for complete multipartite 3-uniform hypergraphs H, a 4-color

case, and some other general and special cases [ConFS1, ConFS2, ConFS3]. Rk (H ; 3)

ranges from √6k (1 + o (1)) to double exponential in k [AxGLM]. Determination when

Rk (H ; 3) behaves polynomially, exponentially or double-exponentially in k [BraFS].
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7.4. General results

(a) If R ( n, n ; r) > m , then we have R (2n + r − 4, 2n + r − 4 ; r + 1) > 2m for all n > r ≥ 3

(see [GRS] p. 106). This is the so-called stepping-up lemma, usually credited to Erdős

and Hajnal. An improvement of the stepping-up lemma implying better lower bounds

for a few types of hypergraph Ramsey numbers were obtained by Conlon, Fox and

Sudakov [ConFS6].

(b) For k colors, lower bounds on Rk ( n ; r) are discussed in [AbbW, DuLR, ConFS6,

AxGLM, JaKSY]. In particular, if Rk ( n ; r) > m , then we have Rk + 3(n + 1; r + 1) > 2m

for r ≥ 3 [JaKSY].

(c) General lower bounds for large number of colors were given in an early paper by

Hirschfeld [Hir], and some of them were later improved in [AbbL].

(d) Lower and upper asymptotics of R (s, n ; k) for fixed s [ConFS2, MuSuk2, MuSuk3].

(e) Exact and asymptotic results generalizing 7.2.d/e to r -uniform case for cycles, and 2-

and 3-color cases for all r -uniform diamond matchings [GySS1]. Connections between

the existence of large sets of combinatorial t − designs to some bounds on Ramsey-type

problems [Gy].

(f) Exact formulas and bounds for Berge-Kn hypergraphs, including multiple colors [AxGy]

and higher uniformity r [AxGy, SaTWZ]. Progress on the conjecture that every (r − 1)-

coloring of Kn
r , for fixed r and large n , contains a monochromatic Hamiltonian Berge

cycle [MaOm2]. Determination of some cases of uniformity r , number of colors and G ,

for which the Ramsey number of Berge-G is superlinear [Gerbn]. Further study of mul-

ticolor Ramsey numbers for such Berge-G hypergraphs, with some equalities and

improved asymptotics, were obtained in [GerMOV, Pálv].

(g) Exact order of growth of the multicolor numbers for Berge cycles of length 4, 5, 6, 7, 10

and 11 for small uniformities, and for multicolor cases of Berge-Ka, b for certain a, b

and r , were derived in [DeMST].

(h) Study of R (G, nH ; r) and R (mG, nH ; r) for loose/tight path and cycles (possibly with

some additions), stars, r -partite hypergraphs, including several exact results for large m

or n [OmRa3].

(i) R (H, H ; r) ≤ cn (H)1+ ε , for some constant c = c (Δ, r, ε ) depending only on the max-

imum degree of H , r and ε> 0 [KoRö3]. The proofs of the linear bound cn (H) were

obtained independently in [KüCFO] and [Ishi], the latter including the multicolor case,

and then without regularity lemma in [ConFS1]. More discussion of lower and upper

bounds for various cases can be found in [ConFS1, ConFS2, ConFS3, CooFKO2].

(j) Let Tr be an r -uniform hypergraph with r edges containing a fixed (r − 1)-vertex set S

and the (r + 1)-st edge intersecting all former edges in one vertex outside S . Then

R (Tr , Kt ; r) = O (t r / log t) [KosMV1].

(k) Study of tree-star and tree-complete cases of Ramsey numbers for r -uniform hyper-

graphs. Several bounds and equalities for special cases [BudHR1, BudCli]. This was

posed and explored as a problem of which trees are Ramsey n -good hypergraphs [BudP].

Further results towards the conjecture that all r -uniform trees are n -good [BudCli].
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Study of the Ramsey numbers of disjoint union of H -good hypergraphs [RaeK].

(l) Let H r (s, t) be the complete r -partite r -uniform hypergraph with r − 2 parts of size 1,

one part of size s , and one part of size t (for example, for r = 2 it is the same as Ks, t ).

For the multicolor numbers, Lazebnik and Mubayi [LaMu] proved that

tk 2 − k + 1 ≤ Rk (H r (2, t +1) ; r) ≤ tk 2 + k + r,

where the lower bound holds when both t and k are prime powers. For the general case

of H r (s, t), more bounds are presented in [LaMu].

(m) Rk (H ; r) is polynomial in k when a fixed r -uniform H is r -partite, otherwise it is at

least exponential in k [AxGLM].

