Small Ramsey Numbers

Stanislaw P. Radziszowski
Department of Computer Science
Rochester Institute of Technology
Rochester, NY 14623, spr@cs.rit.edu
http://www.cs.rit.edu/~spr

first version: June 11, 1994; revision #16: January 15, 2021
http://www.combinatorics.org

ABSTRACT: We present data which, to the best of our knowledge, includes all known nontrivial values and bounds for specific graph, multicolor and hypergraph Ramsey numbers, where the avoided graphs are complete or complete without one edge. Many results pertaining to other more studied cases are also presented. We give references to all cited bounds and values, as well as to previous similar compilations. We do not attempt complete coverage of asymptotic behavior of Ramsey numbers, but rather we concentrate on their specific values.

Mathematical Reviews Subject Number 05C55

Revisions

1993, February preliminary version, RIT-TR-93-009 [Ra2]
1994, July 3 posted on the web at the ElJC
1994, November 7 ElJC revision #1
1995, August 28 ElJC revision #2
1996, March 25 ElJC revision #3
1997, July 11 ElJC revision #4
1998, July 9 ElJC revision #5
1999, July 5 ElJC revision #6
2000, July 25 ElJC revision #7
2001, July 12 ElJC revision #8
2002, July 15 ElJC revision #9
2004, July 4 ElJC revision #10
2006, August 1 ElJC revision #11
2009, August 4 ElJC revision #12
2011, August 22 ElJC revision #13
2014, January 12 ElJC revision #14
2017, March 3 ElJC revision #15
2021, January 15 ElJC revision #16
Table of Contents

1. Scope and Notation .. 3

2. Classical Two-Color Ramsey Numbers 4
 2.1 Values and bounds for \(R(k, l) \), \(k \leq 10, \ l \leq 15 \) 4
 2.2 Bounds for \(R(k, l) \), higher parameters 7
 2.3 General results on \(R(k, l) \) 9

3. Two Colors: \(K_n - e, K_3, K_{m,n} \) 12
 3.1 Dropping one edge from complete graph 12
 3.2 Triangle versus other graphs 15
 3.3 Complete bipartite graphs 16

4. Two Colors: Numbers Involving Cycles 20
 4.1 Cycles, cycles versus paths and stars 20
 4.2 Cycles versus complete graphs 21
 4.3 Cycles versus wheels 23
 4.4 Cycles versus books 25
 4.5 Cycles versus other graphs 26

5. General Graph Ramsey Numbers in Two Colors 27
 5.1 Paths ... 27
 5.2 Wheels ... 27
 5.3 Books .. 28
 5.4 Trees and forests ... 30
 5.5 Stars, stars versus other graphs 31
 5.6 Paths versus other graphs 32
 5.7 Fans, fans versus other graphs 33
 5.8 Wheels versus other graphs 33
 5.9 Books versus other graphs 34
 5.10 Trees and forests versus other graphs 35
 5.11 Cases for \(n(G), n(H) \leq 5 \) 36
 5.12 Miscellaneous cases 36
 5.13 Multiple copies of graphs, disconnected graphs 37
 5.14 General results for special graphs 38
 5.15 General results for sparse graphs 39
 5.16 General results 40

6. Multicolor Graph Ramsey Numbers 42
 6.1 Bounds for classical numbers 42
 6.2 General results for complete graphs 44
 6.3 Cycles ... 46
 6.4 Paths, paths versus other graphs 51
 6.5 Special cases ... 53
 6.6 General results for special graphs 54
 6.7 General results .. 55

7. Hypergraph Ramsey Numbers 57
 7.1 Values and bounds for numbers 57
 7.2 Cycles and paths ... 58
 7.3 General results for 3-uniform hypergraphs 60
 7.4 General results 61

8. Cumulative Data and Surveys 62
 8.1 Cumulative data for two colors 62
 8.2 Cumulative data for three colors 64
 8.3 Electronic resources 64
 8.4 Surveys ... 65

9. Concluding Remarks ... 67

References .. 68-116
1. Scope and Notation

There is vast literature on Ramsey type problems starting in 1930 with the original paper of Ramsey [Ram]. Graham, Rothschild and Spencer in their book [GRS] present an exciting development of Ramsey Theory. The subject has grown amazingly, in particular with regard to asymptotic bounds for various types of Ramsey numbers (see the survey papers [GrRö, Neš, ChGra2, Ros2]), but the progress on evaluating the basic numbers themselves has been unsatisfactory for a long time. In the last few decades, however, considerable progress has been obtained in this area, mostly by employing computer algorithms. The few known exact values and several bounds for different numbers are scattered among many technical papers. This compilation is a fast source of references for the best results known for specific numbers. It is not supposed to serve as a source of definitions or theorems, but these can be easily accessed via the references gathered here.

Ramsey Theory studies conditions when a combinatorial object contains necessarily some smaller given objects. The role of Ramsey numbers is to quantify some of the general existential theorems in Ramsey Theory.

Let \(G_1, G_2, \ldots, G_m \) be graphs or \(s \)-uniform hypergraphs (\(s \) is the number of vertices in each edge). \(R(G_1, G_2, \ldots, G_m ; s) \) denotes the \(m \)-color Ramsey number for \(s \)-uniform graphs/hypergraphs, avoiding \(G_i \) in color \(i \) for \(1 \leq i \leq m \). It is defined as the least integer \(n \) such that, in any coloring with \(m \) colors of the \(s \)-subsets of a set of \(n \) elements, for some \(i \) the \(s \)-subsets of color \(i \) contain a sub-(hyper)graph isomorphic to \(G_i \) (not necessarily induced). The value of \(R(G_1, G_2, \ldots, G_m ; s) \) is fixed under permutations of the first \(m \) arguments. If \(s=2 \) (standard graphs) then \(s \) can be omitted. If \(G_i \) is a complete graph \(K_k \), then we may write \(k \) instead of \(G_i \), and if \(G_i = G \) for all \(i \) we may use the abbreviation \(R_m(G ; s) \) or \(R_m(G) \). For \(s=2 \), \(K_k-e \) denotes a \(K_k \) without one edge, and for \(s=3 \), \(K_k-t \) denotes a \(K_k \) without one triangle (hyperedge).

The graph \(nG \) is formed by \(n \) disjoint copies of \(G \), \(G \cup H \) stands for vertex disjoint union of graphs, and the join \(G+H \) is obtained by adding all of the edges between vertices of \(G \) and \(H \) to \(G \cup H \). \(P_i \) is a path on \(i \) vertices, \(C_i \) is a cycle of length \(i \), and \(W_i \) is a wheel with \(i-1 \) spokes, i.e. a graph formed by some vertex \(x \), connected to all vertices of the cycle \(C_{i-1} \) (thus \(W_i = K_1 + C_{i-1} \)). \(K_{n,m} \) is a complete \(n \) by \(m \) bipartite graph, in particular \(K_{1,n} \) is a star graph. The book graph \(B_i = K_2 + K'_{1,i} = K_1 + K_{1,i} \) has \(i+2 \) vertices, and can be seen as \(i \) triangular pages attached to a single edge. The fan graph \(F_n \) is defined by \(F_n = K_1 + nK_2 \). For a graph \(G \), \(n(G) \) and \(e(G) \) denote the number of vertices and edges, respectively, and \(\delta(G) \) and \(\Delta(G) \) minimum and maximum degree of \(G \). Finally, \(\chi(G) \) denotes the chromatic number of \(G \). In general, we follow the notation used by West [West].

Section 2 contains the data for the classical two color Ramsey numbers \(R(k, l) \) for complete graphs, section 3 for the much studied two color cases of \(K_n-e \), \(K_3, K_{m,n} \), and section 4 for numbers involving cycles. Section 5 lists other often studied two color cases for general graphs. The multicolor and hypergraph cases are gathered in sections 6 and 7, respectively. Finally, section 8 gives pointers to cumulative data and to other surveys.
2. Classical Two-Color Ramsey Numbers

2.1. Values and bounds for $R(k, l)$, $k \leq 10$, $l \leq 15$

<table>
<thead>
<tr>
<th>l</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>6</td>
<td>9</td>
<td>14</td>
<td>18</td>
<td>23</td>
<td>28</td>
<td>36</td>
<td>40</td>
<td>42</td>
<td>47</td>
<td>50</td>
<td>59</td>
<td>68</td>
</tr>
<tr>
<td>4</td>
<td>18</td>
<td>25</td>
<td>36</td>
<td>49</td>
<td>59</td>
<td>73</td>
<td>92</td>
<td>102</td>
<td>149</td>
<td>191</td>
<td>238</td>
<td>291</td>
<td>349</td>
</tr>
<tr>
<td>5</td>
<td>48</td>
<td>87</td>
<td>143</td>
<td>216</td>
<td>316</td>
<td>442</td>
<td>633</td>
<td>848</td>
<td>1138</td>
<td>1461</td>
<td>1878</td>
<td>275</td>
<td>275</td>
</tr>
<tr>
<td>6</td>
<td>102</td>
<td>165</td>
<td>298</td>
<td>495</td>
<td>780</td>
<td>1713</td>
<td>3574</td>
<td>6954</td>
<td>15263</td>
<td>22112</td>
<td>401</td>
<td>6911</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>205</td>
<td>540</td>
<td>219</td>
<td>1031</td>
<td>252</td>
<td>1171</td>
<td>2826</td>
<td>4553</td>
<td>10578</td>
<td>15263</td>
<td>22112</td>
<td>401</td>
<td>6911</td>
</tr>
<tr>
<td>8</td>
<td>282</td>
<td>1870</td>
<td>329</td>
<td>3583</td>
<td>343</td>
<td>6090</td>
<td>457</td>
<td>10630</td>
<td>16944</td>
<td>41525</td>
<td>63609</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>565</td>
<td>6588</td>
<td>581</td>
<td>12677</td>
<td>22325</td>
<td>38832</td>
<td>64864</td>
<td>873</td>
<td>873</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>798</td>
<td>23556</td>
<td>45881</td>
<td>81123</td>
<td>1313</td>
<td>1313</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table Ia. Known nontrivial values, lower bounds (2020) and upper bounds (2017) for two color Ramsey numbers $R(k, l) = R(k, l; 2)$, for $k \leq 10$, $l \leq 15$.

For the best known upper bounds (2020) with $k \geq 4$ see Table Ib.

<table>
<thead>
<tr>
<th>l</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>GG</td>
<td>GG</td>
<td>Kéry</td>
<td>Ka2</td>
<td>GR</td>
<td>Ka2</td>
<td>GR</td>
<td>Ex5</td>
<td>Ex20</td>
<td>Kol1</td>
<td>Kol1</td>
<td>Kol2</td>
</tr>
<tr>
<td>4</td>
<td>GG</td>
<td>Ex19</td>
<td>Ex3</td>
<td>ExT</td>
<td>Ex16</td>
<td>HaKr1</td>
<td>ExT</td>
<td>Spe4</td>
<td>SuLL</td>
<td>ExT</td>
<td>ExT</td>
<td>Tat</td>
</tr>
<tr>
<td>5</td>
<td>Ex4</td>
<td>AnM1</td>
<td>Ex9</td>
<td>CaET</td>
<td>HaKr1</td>
<td>Kuz</td>
<td>ExT</td>
<td>Kuz</td>
<td>HW+</td>
<td>Kuz</td>
<td>HW+</td>
<td>HW+</td>
</tr>
<tr>
<td>6</td>
<td>Ka2</td>
<td>Mac</td>
<td>ExT</td>
<td>HaZ1</td>
<td>HaZ1</td>
<td>Kuz</td>
<td>Mac</td>
<td>Kuz</td>
<td>HW+</td>
<td>Kuz</td>
<td>HW+</td>
<td>HW+</td>
</tr>
<tr>
<td>7</td>
<td>She2</td>
<td>Mac</td>
<td>Tat</td>
<td>Kuz</td>
<td>Kuz</td>
<td>XXER</td>
<td>HW+</td>
<td>XXR2</td>
<td>HW+</td>
<td>HW+</td>
<td>HW+</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>BurR</td>
<td>Mac</td>
<td>Kuz</td>
<td>Kuz</td>
<td>2.3.i</td>
<td>Kuz</td>
<td>2.3.i</td>
<td>XXER</td>
<td>HW+</td>
<td>HW+</td>
<td>HW+</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>She2</td>
<td>ShZ1</td>
<td>XSR2</td>
<td>Eal</td>
<td>HW+</td>
<td>HW+</td>
<td>HW+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>She2</td>
<td>ShZ1</td>
<td>HW+</td>
<td>HW+</td>
<td>HW+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

References for Table Ia; all upper bounds for $k \geq 4$, $l \geq 6$ were improved in 2019 [AnM2], see Table Ib. HW+ abbreviates HWSYZH, as enhanced by Boza [Boza5], see 2.1.m.
Table Ib: Upper bounds for $R(k, l)$, $k \geq 4$, $l \geq 5$. All of them were obtained by Angeltveit and McKay [AnM2] in 2019, except $R(4, 5)$ [MR4], and they improve over previously best known bounds reported in Table Ia.

We split the data into Table Ia with a separate table of references corresponding to it, and Table Ib of new upper bounds. In Table Ia, the known exact values appear as centered entries, lower bounds as top entries, and upper bounds as bottom entries. For some of the exact values two references are given when the lower and upper bound credits are different. In 2019, in a large computational project, Angeltveit and McKay [AnM2] obtained new upper bounds as reported in Table Ib. These, by using the classical recursive upper bound 2.3.a, lead to further improvements of other upper bounds on $R(k, l)$ for $k \geq 4$, $l \geq 6$. For example, the bounds $R(9, 9) \leq 5366$ and $R(7, 12) \leq 5081$ implied by 2.3.a, but not reported in Table Ib, improve over those listed in Table Ia.

(a) The task equivalent to that of proving $R(3, 3) \leq 6$ was the second problem in the Kürschák Mathematics Competitions in Hungary in 1947 [BaLiu]. It also was the second problem in Part I of the William Lowell Putnam Mathematical Competition held in March 1953 [Bush].

(b) Greenwood and Gleason [GG] established the initial values $R(3, 4) = 9$, $R(3, 5) = 14$ and $R(4, 4) = 18$ in 1955.

(c) Kéry [Kéry] proved that $R(3, 6) = 18$ in 1964, but only in 2007 an elementary and self-contained proof of this result appeared in English [Car].

(d) All of the critical graphs for the numbers $R(k, l)$ (graphs on $R(k, l) - 1$ vertices without K_k and without K_l in the complement) are known for $k=3$ and $l=3$, 4, 5 [Kéry], 6 [Ka2], 7 [RaK2, McZ], 8 [BrGS] and 9 [GoR1], and there are 1, 3, 1, 7, 191, 477142, and 1 of them, respectively. All $(3, k)$-graphs, for $k \leq 6$, were enumerated in [RaK2], and all $(4,4)$-graphs in [MR2]. There exists a unique critical graph for $R(4,4)$ [Ka2]. Until 2015, there were 350904 known critical graphs for $R(4, 5)$ [MR4], but the full set of such graphs was computed in 2016 [McK3], and there are 352366 of them.

(e) In [MR5], strong evidence is given for the conjecture that $R(5, 5) = 43$ and that there exist exactly 656 critical graphs on 42 vertices. The upper bound of 49 was established.
in 1997 [MR5]. Angeltveit and McKay improved it by 1 to 48 in 2016 [AnM1].

(f) The graphs constructed by Exoo in [Ex9, Ex12-Ex20, Ex22], and some others, are available electronically from http://cs.indstate.edu/ge/ramsey. Fujita [Fuj1] maintains a website with some lower bound constructions; in particular, it presents the bound $R(4, 8) \geq 58$ obtained independently from Exoo.

(g) Cyclic (or circulant) graphs are often used for Ramsey graph constructions. Several cyclic graphs establishing lower bounds were given in the Ph.D. dissertation by J.G. Kalbfleisch in 1966, and many others were published in the next few decades (see [RaK1]). Harborth and Krause [HaKr1] presented all best lower bounds up to 102 from cyclic graphs avoiding complete graphs. In particular, no lower bound in Table Ia can be improved with a cyclic graph on less than 102 vertices, except possibly for $R(3, k)$ for $k \geq 13$. See also items 2.3.1 and section 5.16.o [HaKr1]. Larger cyclic heuristic constructions for $R(3, k)$ were explored in [JiLTX1, JiLTX2]. Several best lower bounds from distance colorings, a slightly more general concept than circular graphs, are presented in [HaKr2].

(h) The claim that $R(5, 5) = 50$ posted on the web [Stone] is in error, and despite being shown to be incorrect more than once, this value is still being cited by some authors. The bound $R(3, 13) \geq 60$ [XieZ] cited in the 1995 version of this survey was shown to be incorrect in [Piw1]. Another incorrect construction for $R(3, 10) \geq 41$ was described in [DuHu].

(i) There are really only two general upper bound inequalities useful for small parameters, namely 2.3.a and 2.3.b. Stronger upper bounds for specific parameters were difficult to obtain, and they often involved massive computations, like those for the cases of (3,8) [McZ], (3,10) [GoR1], (4,5) [MR4], (4,6) and (5,5) [MR5, AnM1]. The bound $R(6, 6) \leq 166$, only 1 more than in [Mac], is an easy consequence of a theorem in [Walk] (2.3.b) and $R(4, 6) \leq 41$. Since 2020, we know that $R(6, 6) \leq 161$ [AnM2].

(j) T. Spencer [Spe4], Mackey [Mac], and Huang and Zhang [HZ2], using the bounds for minimum and maximum number of edges in (4,5) Ramsey graphs listed in [MR3, MR5], were able to establish new upper bounds for several higher Ramsey numbers, improving on all of the previous longstanding best results by Giraud [Gi3, Gi5, Gi6].

(k) In Table Ia, only some of the higher bounds implied by 2.3.* are shown, and more similar bounds could be derived. In general, we show bounds beyond the contiguous small values if they improve on results previously reported in this survey or published elsewhere. Some easy upper bounds implied by 2.3.a are marked as [Ea1].

(l) In 2009, we have recomputed the upper bounds in Table Ia marked [HZ2] using the method from the paper [HZ2], because the bounds there relied on an overly optimistic personal communication from T. Spencer. Further refinements of this method are studied in [HZ3, ShiZ1, Shi2]. The paper [Shi2] subsumes the main results of the manuscripts [ShZ1, Shi2]. All these bounds are now improved by the bounds in Table Ib obtained in [AnM2].

(m) In 2013, Boza [Boza5] using the method of [HWSYZH], which is abbreviated as HW+ in Table Ia, computed the bounds marked HW+ by starting from better upper bounds for
smaller parameters. Most of the currently shown bounds are thus better than those originally listed in [HWSYZH, HZ3]. All these bounds are now improved by the bounds in Table Ib obtained in [AnM2].

(n) In 2015, Exoo and Tatarevic obtained several lower bound improvements marked [ExT] in Tables Ia and IIa by using some modifications of general circulant constructions, but especially related to the quadratic residues Paley graph Q_{101} and the cubic residues graph G_{127}. More bounds by Tatarevic are reported in [Tat]. In 2016, Kuznetsov [Kuz] obtained several further new lower bounds building up on circulant graphs. Also in 2015 and 2016, somewhat surprisingly, Kolodyazhny [Kol1, Kol2] improved four longstanding lower bounds on $R(3, k)$ in Table Ia.

(o) Some lower bounds in Table Ia, like for $R(6, 8)$ or $R(8, 8)$, may seem rather weak, yet they are not easy to improve. For comments on $R(8, 8)$ see [ExT].

2.2. Bounds for $R(k, l)$, higher parameters

(a) The upper bounds in Tables Ia and IIa marked [GoR1, Les, Back1] were obtained mainly by deriving lower bounds for several cases of $e(3, k, n)$, which denotes the minimum number of edges in n-vertex triangle-free graphs with independence number less than k. The study of $e(3, k, n)$ was also the main tool for the results obtained in [GrY, GR, RaK2, RaK3, GoR2].

<table>
<thead>
<tr>
<th></th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>74</td>
<td>82</td>
<td>92</td>
<td>99</td>
<td>106</td>
<td>111</td>
<td>122</td>
<td>131</td>
<td>139</td>
</tr>
<tr>
<td></td>
<td>Kol2</td>
<td>Ex21</td>
<td>W1+</td>
<td>Ex16</td>
<td>W1+</td>
<td>Ex16</td>
<td>W1+</td>
<td>W2+</td>
<td>XWCS</td>
</tr>
<tr>
<td>87</td>
<td>97</td>
<td>109</td>
<td>120</td>
<td>132</td>
<td>145</td>
<td>157</td>
<td>171</td>
<td>185</td>
<td></td>
</tr>
<tr>
<td></td>
<td>74</td>
<td>82</td>
<td>92</td>
<td>99</td>
<td>106</td>
<td>111</td>
<td>122</td>
<td>131</td>
<td>139</td>
</tr>
<tr>
<td></td>
<td>74</td>
<td>82</td>
<td>92</td>
<td>99</td>
<td>106</td>
<td>111</td>
<td>122</td>
<td>131</td>
<td>139</td>
</tr>
<tr>
<td>4</td>
<td>158</td>
<td>170</td>
<td>200</td>
<td>205</td>
<td>213</td>
<td>234</td>
<td>242</td>
<td>314</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tat</td>
<td>Tat</td>
<td>Lia+</td>
<td>2.3.e</td>
<td>2.3.h</td>
<td>Ex16</td>
<td>SLZL</td>
<td>LinCa</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>275</td>
<td>293</td>
<td>388</td>
<td>396</td>
<td>411</td>
<td>424</td>
<td>441</td>
<td>492</td>
<td>521</td>
</tr>
<tr>
<td></td>
<td>2.3.h</td>
<td>ExT</td>
<td>XSR2</td>
<td>2.3.h</td>
<td>XSR2</td>
<td>XSR2</td>
<td>2.3.i</td>
<td>2.3.i</td>
<td>2.3.i</td>
</tr>
<tr>
<td>6</td>
<td>401</td>
<td>434</td>
<td>548</td>
<td>614</td>
<td>710</td>
<td>878</td>
<td>888</td>
<td>1070</td>
<td>1070</td>
</tr>
<tr>
<td></td>
<td>2.3.i</td>
<td>SLLL</td>
<td>SLLL</td>
<td>SLLL</td>
<td>SLLL</td>
<td>SLLL</td>
<td>SLLL</td>
<td>SLLL</td>
<td>SLLL</td>
</tr>
<tr>
<td>7</td>
<td>629</td>
<td>729</td>
<td>797</td>
<td>908</td>
<td>1214</td>
<td>1214</td>
<td>SLLL</td>
<td>SLLL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.3.i</td>
<td>2.3.i</td>
<td>2.3.i</td>
<td>2.3.i</td>
<td>2.3.i</td>
<td>2.3.i</td>
<td>2.3.i</td>
<td>2.3.i</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>873</td>
<td>1005</td>
<td>1049</td>
<td>1237</td>
<td>1617</td>
<td>1617</td>
<td>1617</td>
<td>1617</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.3.i</td>
<td>2.3.i</td>
<td>2.3.i</td>
<td>2.3.i</td>
<td>2.3.i</td>
<td>2.3.i</td>
<td>2.3.i</td>
<td>2.3.i</td>
<td></td>
</tr>
</tbody>
</table>

Table IIa. Known bounds for higher two-color Ramsey numbers $R(k, l)$, with references. Lower and upper bounds are given for $k = 3$, only lower bounds for $k \geq 4$; Lia+, W1+ and W2+ abbreviate LiaWXS, WWY1 and WSLX2, respectively.
Table IIb. Known lower bounds for higher Ramsey numbers $R(3, l)$ for $l \geq 24$.

$W1+$, $W2+$ and $Ji+$ abbreviate $WSLX1$, $WSLX2$ and $JiLTX2$, respectively.

<table>
<thead>
<tr>
<th>l</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
<th>29</th>
<th>30</th>
<th>31</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>\begin{align*} W1+ \end{align*}</td>
<td>\begin{align*} 143 \end{align*}</td>
<td>\begin{align*} 154 \end{align*}</td>
<td>\begin{align*} 159 \end{align*}</td>
<td>\begin{align*} 172 \end{align*}</td>
<td>\begin{align*} 177 \end{align*}</td>
<td>\begin{align*} 190 \end{align*}</td>
<td>\begin{align*} 195 \end{align*}</td>
<td>\begin{align*} 206 \end{align*}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>l</th>
<th>33</th>
<th>34</th>
<th>35</th>
<th>36</th>
<th>37</th>
<th>38</th>
<th>39</th>
<th>40</th>
<th>41</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>\begin{align*} LiLi \end{align*}</td>
<td>\begin{align*} 224 \end{align*}</td>
<td>\begin{align*} 230 \end{align*}</td>
<td>\begin{align*} 242 \end{align*}</td>
<td>\begin{align*} 252 \end{align*}</td>
<td>\begin{align*} 264 \end{align*}</td>
<td>\begin{align*} 272 \end{align*}</td>
<td>\begin{align*} 284 \end{align*}</td>
<td>\begin{align*} 294 \end{align*}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>l</th>
<th>42</th>
<th>43</th>
<th>44</th>
<th>45</th>
<th>46</th>
<th>47</th>
<th>48</th>
<th>49</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>\begin{align*} Ji+ \end{align*}</td>
<td>\begin{align*} 318 \end{align*}</td>
<td>\begin{align*} 332 \end{align*}</td>
<td>\begin{align*} 338 \end{align*}</td>
<td>\begin{align*} 354 \end{align*}</td>
<td>\begin{align*} 360 \end{align*}</td>
<td>\begin{align*} 380 \end{align*}</td>
<td>\begin{align*} 384 \end{align*}</td>
<td>\begin{align*} 402 \end{align*}</td>
</tr>
</tbody>
</table>

All lower bounds for $k \geq 13$ are from Paley graphs, see also 2.2.c below.

Table IIc. Known lower bounds for diagonal Ramsey numbers $R(k, k)$ for $k \geq 11$.

- All lower bounds for $k \geq 13$ are from Paley graphs, see also 2.2.c below.