(n) Grolmusz [Grol1] generalized the classical constructive lower bound by Frankl and Wil-

son [FraWi] (item 2.4.7) to more colors and to hypergraphs [Grol3].

(o) Lower and upper asymptotics, and other theoretical results on hypergraph numbers, are

discussed in [GrRö, GRS, ConFS1, ConFS2, ConFS3, ConFS7, Song8, MuSuk1,

MuSuk2, MuSuk3]. An extensive overview of progress and open problems in hyper-

graph Ramsey theory by Mubayi and Suk was compiled in 2018 [MuSuk4].

- 70 -



THE ELECTRONIC JOURNAL OF COMBINATORICS (2024), DS1.17

8. Cumulative Data, Books and Surveys

8.1. Cumulative data for two colors

(a) R (G, G) for all graphs G without isolates on at most 4 vertices [ChH1].

(b) R (G, H) for all graphs G and H without isolates on at most 4 vertices [ChH2].

(c) R (G, H) for all graphs G on at most 4 vertices and H on 5 vertices, except five entries

[Clan], now all solved, see Section 5.11. All critical colorings for the isolate-free graphs

G and H studied in [Clan] were found in [He4].

(d) R (G, G) for all graphs G without isolates and with at most 6 edges [Bu4].

(e) R (G, G) for all graphs G without isolates and with at most 7 edges [He1].

(f) R (G, G) for all graphs G on 5 vertices and with 7 or 8 edges [HaMe2].

(g) R (G, H) for all graphs G and H on 5 vertices without isolates, except 7 entries [He2].

Only 2 cases are still open, see 5.11 and the paragraph at the end of this section.

(h) Tables of R (G, H) for most connected graphs on up to 5 vertices and R (G, G) for all

isolate-free graphs with up to 7 edges [ReWi].

(i) R (G, H) for all disconnected isolate-free graphs H on at most 6 vertices versus all G on

at most 5 vertices, except 3 cases [LoM5]. Missing cases were completed in [KroMe].

(j) R (G, H) for some G on 5 vertices versus all connected graphs on 6 vertices [LoM6].

(k) R (G, H) for G = K 1, 3 + e and G = K 4 − e versus all connected graphs H on 6 vertices,

except R (K 4 − e, K 6 ) [HoMe]. The result R (K 4 − e, K 6 ) = 21 was claimed by

McNamara [McN, unpublished], now confirmed in [ShWR].

(l) R (G, H) for some graphs G with 4 vertices versus all graphs H with 7 vertices [Boza4].

(m) R (G, T) for all connected graphs G with n (G) ≤ 5, and almost all trees T [FRS4].

(n) R (Tm , Tn ) for 6 ≤m, n ≤ 8, for k -vertex trees Tk [RanMCG].

(o) R (K 3, G) for all connected graphs G on 6 vertices [FRS1].

(p) R (K 3, G) for all connected graphs G on 7 vertices [Jin].

Some errors in the latter were found [SchSch1].

(q) R (S, G) for stars S versus almost all connected graphs G on 6 vertices [LoM7]. This

was extended to R (T, G) for most non-star trees T , in particular for all trees on at most

5 vertices versus all connected graphs G on at most 6 vertices [LoM10]. The values and

bounds for still missing cases are presented in [LoM8, LoM9].

(r) Formulas for R (nK 3, mG) for all G of order 4 without isolates [Zeng].

(s) R (K 3, G) for all connected graphs G on at most 8 vertices [Brin]. The numbers for K 3

versus sets of graphs with fixed number of edges, on at most 8 vertices, were presented

in [KlaM1].

(t) R (K 3, G) for all connected graphs G on 9 vertices [BrBH1, BrBH2].
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(u) R (K 3, G) for all graphs G on 10 vertices, except 10 cases [BrGS].

Three of the open cases, including G = K 10 − e , were solved [GoR2].

(v) R (C 4, G) for all graphs G on at most 6 vertices [JR3].

This work was followed by two errata listed in the references.

(w) R (C 5, G) for all graphs G on at most 6 vertices [JR4].

(x) R (C 6, G) for all graphs G on at most 5 vertices [JR2].

(y) R (K 2, n , K 2, m ) for all 2 ≤ n, m ≤ 10 except 8 cases, for which lower and upper bounds

are given [LoM3]. Further data for other complete bipartite graphs are gathered in Sec-

tion 3.3 and [LoMe4].

(z) All best lower bounds up to 102 from cyclic graphs. Formulas for best cyclic lower

bounds for paths and cycles, and values for small complete graphs and for graphs with

up to five vertices [HaKr1].