(b) **Ramsey Calculus** [Back1], is an extensive manuscript by Backelin, which, among other goals, addresses the derivation of $e(3, k, n)$ and the corresponding realisers while avoiding reliance on computer assisted results as far as possible. It achieves the derivation of several lower bounds for $e(3, k+1, n)$ better than those in [GoR1, RaK3, RaK4] for n close to and above $13k/4$. Better lower bounds on $e(3, k, n)$ sometimes lead to better upper bounds on $R(3, l)$, like for $l = 18$ and $l = 20$ [Back4]. Further improvements to bounds on $e(3, k, n)$ were obtained in [Krui].

(c) The construction by Shearer [She2] (see also items 2.3.j, 6.2.k and 6.2.l), using the data obtained by Shearer [She4] for primes up to 7000, implies the lower bounds in Table IIc marked 2.2.c. An equivalent construction was studied by Mathon [Mat]. The first two bounds credited in Table IIc to [LuSL] also follow similarly from the data in [She4]. The same approach does not improve on the bound $R(12, 12) \geq 1639$ [XSR2], later increased to 1640 [Tat]. The bounds in [Ex23] were obtained by extending data for Paley graphs beyond [Sha4] and improving on [LiaWXCS].

(d) The lower bounds marked [XuXR], [XXER], [XSR2], 2.3.e, 2.3.h and 2.3.i need not be cyclic. Several of the Cayley colorings from [Ex16] are also non-cyclic. All other lower
bounds listed in Table IIa/b were obtained by construction of circular graphs.

(e) The graphs establishing lower bounds marked 2.3.h can be constructed by using appropriately chosen graphs G and H with a common m-vertex induced subgraph, similarly as it was done in several cases in [XuXR].

(f) Yu [Yu2] constructed a special class of triangle-free cyclic graphs establishing several lower bounds for $R(3, k)$, for $k \geq 61$. All of these bounds can be improved by the inequalities in 2.3.c and data from Tables Ia and IIa/b.

(g) Unpublished bound $R(4, 22) \geq 314$ [LiSLW] improved over 282 given in [SuL]. [LinCa] obtained the same bound, and also $R(4, 25) \geq 458$. Not yet published bounds $R(3, 23) \geq 139$ [XWCS] and $R(4, 17) \geq 200$ [LiaWXS] improve over 137 and 182 obtained in [WSLX2] and [LuSS1], respectively. The bound $R(9, 17) \geq 1411$ is given in [XuXR]. Large cyclic heuristic constructions for $R(3, k)$ for $k < 50$ were explored in [JiLTX1, JiLTX2].

(h) Two special cases, $R(8, 18) \geq 1049$ and $R(8, 19) \geq 1237$, can be obtained by applying 2.3.i and 2.3.h below. In both cases we start with the 816-vertex graph G, witnessing $R(8, 13) \geq 817$, obtained by 2.3.i. Next, for properly chosen graphs H in the application of 2.3.h, we have large common subgraphs of G and H, namely the 101-vertex witness of $R(6, 6) \geq 102$ and the 204-vertex witness of $R(7, 7) \geq 205$, respectively.

(i) One can expect that the lower bounds in Tables IIa/b are weaker than those in Table Ia, especially smaller ones, in the sense that some of them should not be that hard to improve, in contrast to the bounds in Table Ia.

2.3. General results on $R(k, l)$

(a) $R(k, l) \leq R(k - 1, l) + R(k, l - 1)$, with strict inequality when both terms on the right hand side are even [GG]. There are obvious generalizations of this inequality for avoiding graphs other than complete.

(b) $R(k, k) \leq 4R(k, k - 2) + 2$ [Walk].

(c) Explicit construction for $R(3, 3k + 1) \geq 4R(3, k + 1) - 3$, for all $k \geq 2$ [CleDa], explicit construction for $R(3, 4k + 1) \geq 6R(3, k + 1) - 5$, for all $k \geq 1$ [ChCD].

(d) Explicit triangle-free graphs with independence k on $\Omega(k^{3/2})$ vertices [Alon2, CoPR]. For other constructive results in relation to $R(3, k)$ see [BrBH1, BrBH2, Fra1, Fra2, FrLo, GoR1, Gri, KlaM1, Loc, RaK2, RaK3, RaK4, Stat, Yu1]. See also 2.3.3 and 2.3.4 below.

(e) The study of bounds for the difference between consecutive Ramsey numbers was initiated in [BEFS], where the bound $R(k, l) \geq R(k, l - 1) + 2k - 3$, for $k, l \geq 3$, was established by a construction. In 1980, Erdős and Sós (cf. [Erd2,ChGra2]) asked: If we set $\Delta_{k, l} = R(k, l) - R(k, l - 1)$, then is it true that $\Delta_{k, k+1}/k \to \infty$ as $k \to \infty$? Only easy bounds on $\Delta_{k, l}$ are known, in particular for $k = 3$ we have $3 \leq \Delta_{3, l} \leq l$. For some discussion of the roadblocks on the latter see [XSR2, GoR2, ZhuXR]. It is also known that $R(3, k) \geq R(3, K_{k-1-e}) + 4$ [ZhuXR].
(f) A conjecture that \(R(k, l) \geq R(k-1, l+1) \) for all \(3 \leq k \leq l \) (called DC), its implications, evidence for validity, and related problems [LiaRX]. For the multicolor version of DC and its consequences see item 6.2.v.

(g) By taking a disjoint union of two critical graphs one can easily see that \(R(k, p) \geq s \) and \(R(k, q) \geq t \) imply \(R(k, p+q-1) \geq s+t+1 \). Xu and Xie [XuX1] improved this construction to yield better general lower bounds, in particular \(R(k, p+q-1) \geq s+t+k-3 \).

(h) For \(2 \leq p \leq q \) and \(3 \leq k \), if \((k, p)\)-graph \(G \) and \((k, q)\)-graph \(H \) have a common induced subgraph on \(m \) vertices without \(K_{k-1} \), then \(R(k, p+q-1) > n(G) + n(H) + m \). In particular, this construction implies the bounds \(R(k, p+q-1) \geq R(k, p) + R(k, q) + k - 3 \) and \(R(k, p+q-1) \geq R(k, p) + R(k, q) + p - 2 \) [XuX1, XuXR], with small improvements in some cases, such as using the term \(k - 2 \) instead of \(k - 3 \) in the first bound [XSR2].

(i) \(R(2k-1, l) \geq 4R(k, l-1) - 3 \) for \(l \geq 5 \) and \(k \geq 2 \), and in particular for \(k = 3 \) we have \(R(5, l) \geq 4R(3, l-1) - 3 \) [XXER].

(j) If the quadratic residues Paley graph \(Q_p \) of prime order \(p = 4t+1 \) contains no \(K_k \), then \(R(k, k) \geq p + 1 \) and \(R(k+1, k+1) \geq 2p+3 \) [She2, Mat]. Data for larger \(p \) was obtained in [LuSL], and further for \(p \) up to 25000 in [Ex23]. See also 3.1.e, and items 6.2.k and 6.2.l for similar multicolor results.

(k) Study of Ramsey numbers for large disjoint unions of graphs [Bu1, Bu9], in particular \(R(nK_k, nK_l) = n(k + l - 1) + R(k_{k-1}, l_{l-1}) - 2 \), for \(n \) large enough [Bu8].

(l) \(R(k, l) \geq L(k, l) + 1 \), where \(L(k, l) \) is the maximal order of any cyclic \((k, l)\)-graph.

A compilation of many best cyclic bounds was presented in [HaKr1].

(m) The graphs critical for \(R(k, l) \) are \((k-1)\)-vertex connected and \((2k-4)\)-edge connected, for \(k, l \geq 3 \) [BePi]. This was improved to vertex connectivity \(k \) for \(k \geq 5 \) and \(l \geq 3 \) in [XSR2].

(n) All Ramsey-critical \((k, l)\)-graphs are Hamiltonian for \(k \geq l - 1 \geq 1 \) and \(k \geq 3 \), except when \((k, l) = (3, 2) \) [XSR2].

(o) Two-color lower bounds can be obtained by using items 6.2.m, 6.2.n and 6.2.o with \(r = 2 \). Some generalizations of these were obtained in [ZLLS].

In the last seven items (1)-(7) of this section we only briefly mention some pointers to the literature dealing with asymptotics of Ramsey numbers. This survey was designed mostly for small, finite, and combinatorial results, but still we wish to give the reader some useful and representative references to more traditional papers studying the infinite.

(1) In 1947, Erdős gave a simple probabilistic proof that \(R(k, k) > 2^{k/2} \) [Erd1]. In 1975, Spencer [Spe1] improved it to \(R(k, k) > \sqrt{2} e^{-1} k 2^{k/2} (1 + o(1)) \). More probabilistic asymptotic lower bounds were obtained in [Spe1, Spe2, AlPu].

(2) The limit of \(R(k, k)^{1/k} \), if it exists, is between \(\sqrt{2} \) and 4 [GRS, GrRö, ChGra2].
(3) In 1995, Kim obtained a breakthrough result by proving that \(R(3, k) = \Theta(k^{2/\log k}) \) [Kim]. The best known lower and upper bounds constants are 1/4 [BohK2, BohK3] and 1 (implicit in [She1]), respectively. An independent proof of the lower bound constant 1/4 and a conjecture that it is the best possible are presented in [FizGM].

(4) Other asymptotic and general results on triangle-free graphs in relation to \(R(3, k) \) can be found in [Boh, AlBK, AjKS, Alon2, CleDa, ChCD, CoPR, Gri, FrLo, Loc, She1, She3].

(5) Explicit constructions yielded the lower bounds \(R(4, k) \geq \Omega(k^{8/5}), R(5, k) \geq \Omega(k^{5/3}) \) and \(R(6, k) \geq \Omega(k^{2}) \) [KosPR]. For the same cases of \(k \) classical probabilistic arguments give \(\Omega((k/\log k)^{5/2}), \Omega((k/\log k)^2) \) and \(\Omega((k/\log k)^{7/2}) \), respectively [Spe2]. These were improved to \(\Omega(k^{5/2}/(\log k)^2), \Omega(k^3/(\log k)^{8/3}) \) and \(\Omega(k^{7/2}/(\log k)^{13/4}) \), respectively, in [Boh, BohK1], and in general to \(R(s, t) \geq \Omega((t^{s+1/2}/(\log t))^{(s^2-s-4)/(2s-4)}) \), for fixed \(s \) and large \(t \) [BohK1].

(6) Explicit construction of a graph with clique and independence \(k \) on \(2^{c \log^2 k / \log \log k} \) vertices was presented by Frankl and Wilson [FraWi], and further constructions by Chung [Chu3] and Grolmusz [Grol1, Grol2]. In 2012, the best explicit construction for large \(k \) by Barak et al. [BarRSW] improved over [FraWi] by giving such a graph on \(2^{\log \log k^d} \) vertices for some \(c > 1 \), or equivalently, on \(n \) vertices, where \(\log \log n = (\log \log k)^c \). This was improved to \(\log \log n = (\log k)^d \), for a positive constant \(d \), by Cohen [Coh] in 2016. Explicit constructions such as these are usually weaker than known probabilistic results.

(7) In 2009, Conlon [Con1] obtained the best until then upper bound for the diagonal case

\[
R(k+1, k+1) \leq \left\lfloor \frac{2k}{k} \right\rfloor - c \log k / \log \log k.
\]

In 2020, Sah [Sah] improved it to

\[
R(k+1, k+1) \leq \left\lfloor \frac{2k}{k} \right\rfloor e^{-c(\log k)^2}.
\]

Other asymptotic bounds can be found, for example, in [Chu3, McS, Boh, BohK1] (lower bound) and [Tho] (upper bound), and for many other bounds in the general case of \(R(k, l) \) consult [Spe2, GRS, GrRö, Chu4, ChGra2, LiRZ1, AlPu, Kriv, ConFS7].
3. Two Colors: $K_n - e$, K_3, K_m, n

3.1. Dropping one edge from complete graph

This section contains known values and nontrivial bounds for the two color case when the avoided graphs are complete or have the form $K_k - e$, but not both are complete.

(a) The exact values in Table IIIa involving $K_3 - e$ are obvious, since one can easily see that $R(K_3 - e, K_k) = R(K_3 - e, K_{k+1} - e) = 2k - 1$ for all $k \geq 2$.

(b) More bounds (beyond those shown in Tables IIIa/b) can be easily obtained using Table Ia/b, an obvious generalization of the inequality $R(k, l) \leq R(k - 1, l) + R(k, l - 1)$, and by monotonicity of Ramsey numbers, in this case $R(K_k - e, G) \leq R(K_k - e, G) \leq R(K_k, G)$.