Chvátal and Harary [ChH1, ChH2] formulated several simple but very useful observations on

how to discover values of some numbers. All five missing entries in the tables of Clancy

[Clan] have been solved (Section 5.11). Out of 7 open cases in [He2] 5 have been solved,

including R (4, 5) = R (G 19, G 23 ) = 25 and other cases listed in Section 5.11. The 2 cases

still open are for K 5 versus K 5 (Section 2.1) and K 5 versus K 5 − e (Section 3.1). Many

extremal and other Ramsey graphs for various parameters are available at [BrCGM, McK1,

Ex18, Fuj1], see Section 8.3 below.

8.2. Cumulative data for three colors

(a) R 3(G) for all graphs G with at most 4 edges and no isolates [YR3].

(b) R 3(G) for all graphs G with 5 edges and no isolates, except K 4 − e [YR1].

This last open case is now solved, namely, we have R 3(K 4 − e) = 28 [Ex7][LidP].

(c) R 3(G) for all graphs G with 6 edges and no isolates, except 10 cases [YY].

(d) R (F, G, H) for many triples of isolate-free graphs with at most 4 vertices [ArKM].

Some of the missing cases completed in [KlaM2].

(e) Extension of [ArKM] to most triples of graphs with at most 4 vertices [BoDD].

(f) R (P 3, Pk , Cm ) for all 3 ≤ k ≤ 8 and 3 ≤ m ≤ 9 [DzFi2].

8.3. Electronic Resources

(a) W. Gasarch [Gas] maintains a website gathering over 60 pointers to literature on applica-

tions of Ramsey theory in computer science, and in particular logic, complexity theory

and algorithms, http://www.cs.umd.edu/~gasarch/TOPICS/ramsey/ramsey.html.
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(b) Many of the Ramsey graph constructions found by G. Exoo [Ex1-Ex25] are posted at

http://cs.indstate.edu/ge/RAMSEY.

(c) G. Brinkmann, K. Coolsaet, J. Goedgebeur and H. Mélot, House of Graphs: A database

of interesting graphs [BrCGM], http://hog.grinvin.org.

(d) B.D. McKay, presents some graphs related to classical Ramsey numbers [McK1],

http://cs.anu.edu.au/people/bdm/data/ramsey.html.

(e) Set of Ramsey problems with comments and references by a team of students of Fan

Chung, University of California San Diego [UCSD], Erdős’ Problems on Graphs, Ram-

sey Theory, http://www.math.ucsd.edu/~erdosproblems/RamseyTheory.html (2010-2012).

(f) H. Fujita, collection of Ramsey graph constructions [Fuj1],

http://opal.inf.kyushu-u.ac.jp/~fujita/ramsey.html, (2014-2017).

(g) M. Rubey, an electronic GUI resource for values of some small Ramsey numbers [Rub],

http://www.findstat.org/StatisticsDatabase/St000479.

(h) S. Van Overberghe, Ramsey graph constructions associated with MS Thesis, Ghent

University, Belgium, 2020 [VO], https://github.com/Steven-VO/circulant-Ramsey.

(i) A.E. Brouwer, Parameters of Strongly Regular Graphs [Brou], used mainly in 3.1.d and

5.3.h, https://www.win.tue.nl/~aeb/graphs/srg/srgtab.html.

8.4. Books and Surveys

Books and special works

(1980) Ramsey Theory by R.L. Graham, B.L. Rothschild and J.H. Spencer [GRS],

first edition 1980, second edition 1990, paperback of the second edition 2013.

(1983) Special volume of the Journal of Graph Theory [JGT].

(1996) A chapter in Handbook of Combinatorics by J. Nes̆etr̆il [Nes̆].

(1997) Among 114 open problems and conjectures of Paul Erdős, presented and commented

by F.R.K. Chung, 31 are concerned directly with Ramsey numbers [Chu4]. 216

references are given. An extended version of this work was prepared jointly with

R.L. Graham [ChGra2] in 1998.

(2001) An extensive chapter on Ramsey theory in a widely used student textbook and

researcher’s guide of graph theory by D. West [West].

(2002) Ramsey Theory and Paul Erdős by R.L. Graham and J. Nes̆etr̆il [GrNe].

(2003) Special issue of Combinatorics, Probability and Computing [CoPC].

(2004) Ramsey Theory on the Integers by B. Landman and A. Robertson [LaRo], first edi-

tion 2004, second edition 2014.

(2009) History, results and people of Ramsey theory. The mathematical coloring book,

mathematics of coloring and the colorful life of its creators by A. Soifer [Soi1].