<table>
<thead>
<tr>
<th>G</th>
<th>H</th>
<th>$K_3 - e$</th>
<th>$K_4 - e$</th>
<th>$K_5 - e$</th>
<th>$K_6 - e$</th>
<th>$K_7 - e$</th>
<th>$K_8 - e$</th>
<th>$K_9 - e$</th>
<th>$K_{10} - e$</th>
<th>$K_{11} - e$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K_3 - e$</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td>15</td>
<td>17</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>K_3</td>
<td>5</td>
<td>7</td>
<td>11</td>
<td>17</td>
<td>21</td>
<td>25</td>
<td>31</td>
<td>37</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>$K_4 - e$</td>
<td>5</td>
<td>10</td>
<td>13</td>
<td>17</td>
<td>28</td>
<td>30</td>
<td>32</td>
<td>36</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>K_4</td>
<td>7</td>
<td>11</td>
<td>19</td>
<td>30</td>
<td>37</td>
<td>52</td>
<td>62</td>
<td>136</td>
<td>171</td>
<td></td>
</tr>
<tr>
<td>$K_5 - e$</td>
<td>7</td>
<td>13</td>
<td>22</td>
<td>37</td>
<td>65</td>
<td>66</td>
<td>69</td>
<td>143</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K_5</td>
<td>9</td>
<td>16</td>
<td>30</td>
<td>43</td>
<td>65</td>
<td>81</td>
<td>121</td>
<td>275</td>
<td>511</td>
<td></td>
</tr>
<tr>
<td>$K_6 - e$</td>
<td>9</td>
<td>17</td>
<td>37</td>
<td>45</td>
<td>66</td>
<td>83</td>
<td>218</td>
<td>361</td>
<td>551</td>
<td></td>
</tr>
<tr>
<td>K_6</td>
<td>11</td>
<td>21</td>
<td>43</td>
<td>58</td>
<td>110</td>
<td>205</td>
<td>371</td>
<td>620</td>
<td>949</td>
<td>1352</td>
</tr>
<tr>
<td>$K_7 - e$</td>
<td>11</td>
<td>28</td>
<td>65</td>
<td>66</td>
<td>124</td>
<td>247</td>
<td>465</td>
<td>807</td>
<td>1331</td>
<td>2142</td>
</tr>
<tr>
<td>K_7</td>
<td>13</td>
<td>28</td>
<td>65</td>
<td>80</td>
<td>191</td>
<td>388</td>
<td>746</td>
<td>1325</td>
<td>2134</td>
<td>3216</td>
</tr>
<tr>
<td>K_8</td>
<td>15</td>
<td>36</td>
<td>69</td>
<td>300</td>
<td>657</td>
<td>1345</td>
<td>2556</td>
<td>4432</td>
<td>7647</td>
<td></td>
</tr>
<tr>
<td>K_9</td>
<td>17</td>
<td>41</td>
<td>75</td>
<td>167</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K_{10}</td>
<td>19</td>
<td>49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table IIIa. Bounds on the Ramsey numbers $R(G, H)$, for complete or missing one edge graphs G and H, but not both complete. Known exact values appear as centered entries, lower bounds as top entries, and upper bounds as bottom entries.
Table IIIb. Lower and upper bounds for $R(K_3, K_{k-1})$ for $11 \leq k \leq 16$.

(c) Upper bounds for Ramsey numbers $R(K_k, K_{l-1})$ marked [AnM2] in references for Table IIIa are trivially implied by the bounds on $R(K_k, K_l)$ in Table Ib. These were obtained in 2020 by Angeltveit and McKay using linear programming, and they improve over upper bounds in Table Ia. The upper bounds by Lidický and Pfender [LidP] use flag algebras.
(d) Two special exact values, and several other bounds were obtained by Van Overberghe [VO] in 2020. The surprisingly large exact values \(R(K_5-e, K_6-e) = 37 \) and \(R(K_5-e, K_7-e) = 65 \) exploit some previously known strongly regular graphs on 27, 36 and 64 vertices, namely the Schläfli graph, \(NO^-(6,2) \) and \(VO^-(6,2) \) (see the website by A. E. Brouwer [Brou] for a great collection of strongly regular graphs). A lower bound \(R(K_4-e, K_{16}-e) \geq 82 \) is also in [VO].

(e) If the quadratic residues Paley graph \(Q_p \) of prime order \(p = 4t+1 \) contains no \(K_k-e \), then \(R(K_{k+1}-e, K_{k+1}-e) \geq 2p+1 \). In particular, \(R(K_{14}-e, K_{14}-e) \geq 2987 \) [LiShen]. This was generalized to \(K_k-F \) for some small graphs \(F \) instead of an edge \(e (=K_2) \) [WaLi]. See also item 2.3.j.

(f) This item follows personal communication from Boza [Boza5]. The upper bounds marked [BZ1] were obtained until 2012, while ones marked [BZ2] are from 2013. Several other improvements were obtained by Boza [Boza7] in 2014, marked also as [BZ7]. They are implied by [Boza6], the previous work [Boza1, Boza3, BoPo], the method of [HZ3], and the bounds given in [GoR2]. The enumeration of all \((K_6, K_4-e) \)-graphs [ShWR] is used in [BoPo].

(g) All \((K_3, K_k-e) \)-graphs were enumerated for \(k \leq 6 \) [Ra1] and \(k = 7 \) [Fid2, GoR2]. Full sets of \((K_j, K_k-e) \)-graphs were posted for the parameters \((K_3, K_k-e) \) for \(k \leq 7 \), \((K_4, K_k-e) \) for \(k \leq 5 \), and \((K_5, K_k-e) \) for \(k \leq 4 \) ([Fid2], available until 2014), and other full and restricted families at [BrCGM, Fuj1].

(h) The number of \((K_3, K_l-e) \)-critical graphs for \(l = 4, 5 \) and 8 is 4, 2 and 9, respectively [MPR]. There are 7 critical graphs for \(R(K_3, K_9-e) \), and at least 40 such graphs for \(R(K_3, K_{10}-e) \) [GoR2].

(i) The critical graphs are unique for: \(R(K_3, K_j-e) \) for \(l = 3 \) [Tr], 6 and 7 [Ra1], \(R(K_4-e, K_4-e) \) [FRS2], \(R(K_5-e, K_5-e) \) [Ra3] and \(R(K_4-e, K_7-e) \) [McR].

(j) All of the critical graphs for the cases \(R(K_4-e, K_4) \) [EHM1], \(R(K_4-e, K_5) \) and \(R(K_5-e, K_4) \) [DzFi1] are known, and there are 5, 13 and 6 of them, respectively. The unpublished value of \(R(K_4-e, K_6) \) [McN] was confirmed in [ShWR], where in addition all 24976 critical graphs were found.

(k) It is known that \(R(K_4, K_{12}-e) \geq 128 \) [Shao] by using one color of the \((4,4,4;127)\)-coloring defined in [HiIr].

(l) If \(m \leq n \) then \(R(K_{4-e, K_{m+n+1}}) \geq R(3, m+1) + R(3, n+1) + n \).

Study of the growth of \(R(K_4-e, K_n) \) and its relationship to \(R(K_3, K_n) \) [JiLSX].

(m) \(R(K_k-e, K_k-e) \leq 4R(K_{k-2}-e, K_{k-2}-e) - 2 \) [LiShen].

For a similar inequality for complete graphs see 2.3.b.

(n) Study of the cases \(R(K_m, K_n-K_{1,s}) \) and \(R(K_m-e, K_n-K_{1,s}) \), with several exact values for special parameters [ChaMR]. This study was extended to some cases involving \(R(K_m-K_3) \) [MonCR].

(o) The upper bounds from [ShZ1, ShZ2] are subsumed by a later article [Shi2].
(p) The upper bounds in [HZ3] were obtained by a reasoning generalizing the bounds for classical numbers in [HZ2]. Several other results from section 2.3 apply, though checking in which situation they do may require looking inside the proofs whether they still hold for $K_n - e$. The upper bounds in the manuscript [HTHZ1] (abbreviated as HT+ in the references for Table IIIa) are based on [HZ3].

3.2. Triangle versus other graphs

(a) $R(3, k) = \Theta(k^2/\log k)$ [Kim].

For more comments on asymptotics see section 2.3.3 and the items 3.2.p/q below.

(b) Explicit construction for $R(3, 3k+1) \geq 4R(3, k+1) - 3$, for all $k \geq 2$ [CleDa],

explicit construction for $R(3, 4k+1) \geq 6R(3, k+1) - 5$, for all $k \geq 1$ [ChCD].

(c) Explicit triangle-free graphs with independence k on $\Omega(k^{3/2})$ vertices [Alon2, CoPR].

(d) $R(K_3, K_7-2P_2) = R(K_3, K_7-3P_2) = 18$ [SchSch2].

(e) $R(K_3, K_3 + K_m) = R(K_3, K_3 + C_m) = 2m + 5$, for $m \geq 212$ [Zhou1].

(f) $R(K_3, K_3 + T_n) = 2n + 3$ for n-vertex trees T_n, for $n \geq 4$ [SonGQ],

$R(K_3, K_1 + nK_3) = 6n + 1$, for $n \geq 3$ [HaoLin].

(g) $R(K_3, G) = 2n(G) - 1$ for any connected G on at least 4 vertices and with at most $17n(G) + 15$ edges, in particular for $G = P_i$ and $G = C_i$, for all $i \geq 4$ [BEFRS1].

(h) $R(K_3, Q_n) = 2^{n+1} - 1$ for large n [GrMFSS], where Q_n is the n-dimensional hypercube.

For related publications on the general case of $R(K_m, Q_n)$ see [FizGMSS, ConFLS] and item 5.15.n.

(i) Relations between $R(3, k)$ and graphs with large $\chi(G)$ [BiFJ],

further detailed study of the relation between $R(3, k)$ and the chromatic gap [GySeT].

(j) $R(K_3, G) \leq 2e(G) + 1$ for any graph G without isolated vertices [Sid3, GoK].

(k) $R(K_3, G) \leq n(G) + e(G)$ for all G, a conjecture [Sid2].

(l) $R(K_3, G)$ for all connected G up to 9 vertices [BrBH1, BrBH2].

(m) $R(K_3, G)$ for all graphs G on 10 vertices [BrGS], except 10 cases (three of which, including $G = K_{10} - e$, were solved [GoR2]). See also several items in section 8.1.

(n) $R(nK_3, nK_3) = 5n$ for $n \geq 2$, $R(mK_3, nK_3) = 3m + 2n$ for $m \geq n \geq 2$ [BES], and

$R(c(nK_3), c(nK_3)) = 7n - 2$ for $n \geq 2$, where $c(nK_3)$ is any connected graph containing n vertex disjoint triangles [GySâ3].

(o) Formulas for $R(nK_3, mG)$ for all G of order 4 without isolates [Zeng].

(p) For every positive constant c, and for Δ and n large enough, there exists n-vertex graph G with $\Delta(G) \leq \Delta$ for which $R(K_3, G) > cn$ [Bra3].

(q) $R(K_3, K_{k,k}) = \Theta(k^2/\log k)$ [LinLi2].
(r) For \(R(K_3, K_n) \) see section 2, and for \(R(K_3, K_n - e) \) see section 3.1.

(s) Since \(B_1 = F_1 = C_3 = W_3 = K_3 \), other sections apply. See also [Boh, AjKS, BrBH1, BrBH2, FrLo, Fra1, Fra2, BiFJ, Gri, GySeT, Loc, KlaM1, LiZa1, RaK2, RaK3, RaK4, She1, She3, Spe2, Stat, Yu1].

3.3. Complete bipartite graphs

Note: This subsection gathers information on Ramsey numbers where specific bipartite graphs are avoided in edge colorings of \(K_n \) (as everywhere in this survey), in contrast to the often studied bipartite Ramsey numbers, which are not covered in this survey, where the edges of complete bipartite graphs \(K_{n,m} \) are colored.

3.3.1. Numbers

The following Tables IVa and IVb gather information mostly from the surveys by Lortz and Mengersen [LoM3, LoM4]. All cases involving \(K_{1,2} = P_3 \) are solved by a formula for \(R(P_3, G) \), which holds for all isolate-free graphs \(G \), derived in [ChH2]. All star versus star numbers are given below in the item 3.3.2.a and in section 5.5.

<table>
<thead>
<tr>
<th>(p, q)</th>
<th>(m, n)</th>
<th>1, 2</th>
<th>1, 3</th>
<th>1, 4</th>
<th>1, 5</th>
<th>1, 6</th>
<th>2, 2</th>
<th>2, 3</th>
<th>2, 4</th>
<th>2, 5</th>
<th>3, 3</th>
<th>3, 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2, 2</td>
<td>ChH2</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>6</td>
<td>ChH2</td>
<td>FRS4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2, 3</td>
<td>ChH2</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>8</td>
<td>10</td>
<td></td>
<td>Bu4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2, 4</td>
<td>ChH2</td>
<td>6</td>
<td>8</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td>9</td>
<td>12</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2, 5</td>
<td>ChH2</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>14</td>
<td>11</td>
<td>13</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2, 6</td>
<td>ChH2</td>
<td>8</td>
<td>10</td>
<td>11</td>
<td>14</td>
<td>15</td>
<td>12</td>
<td>14</td>
<td>17</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3, 3</td>
<td>ChH2</td>
<td>7</td>
<td>8</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>11</td>
<td>13</td>
<td>16</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3, 4</td>
<td>ChH2</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>14</td>
<td>11</td>
<td>14</td>
<td>17</td>
<td></td>
<td></td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>3, 5</td>
<td>ChH2</td>
<td>9</td>
<td>10</td>
<td>13</td>
<td>14</td>
<td>17</td>
<td>14</td>
<td>17</td>
<td>19-20</td>
<td></td>
<td>21-24</td>
<td>25-29</td>
</tr>
</tbody>
</table>

Table IVa. Ramsey numbers \(R(K_m, n, K_p, q) \); unpublished result marked with *, \(Sh1+ \) abbreviates ShaXBP, \(R(K_{3,5}, K_{2,5}) \geq 21 \) is in [ShaoWX].
Table IVb. Known Ramsey numbers $R(K_{2, n}, K_{2, m})$ for $6 \leq n \leq 11$, $2 \leq m \leq 11$; unpublished results improving over [LoM3] are marked with a *.