(2011) Ramsey Theory. Yesterday, Today and Tomorrow, a special volume in the series

Progress in Mathematics [Soi2]. A survey of Ramsey numbers involving cycles by
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this author is included there [Ra4].

(2015) Recent Developments in Graph Ramsey Theory by D. Conlon, J. Fox and B.

Sudakov [ConFS7].

(2015) Rudiments of Ramsey Theory, a new edition of the classics by R.L. Graham and S.

Butler [GrBu].

(2018) Ramsey Theory, Unsolved Problems and Results by Xiaodong Xu, Meilian Liang

and Haipeng Luo [XuLL].

(2021) The Discrete Mathematical Charms of Paul Erdős: A Simple Introduction, by Vas̆ek

Chvátal [Chv2].

(2022) Elementary Methods of Graph Ramsey Theory, an extensive presentation of the area

by Yusheng Li and Qizhong Lin [LiLin].

(2024) The New Mathematical Coloring Book, Mathematics of Coloring and the Colorful

Life of Its Creators, greatly extended and revised first edition of the 2009 coloring

book [Soi1] by Alexander Soifer [Soi3].

Surveys and Overviews

(1974) A general survey of results in Ramsey graph theory by S.A. Burr [Bu1]

(1978) A general survey of results in Ramsey graph theory by T.D. Parsons [Par6]

(1980) Survey of results and new problems on multiplicities and Ramsey multiplicities by

S.A. Burr and V. Rosta [BuRo3]

(1981) Summary of progress by Frank Harary [Har2]

(1983) A survey of bounds and values by F.R.K. Chung and C.M. Grinstead [ChGri]

(1984) A review of Ramsey graph theory for newcomers by F.S. Roberts [Rob1]

(1987) An overview of progress so far and plans for the future, What Can We Hope to

Accomplish in Generalized Ramsey Theory? by S. Burr [Bu7]

(1987) Survey of asymptotic problems by R.L. Graham and V. Rödl [GrRö]

(1991) Survey by R.J. Faudree, C.C. Rousseau and R.H. Schelp of graph goodness results,

i.e. conditions for the formula R (G, H) = ( χ(G) − 1 ) ( n (H) − 1 ) + s (G) [FRS5]

(1996) Survey of zero-sum Ramsey theory by Y. Caro [Caro]

(2004) Dynamic survey of Ramsey theory applications by V. Rosta [Ros2]. A website

maintained by W. Gasarch [Gas] gathers over 60 pointers to literature on applica-

tions of Ramsey theory in computer science.

(2010) Hypergraph Ramsey Numbers by D. Conlon, J. Fox and B. Sudakov [ConFS2].

(2013) Problems in Graph Theory from Memphis, "a summary of problems and results com-

ing out of the 20 year collaboration between Paul Erdős and the authors", by R.J.

Faudree, C.C. Rousseau and R.H. Schelp [FRS6].

(2016) On Some Open Questions for Ramsey and Folkman Numbers [XuR4].

(2018) A Survey of Hypergraph Ramsey Problems, by D. Mubayi and A. Suk [MuSuk4].
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(2020) An Introduction to Ramsey’s Theorem by A. Tripathi [Tri].

(2021) New Directions in Ramsey Theory by G. Chartrand and P. Zhang [ChaZ].

The surveys by S.A. Burr [Bu1] and T.D. Parsons [Par6] contain extensive chapters on

general exact results in graph Ramsey theory. F. Harary presented the state of the theory in

1981 in [Har2], where he also gathered many references including seven to other early sur-

veys of this area. More than three decades ago, Chung and Grinstead in their survey paper

[ChGri] gave much less data than in this work, but they included a broad discussion of dif-

ferent methods used in Ramsey computations in the classical case. S. A. Burr, one of the

most experienced researchers in Ramsey graph theory, formulated in [Bu7] seven conjectures

on Ramsey numbers for sufficiently large and sparse graphs, and reviewed the evidence for

them found in the literature. Three of them have been refuted in [Bra3].

For newer extensive presentations see [GRS, GrRö, FRS5, Nes̆, Chu4, ChGra2, ConFS7],

though these focus on asymptotic theory not on the numbers themselves. A very welcome

addition is the 2004 compilation of applications of Ramsey theory by V. Rosta [Ros2]. This

survey could not be complete without recommending special volumes of the Journal of Graph

Theory [JGT, 1983] and Combinatorics, Probability and Computing [CoPC, 2003], which,

besides a number of research papers, include historical notes and present to us Frank P. Ram-

sey (1903-1930) as a person. Read a colorful book by A. Soifer [Soi1, 2009] on history and

results in Ramsey theory, followed by a collection of essays and technical papers based on

presentations from the 2009 Ramsey theory workshop at DIMACS [Soi2, 2011]. A 70-page

long paper from 2015, entitled Recent Developments in Graph Ramsey Theory, by D. Conlon,

J. Fox and B. Sudakov [ConFS7] documents in details what the title says. Finally, since the

previous revision of this survey, some new and revised books appeared: in 2021 by V.