(a) The next few easily computed values of $R(K_{1, n}, K_{2, 2})$, extending data in the first row of Table IVa, are 13, 14, 21 and 22 for n equal to 9, 10, 16 and 17, respectively. See function $f(n)$ in 3.3.2.c of the next subsection below.

(b) Note that for graph G to avoid $K_{1, n}$ is equivalent to $\delta(G) < n$. For general monotonicity we have, for example, that rows of Table IVb are nondecreasing, but we do not know if they are strictly increasing.

(c) Formula for $R(K_{1, n}, K_{1, k_1}, K_{1, k_2}, \ldots, K_{1, m})$ for m large enough, in particular for $t=1$, $k_1=2$ with $n \leq 5$, $m \geq 3$ and $n=6$, $m \geq 11$, for example $R(K_{1, 5}, K_{2, 7}) = 15$ [Stev].

(d) The values and bounds for higher cases of $R(K_{2, 2}, K_{2, n})$ are 20, 22, 22, 24, 25, 26, 27/28, 28/29, 30 and 32 for $12 \leq n \leq 21$, respectively. All of them were given in [HaMe4], except those for $n=14, 15$ and 18, which were obtained in [Dyb1]. More exact values for prime powers $\lceil \sqrt{n} \rceil$ and $\lceil \sqrt{n} \rceil + 1$ can be found in [HaMe4].

(e) The known values of $R(K_{2, 2}, K_{3, n})$ are 15, 16, 17, 20 and 22 for $6 \leq n \leq 10$ [Lortz], and $R(K_{2, 2}, K_{3, 12}) = 24$ [Shao]. See Tables IVa and IVb for the smaller cases, and [HaMe4] for upper bounds and values for some prime powers $\lceil \sqrt{n} \rceil$.

(f) $R(K_{2, n}, K_{2, n})$ is equal to 46, 50, 54, 57 and 62 for $12 \leq n \leq 16$, respectively. The first open diagonal case is $65 \leq R(K_{2, 17}, K_{2, 17}) \leq 66$ [EHM2]. The status of all higher cases for $n < 30$ is listed in [LoM1].

(g) $R(K_{1, 4}, K_{2, 4}) = R(K_{1, 5}, K_{4, 4}) = 13$ [ShaXPB]
$R(K_{1, 4}, K_{1, 2, 3}) = R(K_{1, 4}, K_{2, 2, 2}) = 11$ [GuSL]
$R(K_{1, 7}, K_{2, 3}) = 13$ [Par4, Par6]
3.3.2. General results

(a) \(R(K_{1,n}, K_{1,m}) = n + m - \varepsilon \), where \(\varepsilon = 1 \) if both \(n \) and \(m \) are even and \(\varepsilon = 0 \) otherwise [Har1]. It is also a special case of multicolor numbers for stars obtained in [BuRo1].

(b) \(R(K_{1,3}, K_{m,n}) = m + n + 2 \) for \(m, n \geq 1 \) [HaMe3].

(c) \(R(K_{1,n}, K_{2,2}) = f(n) \leq n + \lfloor \sqrt[3]{n} \rfloor + 1 \), with \(f(q^2) = q^2 + q + 1 \) and \(f(q^2 + 1) = q^2 + q + 2 \) for every \(q \) which is a prime power [Par3]. Furthermore, \(f(n) \geq n + \sqrt{n} - 6n^{11/40} \) [BEFRS4]. For more bounds on \(f(n) \) see [Par5, Chen, ChenJ, MoCa, WuSZR, ZhaBC1]. Summary of what is known and further progress are reported in two 2017 papers [ZhaCC2, ZhaCC3]. With \(f(22) = 28 \) obtained in [SunSh], the values of \(f(n) \) are known for all \(n \leq 22 \). Also note item 4.3.e.

(d) \(R(K_{1,n+1}, K_{2,2}) \leq R(K_{1,n}, K_{2,2}) + 2 \) [Chen].

(e) \(R(K_{2,\lambda+1}, K_{1,v-k+1}) \) is either \(v + 1 \) or \(v + 2 \) if there exists a \((v, k, \lambda)\)-difference set. This and other related results are presented in [Par4, Par5]. See also [GoCM, GuLi].

(f) Formulas and bounds on \(R(K_{2,2}, K_{2,n}) \), and bounds on \(R(K_{2,2}, K_{m,n}) \). In particular, we have \(R(K_{2,2}, K_{3,k}) = n + k\sqrt{n} + c \), for \(k = 2, 3, 4 \), some prime powers \(\lfloor \sqrt[3]{n} \rfloor \) and \(\lfloor \sqrt{n} \rfloor + 1 \), and some \(-1 \leq c \leq 3\) [HaMe4]. An improvement of the latter for some special cases of \(n \) was obtained in [Dyb1]. Asymptotics of \(R(K_{2,2}, K_{n,n}) \) is discussed in [LiuLi2], where in particular the lower bound \(R(K_{2,2}, K_{n,n}) = \Omega(n^{3/2}/\log n) \) is presented. See also item 4.2.d.

(g) \(R(K_{2,n}, K_{2,n}) \leq 4n - 2 \) for all \(n \geq 2 \), and the equality holds if and only if there exists a strongly regular \((4n - 3, 2n - 2, n - 2, n - 1)\)-graph [EHM2].

(h) Conjecture that \(4n - 3 \leq R(K_{2,n}, K_{2,n}) \leq 4n - 2 \) for all \(n \geq 2 \). Many special cases are solved and several others are discussed in [LoM1].

(i) \(R(K_{2,n-1}, K_{2,n}) \leq 4n - 4 \) for all \(n \geq 3 \), with the equality if there exists a symmetric Hadamard matrix of order \(4n - 4 \). There are only 4 cases in which the equality is still
open for $3 \leq n \leq 58$, namely 30, 40, 44 and 48 [LoM1].

(j) \(R(K_{2,n-s}, K_{2,n}) \leq 4n - 2s - 3 \) for \(s \geq 2 \) and \(n \geq s + 2 \), with the equality in many cases involving Hadamard matrices or strongly regular graphs. Asymptotics of \(R(K_{2,n}, K_{2,m}) \) for \(m \gg n \) [LoM3].

(k) Some algebraic lower and upper bounds on \(R(K_{s,n}, K_{t,m}) \) for various combinations of \(n, m \) and \(1 \leq t, s \leq 3 \) [BaiLi, BaLX]. A general lower bound \(R(K_{m,n}) \geq 2^m (n - n^{0.525}) \) for large \(n \) [Dong].

(l) Upper bounds for \(R(K_{2,2}, K_{m,n}) \) for \(m, n \geq 2 \), with several cases identified for which the equality holds. Special focus on the cases for \(m = 2 \) [HaMe4].

(m) Let \(G \) be any isolate-free graph with \(p \) vertices and \(q \geq 2 \) edges. Then it holds that \(R(K_{2,2}, G) \leq 2q + 1 \), with the equality for \(G = qK_2 \) or \(G = K_3 \), and \(R(K_{2,2}, G) \leq 2p + q - 2 \). Some generalizations to \(R(K_{2,k}, G) \) [JRB].

(n) Bounds for the numbers of the form \(R(K_{k,n}, K_{k,m}) \), specially for fixed \(k \) and close to the diagonal cases. Asymptotics of \(R(K_{3,n}, K_{3,m}) \) for \(m \gg n \) [LoM2].

(o) \(R(nK_{1,3}, mK_{1,3}) = 4n + m - 1 \) for \(n \geq m \geq 1, \ n \geq 2 \) [BES].

(p) Asymptotics for \(K_{2,m} \) versus \(K_n \) [CaLRZ]. Upper bound asymptotics for \(K_{k,m} \) versus \(K_n \) [LiZa1] and for some bipartite graphs \(K_n \) [JiSa].

(q) Special two-color cases apply in the study of asymptotics for multicolor Ramsey numbers for complete bipartite graphs [ChGra1].
4. Two Colors: Numbers Involving Cycles

4.1. Cycles, cycles versus paths and stars

Note: The paper Ramsey Numbers Involving Cycles [Ra4] is based on the revision #12 of this survey. It collects and comments on the results involving cycles versus any graphs, in two or more colors. It contains some more details than this survey, but only until 2009.

Cycles

(a) \(R(C_3, C_3) = 6 \) [GG, Bush],
 \(R(C_4, C_4) = 6 \) [ChH1].
(b) \(R(C_3, C_n) = 2n - 1 \) for \(n \geq 4 \), \(R(C_4, C_n) = n + 1 \) for \(n \geq 6 \),
 \(R(C_5, C_n) = 2n - 1 \) for \(n \geq 5 \), and \(R(C_6, C_6) = 8 \) [ChaS].
(c) Result obtained independently in [Ros1] and [FS1], a new simpler proof in [KáRos]:
 \[
 R(C_m, C_n) = \begin{cases}
 2n - 1 & \text{for } 3 \leq m \leq n, \ m \text{ odd, } (m, n) \neq (3, 3), \\
 n - 1 + m / 2 & \text{for } 4 \leq m \leq n, \ m \text{ and } n \text{ even, } (m, n) \neq (4, 4), \\
 \max\{ n - 1 + m / 2, 2m - 1 \} & \text{for } 4 \leq m < n, \ m \text{ even and } n \text{ odd.}
 \end{cases}
 \]
(d) Characterization of all graphs critical for \(R(C_4, C_n) \) [WuSR].
(e) \(R(mC_3, nC_3) = 3n + 2m \) for \(n \geq m \geq 1, \ n \geq 2 \) [BES].
(f) \(R(mC_4, nC_4) = 2n + 4m - 1 \) for \(m \geq n \geq 1, \ (n, m) \neq (1, 1) \) [LiWa1].
(g) Formulas for \(R(mC_4, nC_5) \) [LiWa2].
(h) Formulas and bounds for \(R(nc_m, nc_m) \) [Den2, Biel1].
(i) Study of \(R(S_1, S_2) \), where \(S_1 \) and \(S_2 \) are sets of cycles [Hans].
 A conjecture generalizing 4.1.c stated in [Hans] was proved in [WaCh2].
(j) Unions of cycles, formulas and bounds for various cases including diagonal, different lengths, different multiplicities [MiSa, Den2], powers of cycles [AllBS], disjoint cycles versus \(K_n \) [Fuj2], and their relation to 2-local Ramsey numbers [Biel1].

Cycles versus paths

Result obtained by Faudree, Lawrence, Parsons and Schelp in 1974 [FLPS]:

\[
R(C_m, P_n) = \begin{cases}
2n - 1 & \text{for } 3 \leq m \leq n, \ m \text{ odd,} \\
n - 1 + m / 2 & \text{for } 4 \leq m \leq n, \ m \text{ even,} \\
\max\{ m - 1 + \lfloor n / 2 \rfloor, 2n - 1 \} & \text{for } 2 \leq n \leq m, \ m \text{ odd,} \\
m - 1 + \lceil n / 2 \rceil & \text{for } 2 \leq n \leq m, \ m \text{ even.}
\end{cases}
\]

For all \(n \) and \(m \) it holds that \(R(P_m, P_n) \leq R(C_m, P_n) \leq R(C_m, C_n) \). Each of the two inequalities can become an equality, and, as derived in [FLPS], all four possible combinations of
< and = hold for an infinite number of pairs \((m, n)\). For example, if both \(m\) and \(n\) are even, and at least one of them is greater than 4, then \(R(P_m, P_n) = R(C_m, P_n) = R(C_m, C_n)\). For related generalizations see [BEFRS2].

Cycles versus stars

Only partial results for \(C_m\) versus stars are known. Lawrence [La1] settled the cases for odd \(m\) and for long cycles (see also [Clark, Par6]). The case for short even cycles is open, and it is related in particular to bipartite graphs. Partial results for \(C_4 = K_{2,2}\) are pointed to in subsections 3.3.1 and 3.3.2, especially in the item 3.3.2.c. The most known general exact result [La1] is:

\[
R(C_m, K_{1,n}) = \begin{cases}
2n + 1 & \text{for odd } m \leq 2n + 1, \\
m & \text{for } m \geq 2n.
\end{cases}
\]

Some new cases for even \(m\) not too small with respect to \(n\) were settled in 2016, in particular the exact values of \(R(C_6, K_{1,n})\) for all \(n \leq 11\) were completed in [ZhaBC5]. The equality \(R(C_6, K_{1,12}) = 17\) was obtained in [SunSh]. The progress on asymptotics for large even \(m\), and exact values for large even \(m\) and \(n\) not too large were obtained in [AllŁPZ].

4.2. Cycles versus complete graphs

Since 1976, it was conjectured that \(R(C_n, K_m) = (n-1)(m-1) + 1\) for all \(n \geq m \geq 3\), except \(n = m = 3\) [FS4, EFRS2]. Various parts of this conjecture were proved as follows: for \(n \geq m^2 - 2\) [BoEr], for \(n > 3 = m\) [ChaS], for \(n \geq 4 = m\) [YHZ1], for \(n \geq 5 = m\) [BoIY+], for \(n \geq 6 = m\) [Sch1], for \(n \geq m \geq 7\) with \(n \geq m(m-2)\) [Sch1], for \(n \geq 7 = m\) [ChenCZ1], and for \(n \geq 4m + 2\), \(m \geq 3\) [Nik]. Open conjectured cases are marked in Table V by "conj."

In 2019, Keevash, Long and Skokan [KeeLS] proved the above conjecture for \(n \geq C \log m / \log\log m\) for some absolute constant \(C \geq 1\), and furthermore that for any \(\varepsilon > 0\) and \(n > n(\varepsilon)\), for the lower bound it holds that \(R(C_n, K_m) \geq m \log m \gg (n-1)(m-1) + 1\) for all \(3 \leq n \leq (1-\varepsilon)\log m / \log\log m\).

(a) The first column in Table V gives data from the first row in Table I.

(b) Joint credit [He2/JR4] in Table V refers to two cases in which Hendry [He2] announced the values without presenting the proofs, which later were given in [JR4]. The special cases of \(R(C_6, K_5) = 21\) [JR2] and \(R(C_7, K_5) = 25\) were solved independently in [YHZ2] and [BoIY+]. The double pointer [JaBa/ChenCZ1] refers to two independent papers, similarly as [JaAl/ZZ3], except that in the latter case [ZZ3] refers to an unpublished manuscript. For joint credits marked in Table V with "−", the first reference is for the lower bound and the second for the upper bound.

(c) Erdős et al. [EFRS2] asked what is the minimum value of \(R(C_n, K_m)\) for fixed \(m\), and they suggested that it might be possible that \(R(C_n, K_m)\) first decreases monotonically, then attains a unique minimum, then increases monotonically with \(n\). If so, then the
results in [KeeLS] stated above imply that this transition of behavior happens at
\(n = \Theta(\log m / \log \log m) \).

<table>
<thead>
<tr>
<th></th>
<th>(C_3)</th>
<th>(C_4)</th>
<th>(C_5)</th>
<th>(C_6)</th>
<th>(C_7)</th>
<th>(C_8)</th>
<th>(C_9)</th>
<th>(\ldots)</th>
<th>(C_n) for (n \geq m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K_3)</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td>15</td>
<td>17</td>
<td>\ldots</td>
<td>2n – 1</td>
</tr>
<tr>
<td></td>
<td>GG-Bush</td>
<td>ChaS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ChaS</td>
</tr>
<tr>
<td>(K_4)</td>
<td>9</td>
<td>10</td>
<td>13</td>
<td>16</td>
<td>19</td>
<td>22</td>
<td>25</td>
<td>\ldots</td>
<td>3n – 2</td>
</tr>
<tr>
<td></td>
<td>GG</td>
<td>ChH2</td>
<td>He4/JR4</td>
<td>JR2</td>
<td>YHZ1</td>
<td></td>
<td></td>
<td></td>
<td>YHZ1</td>
</tr>
<tr>
<td>(K_5)</td>
<td>14</td>
<td>14</td>
<td>17</td>
<td>21</td>
<td>25</td>
<td>29</td>
<td>33</td>
<td>\ldots</td>
<td>4n – 3</td>
</tr>
<tr>
<td></td>
<td>GG</td>
<td>Clan</td>
<td>He2/JR4</td>
<td>JR2</td>
<td>YHZ2</td>
<td>YolY+</td>
<td></td>
<td>\ldots</td>
<td>YolY+</td>
</tr>
<tr>
<td>(K_6)</td>
<td>18</td>
<td>18</td>
<td>21</td>
<td>26</td>
<td>31</td>
<td>36</td>
<td>41</td>
<td>\ldots</td>
<td>5n – 4</td>
</tr>
<tr>
<td></td>
<td>Kéry</td>
<td>Ex2-RoJa1</td>
<td>JR5</td>
<td>Schi1</td>
<td></td>
<td></td>
<td></td>
<td>\ldots</td>
<td>Schi1</td>
</tr>
<tr>
<td>(K_7)</td>
<td>23</td>
<td>22</td>
<td>25</td>
<td>31</td>
<td>37</td>
<td>43</td>
<td>49</td>
<td>\ldots</td>
<td>6n – 5</td>
</tr>
<tr>
<td></td>
<td>Ka2-GrY</td>
<td>RaT-JR1</td>
<td>Schi2</td>
<td>CheCZN</td>
<td>CheCZN</td>
<td>JaBa/Ch+</td>
<td>Ch+</td>
<td>\ldots</td>
<td>Ch+</td>
</tr>
<tr>
<td>(K_8)</td>
<td>28</td>
<td>26</td>
<td>29</td>
<td>36</td>
<td>43</td>
<td>50</td>
<td>57</td>
<td>\ldots</td>
<td>7n – 6</td>
</tr>
<tr>
<td></td>
<td>GR-McZ</td>
<td>RaT</td>
<td>LidP</td>
<td>ChenCX</td>
<td>ChenCZ1</td>
<td>JaAl/ZZ3</td>
<td>BatJA</td>
<td>\ldots</td>
<td>conj.</td>
</tr>
<tr>
<td>(K_9)</td>
<td>36</td>
<td>30</td>
<td>33-36</td>
<td>41</td>
<td>49-58</td>
<td>65</td>
<td>\ldots</td>
<td>\ldots</td>
<td>8n – 7</td>
</tr>
<tr>
<td></td>
<td>Ka2-GR</td>
<td>RaT-LalR</td>
<td>LidP</td>
<td>LidP</td>
<td></td>
<td></td>
<td></td>
<td>\ldots</td>
<td>conj.</td>
</tr>
<tr>
<td>(K_{10})</td>
<td>40-42</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9n – 8</td>
</tr>
<tr>
<td></td>
<td>Ex5-GoR1</td>
<td>LalR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>conj.</td>
</tr>
<tr>
<td>(K_{11})</td>
<td>47-50</td>
<td>40-44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10n – 9</td>
</tr>
<tr>
<td></td>
<td>Ex20-GoR1</td>
<td>VO-LalR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>\ldots</td>
<td>conj.</td>
</tr>
</tbody>
</table>

Table V. Known Ramsey numbers \(R(C_n, K_m) \);
Ch+ abbreviates ChenCZ1, for comments on joint credits see 4.2.b.

(d) There exist constants \(c_1, c_2 > 0 \) such that
\(c_1(m^{3/2}/\log m) \leq R(C_4, K_m) \leq c_2(m/\log m)^2. \)
The lower bound, obtained by Bohman and Keevash ([BohK1] in 2010, see also 4.2.j/k below) improved over an almost 40 years old bound \(c(m/\log m)^{3/2} \) by Spencer [Spe2],
using the probabilistic method. The upper bound was reported in a paper by Caro, Li, Rousseau and Zhang [CaLRZ], who in turn give the credit to an unpublished work by Szemerédi from 1980.
A refined upper bound, \(R(C_4, K_m) \leq (1 + o(1))(m/\log m)^2 \), was presented by Liu and Li [LiuLi2] in 2021.

(e) Erdős, in 1981, in the Ramsey problems section of the paper [Erd3] formulated a challenge by asking for a proof of
\(R(C_4, K_m) < m^2 - \varepsilon \), for some \(\varepsilon > 0 \). To date, no such proof is known.

(f) Enumeration of all \((C_n, K_4) \)-graphs for \(n \leq 7 \) [JaNR].

(g) A theta graph \(\theta_n \) is obtained from the cycle \(C_n \) by adding one edge between some of its nonadjacent vertices. Summary of what is known about \(R(\theta_n, K_k) \), and an additional result for \(k = 6 \), are collected in [BaBJ].
(h) Let $C_{\leq n}$ be the set of cycles of length at most n, and let the *girth* $g(G)$ be the length of the shortest cycle in graph G. Probabilistic lower bound asymptotics for $R(C_{\leq n}, K_m)$ [Spe2] currently is the same as for $R(C_n, K_m)$, for fixed n. However, there are clear differences already for girth 4 and 5 and small m: Backelin [Back1, Back2] found that $R(C_{\leq 4}, K_m) = 6, 8, 11, 15, 18$ for $m = 3, 4, 5, 6, 7$, and that $R(C_{\leq 5}, K_m) = 5, 8, 10, 13, 15$, also for $m = 3, 4, 5, 6, 7$, respectively.

(i) Erdős et al. [EFRS2] proved various facts about $R(C_{\leq n}, K_m)$, and in particular that it is equal to $2m-1$ for $n \geq 2m-1$, and to $2m$ for $m < n < 2m-1$. The upper asymptotics for $R(C_{\leq n}, K_m)$ is implied in the study of independence number in graphs with odd girth n [Den1]. The following close to the diagonal exact values were obtained in [WuSL]: $R(C_{\leq n}, K_n)$ is equal to $2n$ and $2n+1$ for odd n and even n, respectively, and $R(C_{\leq n}, K_{n+1}) = 2n+3$ for odd $n \geq 5$ and even $n \geq 16$.

(j) $R(C_{\geq n}, K_{m_1}, \ldots, m_k) = (k-1)(n-1) + m_1$ for $m_1 \leq \cdots \leq m_k$, $5m_{k-1} + 3m_k \leq n$ [PoSu1]. The same equality holds for $R(C_n, K_{m_1}, \ldots, m_k)$ for large m_i's and very large n [PoSu2].

(k) The best known lower bound asymptotics $R(C_n, K_m) = \Omega(m^{(n-1)/(n-2)}/\log m)$, for fixed n and large m, was obtained by Bohman and Keevash [BohK1]. Note that for $n = 4$ it gives the lower bound in 4.2.d above. See also [Spe2, FS4, AlRö] for previous results.

(l) Upper bound asymptotics [BoEr, FS4, EFRS2, CaLRZ, Sud1, LiZa2, AlRö, DoLL2].

4.3. Cycles versus wheels

Note: In this survey the wheel graph $W_n = K_1 + C_{n-1}$ has n vertices, while some authors use the definition $W_n = K_1 + C_n$ with $n+1$ vertices. For the cases involving $W_3 = C_3$ versus C_m see sections 3.2 and 4.2.

(a) $R(C_3, W_n) = 2n-1$ for $n \geq 6$ [BuE3]. All critical graphs have been enumerated. The critical graphs are unique for $n = 3, 5$, and for no other n [RaJi].

(b) $R(C_4, W_n) = 14, 16, 17$ for $n = 11, 12, 13$, respectively [Tse1], $R(C_4, W_n) = 18, 19, 20, 21$ for $n = 14, 15, 16, 17$, respectively [DyDz2], and several higher values and bounds, including 9 cases of n between 18 and 44 [WuSR, WuSZR].

(c) $R(C_4, W_n) \leq n + \lceil (n-1)/3 \rceil$ for $n \geq 7$ [SuBUB], which was improved to $R(C_4, W_n) \leq n + \sqrt{n-2} + 1$ for $n \geq 11$ [DyDz2].

(d) $R(C_4, W_{q^2+1}) = q^2 + q + 1$ for prime power $q \geq 4$ [DyDz2], exact values of $R(C_4, W_{q^2+2})$ and $R(C_4, W_{q^2-i})$ for special q and small i [WuSZR].

(e) $R(C_4, W_n) = R(C_4, K_{1,n-1})$ for $n \geq 7$ [ZhaBC1, ZhaBC2].

(f) Tight bounds on $R(C_4, W_n)$ for $46 \leq n \leq 93$ [NoBa].

(g) $R(C_7, W_n) = 2n-1$ for $n = 9, 10, 11$ [ZhaZZ].
The range of \(n \) was extended in [ZhaZC].

(ii) \(R(W_n, C_m) = 3m - 2 \) for even \(n \geq 4 \) with \(m \geq n - 1 \), \(m \neq 3 \), was conjectured by Surahmat et al. [SuBT1, SuBT2, Sur]. Parts of this conjecture were proved in [SuBT1, ZhaCC1, Shi5, ZhaBC2, ZhaZC], and the proof was completed in [ChenCNZ].

(j) Conjecture that \(R(W_n, C_m) = 2m - 1 \) for odd \(n \geq 3 \) and all \(m \geq 5 \) with \(m > n \) [Sur]. It was proved for \(2m \geq 5n - 7 \) [SuBT1], and improved to \(2m \geq 3n - 1 \) in [ChenCMN]. For further progress see also [Shi5, ZhaBC2, Sanh, RaeZ, Alw].

(k) Observe apparently four distinct situations with respect to parity of \(m \) and \(n \).

(l) Cycles are Ramsey unsaturated for some wheels [AliSur], see also comments on [BaLS] in item 5.16.e.

(m) Study of cycles versus generalized wheels \(W_{k,n} \) [Sur, SuBTB, Shi5, ZhaBC2, BieDa].