Chvátal [Chv2], in 2022 by Li and Lin [LiLin], and in 2024 an extended and revised book by

Soifer [Soi3].

The historical perspective and, in particular, the timeline of progress on prior best

bounds, can be obtained by comparing all the previous versions of this survey since 1994 at

the author’s website http://www.cs.rit.edu/~spr/ElJC/eline.html or at the portal of the E-JC journal

http://www.combinatorics.org/ojs/index.php/eljc/issue/view/Surveys.
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9. Concluding Remarks

9.1. Exclusions

This compilation does not include much information on numerous variations of Ramsey

numbers, nor related topics, like

anti-Ramsey numbers, oriented Ramsey numbers,

ascending Ramsey index, oriented size Ramsey numbers,

avoiding sets of graphs, planar Ramsey numbers,

barycentric Ramsey numbers, poset Ramsey numbers,

bipartite Ramsey numbers, potential Ramsey numbers,

blowup Ramsey numbers, proper Ramsey numbers,

chromatic Ramsey numbers, quasi-Ramsey numbers,

class Ramsey numbers, rainbow Ramsey numbers,

complementary Ramsey numbers, Ramsey equivalence,

connected Ramsey numbers, Ramsey game numbers,

cover Ramsey numbers, Ramsey games,

defective Ramsey numbers, Ramsey-minimal graphs,

degree Ramsey numbers, Ramsey multiplicities,

directed Ramsey numbers, Ramsey-Turán numbers,

distance Ramsey numbers, Ramsey sequences of graphs,

edge-chromatic Ramsey numbers, restricted online Ramsey numbers,

edge-ordered Ramsey numbers, restricted size Ramsey numbers,

Folkman numbers, Schur numbers,

Gallai-Ramsey numbers, semi-algebraic Ramsey numbers,

generalized Ramsey numbers, set-coloring Ramsey numbers,

induced Ramsey numbers, signed Ramsey numbers,

irredundant Ramsey numbers, singular Ramsey numbers,

list Ramsey numbers, size multipartite Ramsey numbers,

local Ramsey numbers, size Ramsey numbers,

k -Ramsey numbers, star-critical Ramsey numbers,

mixed Ramsey numbers, sub-Ramsey numbers,

multipartite Ramsey numbers, Van der Waerden numbers,

online Ramsey numbers, weakened Ramsey numbers,

ordered Ramsey numbers, zero-sum Ramsey numbers,

ordered size Ramsey numbers, or coloring graphs other than complete.

Interested readers can find such information in some of the surveys listed in Section 8 here.

Readers may be also interested in knowing that the US patent 6965854 B2 issued on

November 15, 2005 claims a method of using Ramsey numbers in "Methods, Systems and

Computer Program Products for Screening Simulated Traffic for Randomness." Check the ori-

ginal document at http://www.uspto.gov/patft if you wish to find out whether your usage of Ram-

sey numbers is covered by this patent.
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9.2. Journal paper counts

Out of 965 references gathered in this survey, most are papers which appeared in more than

100 different periodicals (in addition to books, conference proceedings, arXiv postings, and

personal communications). The most popular periodicals were:

Discrete Mathematics 101

Journal of Combinatorial Theory (old, Series A and B) 64

Journal of Graph Theory 63

Electronic Journal of Combinatorics 53

Graphs and Combinatorics 43

Ars Combinatoria 32

Journal of Combinatorial Mathematics and Combinatorial Computing 32

European Journal of Combinatorics 31

Discrete Applied Mathematics 24

Australasian Journal of Combinatorics 23

Combinatorica 21

Utilitas Mathematica 18

Combinatorics, Probability and Computing 16

SIAM Journal on Discrete Mathematics 16

Congressus Numerantium 12

Discussiones Mathematicae Graph Theory 11

Random Structures and Algorithms 9

Mathematica Applicata 8

Applied Mathematics Letters 7

arXiv preprints 35

Some of the original arXiv pointers remain listed together with their later published versions,

if we think that this gives additional information.

The results of 192 references depend on computer algorithms.
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