Table VI. Ramsey numbers \(R(W_n, C_m) \) for \(n \leq 10 \), \(m \leq 8 \); Ch1, Ch2, Z1, Z2 abbreviate ChenCMN, ChenCNZ, ZhaBC5, ZhaZZ, respectively.

\[
\begin{array}{cccccccc}
W_4 & C_3 & C_4 & C_5 & C_6 & C_7 & C_8 & C_m \\
W_5 & 11 & 9 & 10 & 13 & 16 & 19 & 22 & 3m - 2, \ m \geq 4 \\
W_6 & 11 & 9 & 10 & 13 & 16 & 19 & 22 & 3m - 2, \ m \geq 4 \\
W_7 & 11 & 13 & 9 & 13 & 11 & 13 & 2m - 1, \ m \geq 5 \\
W_8 & 11 & 15 & 13 & 15 & 16 & 19 & 22 & 3m - 2, \ m \geq 4 \\
W_9 & 17 & 12 & 13 & 17 & 13 & 17 & 2m - 1, \ m \geq 13 \\
W_{10} & 19 & 13 & 16 & 19 & 22 & 3m - 2, \ m \geq 9 \\
W_n & 2n - 1 & cycles \\
\end{array}
\]
4.4. Cycles versus books

<table>
<thead>
<tr>
<th>B_2</th>
<th>C_3</th>
<th>C_4</th>
<th>C_5</th>
<th>C_6</th>
<th>C_7</th>
<th>C_8</th>
<th>C_9</th>
<th>C_{10}</th>
<th>C_{11}</th>
<th>C_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fal6</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td>17</td>
<td>19</td>
<td>21</td>
<td>2m - 1</td>
<td>m \geq 4</td>
<td></td>
</tr>
</tbody>
</table>
| R
| Si | Fal8 | Cal | Fal8 | ... | ... | Fal8 | ... | Fal8 | ... | |
| B_3 | 9 | 9 | 10 | 11 | 13 | 15 | 17 | 19 | 21 | 2m - 1 |
| RoS1 | Fal6 | Fal8 | JR2 | Shi5 | Fal8 | ... | ... | ... |
| B_4 | 11 | 11 | 12 | 13 | 15 | 17 | 19 | 2m - 1 | m \geq 7 |
| RoS1 | Fal6 | Fal8 | Shi5 | Shi5 | Fal8 | ... | ... | Fal8 |
| B_5 | 13 | 12 | 13 | 15 | 17 | 19 | 21 | 2m - 1 | m \geq 8 |
| RoS1 | Fal6 | Fal8 | Shi5 | Shi5 | Fal8 | ... | ... | Fal8 |
| B_6 | 15 | 15 | 15 | 17 | 18 | 21 | 2m - 1 | m \geq 11 |
| RoS1 | Fal6 | Fal8 | Shi5 | Shi5 | Shi5 | ... | ... | Fal8 |
| B_7 | 17 | 16 | 16 | 19 | 20 | 21 | 2m - 1 | m \geq 13 |
| RoS1 | Fal6 | Fal8 | Shi5 | Shi5 | Shi5 | ... | ... | Shi5 |
| B_8 | 19 | 17 | 19 | 22 | 23 | 26 | 2m - 1 | m \geq 14 |
| RoS1 | Fal8 | Shi5 | Shi5 | Shi5 | Shi5 | ... | ... | Shi5 |
| B_9 | 21 | 21 | 25 | 28 | 2m - 1 | m \geq 17 |
| RoS1 | Fal8 | Shi5 | Shi5 | Shi5 | Shi5 | ... | ... | Shi5 |
| B_{10} | 23 | 19 | 23 | 2m - 1 | m \geq 19 |
| RoS1 | Shi5 | Shi5 | Shi5 | Shi5 | Shi5 | ... | ... | Shi5 |
| B_n for | 2n + 3 | cycles |
| n \geq 2 | some | n \geq 4 | n \geq 15 | n \geq 23 | n \geq 31 | large |
| RoS1 | Fal8 | Fal8 | Fal8 | Fal8 | Fal8 | books |

Table VII. Ramsey numbers R(B_n, C_m) for n, m \leq 11; et al. abbreviations: Fal/FRS, Cal/ChRSPS, Sal1/ShaxBP, Sal2/ShaxBP.

(a) For the cases of B_1 = K_3 versus C_m see section 4.2.
The exact values for the cases (3, 7), (4, 8), (4, 9), (5, 10), (5, 11) were obtained independently in [Sal1, Sal2]/[ShaXB, ShaXP] using computer algorithms.

(b) R(C_4, B_{12}) = 21 [Tse1], R(C_4, B_{13}) = 22 , R(C_4, B_{14}) = 24 [Tse2].
R(C_4, B_8) = 17 [Tse2] (it was reported incorrectly in [FRS7] to be 16).

(c) q^2 + q + 2 \leq R(C_4, B_q^\geq q + 1) \leq q^2 + q + 4 for prime power q [FRS7]. B_n is a subgraph of B_{n+1}, hence likely R(C_4, B_n) = n + O(\sqrt{n}) (compare to R(C_4, K_{2,n}) in section 3.3).

(d) R(B_n, C_m) = 2n + 3 for odd m \geq 5 with n \geq 4m - 13 [FRS9].

(e) R(B_n, C_m) = 2m - 1 for n \geq 1, m \geq 2n + 2 [FRS9]. The range of m was extended to m \geq 2n - 1 \geq 7 in [ShaXB], and to m > (6n + 7)/4 in [Shi5].
(f) Close to the diagonal we have $R(B_n, C_n) \geq 3n - 2$ and $R(B_{n-1}, C_n) \geq 3n - 4$ for $n \geq 3$ [ShaXB], and for all sufficiently large n it holds [LinP]:

$$R(B_n, C_m) = \begin{cases}
3m - 2 & \text{for } 9n/10 \leq m \leq n, \\
3n - 2 & \text{if } m = n + 1, \\
3n & \text{for } n + 2 \leq m \leq 10n/9.
\end{cases}$$

(g) More theorems on $R(B_n, C_m)$ in [FRS7, FRS9, NiRo4, Zhou1].

(h) Cycles versus some generalized books $B_n^{(k)} = nK_1 + K_k$ [Shi5]. Exact asymptotics for odd cycles versus $B_n^{(k)}$ [LiuLi1], and for general cases close to the diagonal [LinP].

4.5. Cycles versus other graphs

(a) C_4 versus stars [Par3, Par4, Par5, BEFRS4, Chen, ChenJ, GoMC, MoCa, WuSZR, SunSh]. For several exact results see $K_{2,2}$ in Tables IVa and IVb, and for general results see items 3.3.1.a, 3.3.2.c, 3.3.2.d and 4.3.e.

(b) C_4 versus unions of stars [HaABS, Has, HaJu]

(c) C_4 versus trees [EFRS4, Bu7, BEFRS4, Chen]

(d) C_4 versus all graphs on six vertices [JR3]

(e) C_4 versus various types of complete bipartite graphs, see [LiuLi2] and section 3.3.

(f) $R(C_4, G) \leq 2q + 1$ for any isolate-free graph G with $q \geq 2$ edges, and the equality holds for $G = qK_2$ or $G = K_3$ [RoJa2, JRB].

(g) $R(C_4, G) \leq 2p + q - 2$ for any isolate-free graph G on p vertices and $q \geq 2$ edges [JRB].

(h) $R(C_5, K_6 - e) = 17$ [JR4]

(i) $R(C_5, K_4 - e) = 9$ [ChRSPS]

(j) C_5 versus all graphs on six vertices [JR4]

(k) $R(C_6, K_5 - e) = 17$ [JR2]

(l) C_6 versus all stars up to $K_{1,12}$ [ZhaBC5, SunSh]

4.5. Cycles versus other graphs

(a) C_4 versus stars [Par3, Par4, Par5, BEFRS4, Chen, ChenJ, GoMC, MoCa, WuSZR, SunSh]. For several exact results see $K_{2,2}$ in Tables IVa and IVb, and for general results see items 3.3.1.a, 3.3.2.c, 3.3.2.d and 4.3.e.

(b) C_4 versus unions of stars [HaABS, Has, HaJu]

(c) C_4 versus trees [EFRS4, Bu7, BEFRS4, Chen]

(d) C_4 versus all graphs on six vertices [JR3]

(e) C_4 versus various types of complete bipartite graphs, see [LiuLi2] and section 3.3.

(f) $R(C_4, G) \leq 2q + 1$ for any isolate-free graph G with $q \geq 2$ edges, and the equality holds for $G = qK_2$ or $G = K_3$ [RoJa2, JRB].

(g) $R(C_4, G) \leq 2p + q - 2$ for any isolate-free graph G on p vertices and $q \geq 2$ edges [JRB].

(h) $R(C_5, K_6 - e) = 17$ [JR4]

(i) $R(C_5, K_4 - e) = 9$ [ChRSPS]

(j) C_5 versus all graphs on six vertices [JR4]

(k) $R(C_6, K_5 - e) = 17$ [JR2]

(l) C_6 versus all stars up to $K_{1,12}$ [ZhaBC5, SunSh]

4.5. Cycles versus other graphs

(a) C_4 versus stars [Par3, Par4, Par5, BEFRS4, Chen, ChenJ, GoMC, MoCa, WuSZR, SunSh]. For several exact results see $K_{2,2}$ in Tables IVa and IVb, and for general results see items 3.3.1.a, 3.3.2.c, 3.3.2.d and 4.3.e.

(b) C_4 versus unions of stars [HaABS, Has, HaJu]

(c) C_4 versus trees [EFRS4, Bu7, BEFRS4, Chen]

(d) C_4 versus all graphs on six vertices [JR3]

(e) C_4 versus various types of complete bipartite graphs, see [LiuLi2] and section 3.3.

(f) $R(C_4, G) \leq 2q + 1$ for any isolate-free graph G with $q \geq 2$ edges, and the equality holds for $G = qK_2$ or $G = K_3$ [RoJa2, JRB].

(g) $R(C_4, G) \leq 2p + q - 2$ for any isolate-free graph G on p vertices and $q \geq 2$ edges [JRB].

(h) $R(C_5, K_6 - e) = 17$ [JR4]

(i) $R(C_5, K_4 - e) = 9$ [ChRSPS]

(j) C_5 versus all graphs on six vertices [JR4]

(k) $R(C_6, K_5 - e) = 17$ [JR2]

(l) C_6 versus all stars up to $K_{1,12}$ [ZhaBC5, SunSh]

4.5. Cycles versus other graphs

(a) C_4 versus stars [Par3, Par4, Par5, BEFRS4, Chen, ChenJ, GoMC, MoCa, WuSZR, SunSh]. For several exact results see $K_{2,2}$ in Tables IVa and IVb, and for general results see items 3.3.1.a, 3.3.2.c, 3.3.2.d and 4.3.e.

(b) C_4 versus unions of stars [HaABS, Has, HaJu]

(c) C_4 versus trees [EFRS4, Bu7, BEFRS4, Chen]

(d) C_4 versus all graphs on six vertices [JR3]

(e) C_4 versus various types of complete bipartite graphs, see [LiuLi2] and section 3.3.

(f) $R(C_4, G) \leq 2q + 1$ for any isolate-free graph G with $q \geq 2$ edges, and the equality holds for $G = qK_2$ or $G = K_3$ [RoJa2, JRB].

(g) $R(C_4, G) \leq 2p + q - 2$ for any isolate-free graph G on p vertices and $q \geq 2$ edges [JRB].

(h) $R(C_5, K_6 - e) = 17$ [JR4]

(i) $R(C_5, K_4 - e) = 9$ [ChRSPS]

(j) C_5 versus all graphs on six vertices [JR4]

(k) $R(C_6, K_5 - e) = 17$ [JR2]

(l) C_6 versus all stars up to $K_{1,12}$ [ZhaBC5, SunSh]
(q) Exact asymptotics of odd cycles versus generalized fans [LiuLi1]
(r) Monotone paths and cycles [Lef]
(s) Cycles versus $K_{n,m}$ and multipartite complete graphs [BoEr, PoSu1, PoSu2]
(t) Cycles versus generalized books and wheels [Shi5, Sur, SuBTB]
(u) Cycles versus special graphs of the form $K_n + G$ with small $n \leq 3$ and sparse G [Shi5]

5. General Graph Numbers in Two Colors

This section includes data with respect to general graph results. We tried to include all nontrivial values and identities regarding exact results, or references to them, but only those out of general bounds and other results which, in our opinion, may have a direct connection to the evaluation of specific numbers. If some small value cannot be found below, it may be covered by the cumulative data gathered in section 8, or be a special case of a general result listed in this section. Note that $P_2 = K_2$, $B_1 = F_1 = C_3 = W_3 = K_3$, $B_2 = K_4 - e$, $P_3 = K_3 - e$, $W_4 = K_4$ and $C_4 = K_{2,2}$ imply other identities not mentioned explicitly.

5.1. Paths

$$R(P_m, P_n) = n + \left\lfloor m/2 \right\rfloor - 1 \quad \text{for all } n \geq m \geq 2 \quad [GeGy]$$

Classification of $R(P_m, P_n)$-critical graphs [Hook]

Stripes mP_2 [CocL1, CocL2, Lor]

Disjoint unions of paths (also called linear forests) [BuRo2, FS2]

Monotone paths [CaYZ], ordered path powers [Mub2]

5.2. Wheels

Note: In this survey the wheel graph $W_n = K_1 + C_{n-1}$ has n vertices, while some authors use the definition $W_n = K_1 + C_n$ with $n+1$ vertices.

(a) $R(W_3, W_n) = 2n - 1$ for all $n \geq 6$ [BuE3],

All critical colorings for $R(W_3, W_n)$ for all $n \geq 3$ [RaJi].

(b) The graph $3K_{m-1}$ is a witness of $3m - 2 \leq R(W_m, W_n)$ for all even n, and the graph $2K_{m-1}$ is a witness of $2m - 1 \leq R(W_m, W_n)$ for all m and n. In Table VIII, the lower bounds without a credit are implied by these inequalities.

(c) $R(W_n, W_n) \leq 8n - 10$ for even n, and $R(W_n, W_n) \leq 6n - 8$ for odd n [MaoWMS].

(d) All critical colorings (2, 1 and 2) for $R(W_n, W_6)$, for $n = 4, 5, 6$ [FM].

(e) $R(W_5, W_6) = 17$, $R(4, 4) = 18$ and $\chi(W_6) = 4$ give a counterexample $G = W_6$ to the Erdős conjecture (Erd2, see also [GRS]) that $R(G, G) \geq R(K_{\chi(G)}, K_{\chi(G)})$.

(f) The value $R(W_5, W_5) = 15$ was given in the Hendry’s table [He2] without a proof. Later the proof was published in [HaMe2].
Table VIII. Ramsey numbers $R(W_m, W_n)$ for $m \leq n \leq 10$.

5.3. Books, $B_n = K_2 + K_n$

(a) $R(B_m, B_n) \leq R(B_{m+1}, B_n)$ and $R(B_m, B_n) = R(B_n, B_m)$ hold for all $m, n \geq 1$.

(b) $R(B_1, B_n) = 2n + 3 \leq R(B_2, B_n)$ for all $n > 1$ [RoS1].

(c) $R(B_2, B_n) \leq 2n + 6$ for all $n > 1$ [RoS1], $R(B_2, B_n) \leq 2n + 5$ for $12 \leq n \leq 22$, $R(B_2, B_n) \leq 2n + 4$ for $23 \leq n \leq 37$, $R(B_2, B_n) = 2n + 3$ for $n \geq 38$ [FRS8].

(d) There are 4 Ramsey-critical graphs for $R(B_2, B_3)$, a unique graph for $R(B_3, B_4)$ [ShaXBP], 3 for $R(B_2, B_6)$ and 65 for $R(B_2, B_7)$ [BILR].

(e) Unpublished result $R(B_2, B_6) = 17$ [Rou] was confirmed in [BILR].

(f) $R(B_n, B_n) = 4n + 2$ for $4n + 1$ a prime power.

If $4n + 1$ is not the sum of two integer squares, then $R(B_n, B_n) \leq 4n + 1$ [RoS1].

(g) If $2(m + n) + 1 > (n - m)^2 / 3$, then $R(B_m, B_n) \leq 2(m + n + 1)$ and $R(B_{n-1}, B_n) \leq 4n - 1$. Furthermore, if $n = 2 \pmod{3}$ then $R(B_{n-2}, B_n) \leq 4n - 3$ [RoS1].

(h) Strongly regular graphs often provide good lower bounds. If there exists a strongly regular graph with the parameters (v, k, λ, μ), then $R(B_{\lambda+1}, B_{\lambda+1-k+\mu-1}) \geq v + 1$. The lower bounds for a number of specific larger cases, like $R(B_{62}, B_{65}) = 256$ [RoS1] or $254 \leq R(B_{37}, B_{88}) \leq 255$ [Par6], are implied by the existence of a strongly regular graph with suitable parameters. 12 exact values of $R(B_m, B_n)$, beyond Table IXa, where
Table IXa. Ramsey numbers $R(B_m, B_n)$ for $m \leq 9$ and $1 \leq m \leq n \leq 11$; see more details of items 5.3.b/c/f/g/h below, their further use leads to bounds not listed in the table. Sh1+ abbreviates ShaXBP.

<table>
<thead>
<tr>
<th>n</th>
<th>m</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td>15</td>
<td>17</td>
<td>19</td>
<td>21</td>
<td>23</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>10</td>
<td>11</td>
<td>13</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19-22</td>
<td>21-24</td>
<td>23-26</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>14</td>
<td>15</td>
<td>17</td>
<td>19</td>
<td>≤19</td>
<td>≤19</td>
<td>≤19</td>
<td>≤23</td>
<td>≤23</td>
<td>≤23</td>
<td>≤23</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>18</td>
<td>21</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>46</td>
</tr>
</tbody>
</table>

Table IXb. Exact values of $R(B_m, B_n)$ from strongly regular (v, k, λ, μ)-graphs on up to 280 vertices, using 5.3.g/h [NiRo3]. It includes only the cases beyond Table IXa, and excludes the cases of $m = n$ for $4n + 1$ prime power, as in 5.3.f.
this lower bound meets the upper bound in 5.3.g were collected by Nikiforov and Rousseau [NiRo3], and they are presented in Table IXb. For a great collection of strongly regular graphs see the website by A. E. Brouwer [Brou].

(i) $R(B_m, B_n) = 2n + 3$ for all $n \geq cm$ for some $c < 10^6$ [NiRo2, NiRo3].

(j) $R(B_n, B_n) = (4 + o(1))n$ [RoS1, NiRS].

(k) For generalized books $B_n^{(k)} = nK_1 + K_k$, Conlon proved that $R(B_n^{(k)}, B_n^{(k)}) = 2^k n + o_k(n)$ [Con4]. A simplified proof, better control of the error term, and a proof that all extremal colorings for this Ramsey problem are quasirandom are in the follow-up paper [ConFW]. This more than answered some old questions by Erdős and others.

(l) Other general equalities and bounds involving $R(B_m, B_n)$ can be found in [RoS1, FRS8, Par6, NiRo2, NiRo3, NiRS, LiRZ2].

5.4. Trees and forests

In this subsection T_n and F_n denote an n-vertex tree and forest, respectively.

(a) $R(T_n, T_n) \leq 4n + 1$ [ErdG]. Note that if T_n were a set of all n-vertex trees, then one might say that $R(T_n, T_n) = n$, since for every graph G at least one of G or \overline{G} is connected, and thus it contains an n-vertex spanning tree.

(b) $R(T_n, T_n) \geq \lceil(4n - 1)/3 \rceil$ [BuE2], see also section 5.15.

(c) Conjecture that $R(T_n, T_n)$ is at most $2n - 2$ for even n and $2n - 3$ for odd n [BuE2]. Note that this is the same as asking if $R(T_n, T_n) \leq R(K_{1,n-1}, K_{1,n-1})$. Zhao [Zhao] proved that $R(T_n, T_n) \leq 2n - 2$ and thus confirmed the conjecture for even n. Independently, Ajtai et al. [AjKSS] announced a full proof for large n. This recent progress subsumes some of the results pointed to in items (d)-(m) below.

(d) For general discussion of related problems see [Bu7, FSS2, ChGra2], in particular of the conjecture that $R(T_m, T_n) \leq n + m - 2$ holds for all trees [FSS2].

(e) If $\Delta(T_m) = m - 2$ and $\Delta(T_n) = n - 2$ then the exact values of $R(T_m, T_n)$ are known, and they are between $n + m - 5$ and $n + m - 3$ depending on n and m. In particular, we have $R(T_n, T_n) = 2n - 5$ for even n and $R(T_n, T_n) = 2n - 4$ for odd n [GuoV].

(f) Examples of families T_m and T_n (including P_n) for which $R(T_m, T_n) = n + m - c$, $c = 3, 4, 5$ [SunZ1], extending the results in [GuoV].

(g) View the tree T as a bipartite graph with parts t_1 and t_2, $t_2 \geq t_1$, then define $b(T) = \max \{2t_1 + t_2 - 1, 2t_2 - 1\}$. Then the bound $R(T, T) \geq b(T)$ holds always, $R(T, T) = b(T)$ holds for many classes of trees [EFRS3, GeGy], and asymptotically [HaLT], but cases for inequality have been found [GrHK].

(h) Comments in [BaLS] about some conjectures on Ramsey saturation of non-star trees, which would imply that $R(T_n, T_n) \leq 2n - 2$ holds for sufficiently large n.

(i) Formulas for $R(T_m, T_n)$ for some subcases of when T_m and T_n satisfy $\Delta(T_m) = m - 3$ and $\Delta(T_n) \geq n - 3$ [SunWW].
(j) \(R(T_m, K_{1,n}) \leq m + n - 1 \), with equality for \((m - 1) \mid (n - 1)\) [Bu1].

(k) \(R(T_m, K_{1,n}) = m + n - 1 \) for sufficiently large \(n \) for almost all trees \(T_m \) [Bu1]. Many cases were identified for which \(R(T_m, K_{1,n}) = m + n - 2 \) [Coc, ZhZ1], see also [Bu1].

(l) \(R(T_m, K_{1,n}) \leq m + n \) if \(T_n \) is not a star and \((m - 1) \mid (n - 1)\), some classes of trees and stars for which the equality holds [GuoV].

(m) In a sequence of papers [SunZ1, SunZ2, SunW, SunWW], Zhi-Hong Sun et al. obtain several exact results for \(R(S, T) \), where the trees \(S \) and \(T \) have high maximum degree \(\Delta \geq n - 3 \), or one of them has high maximum degree and the other is a path.

(n) Formulas for some cases of brooms [EFRS3], where broom is a star with a path attached to its center. These results were extended to all diagonal cases for brooms [YuLi]. Note that a tree \(T_n \) with \(\Delta(T_n) = n - 2 \) is a broom, and this case is listed in 5.4.e.

(o) \(R(F_n, F_n) > n + \log_2 n - O(\log\log n) \) [BuE2], forests are tight for this bound [CsKo].

(p) Forests, linear forests (unions of paths) [BuRo2, FS3, CsKo].

(q) Extensive tables of \(R(T_m, T_n) \) for \(6 \leq m, n \leq 8 \), for many concrete pairs of trees, which were obtained through an adiabatic quantum optimization algorithm [RanMCG].

(r) Tristars and fountains [BroNN].

(s) Paths versus trees [FSS2], see also other parts of this survey involving special graphs, in particular sections 5.5, 5.6, 5.10, 5.12 and 5.15.

5.5. Stars, stars versus other graphs

\(R(K_{1,n}, K_{1,m}) = n + m - \varepsilon \), where \(\varepsilon = 1 \) for even \(n \) and \(m \), and \(\varepsilon = 0 \) otherwise [Har1]. This is also a special case of multicolor numbers for stars 6.6.e obtained in [BuRo1].

\(R(K_{1,n}, K_{1,m}) = n(m - 1) + 1 \) by Chvátal’s theorem [Chv].

Stars versus \(C_4 \) [Par3, Par4, Par5, BEFRS4, Chen, ChenJ], until 2002
Stars versus \(C_4 \) [GoMC, MoCa, WuSZR, ZhaBC1, ZhaCC2, ZhaCC3], since 2004
Stars versus \(K_{2,n} \) [Par4, GoMC]
Stars versus \(K_{n,m} \) [Stev, Par3, Par4]
See also section 3.3

\(R(K_{1,4}, B_4) = 11 \) [RoS2]
\(R(K_{1,4}, K_{1,2,3}) = R(K_{1,4}, K_{2,2,2}) = 11 \) [GuSL]

Stars versus paths [Par2, BEFRS2]
Stars versus cycles [La1, Clark, ZhaBC5, SunSh], see also [Par6] and section 4.1
Stars versus \(2K_2 \) [MeO]
Stars versus stripes \(mP_2 \) [CocL1, CocL2, Lor]
Stars versus bistars [AlmHS]
Stars versus kipas [LiZB]
Stars versus \(W_5 \) and \(W_6 \) [SuBa1]
\(nK_{1,m} \) versus \(W_5 \) [BaHA]
Stars versus W_9 [Zhang2, ZhaCZ1]
Stars versus wheels [HaBA1, ChenZZ2, Kor, LiSch, HagMa]
Stars versus books [ChRSPS, RoS2]
Stars versus fans [ZhaBC3]
Stars versus trees [Bu1, Cheng, Coc, GuoV, SunZ1, SunZ2, SunWW, ZhZ1]
Stars versus $K_n - tK_2$ [Hua1, Hua2]
Stars versus almost all connected graphs on 6 vertices [LoM7]
Union of two stars [Gros2]
Asymptotics for double stars [NoSZ]
Double stars versus $K_{2,q}$ and sK_2 versus $K_s + C_n$ [SuAUB]
Unions of stars versus C_4 and W_5 [HaABS, Has, HaJu]
Unions of stars versus wheels [BaHA, HaBA2, SuBAU1]

5.6. **Paths versus other graphs**
Note: for cycles versus P_n see section 4.1.

- P_3 versus all isolate-free graphs [ChH2]
- Paths versus stars [Par2, BEFRS2]
- Paths versus trees [FS4, FSS2, SunZ1, SunZ2, SunWW]
- Paths versus books [RoS2]
- Paths versus K_n [Par1]
- Paths versus $2K_n$ [SuAM, SuAAM]
- Paths versus $K_{n,m}$ [Häg]
- Paths versus some balanced complete multipartite graphs [Pokr]
- Paths versus W_5 and W_6 [SuBa1]
- Paths versus W_7 and W_8 [Bas]
- Paths versus wheels [BaSu, ChenZZ1, SaBr3, Zhang1]
- Paths versus wheels, the last piece completed [LiNing2]
- $R(P_n, mW_4) = 2n + m - 2$ [Sudar1]
- Paths versus beaded wheels [AliBT2]
- Paths versus sunflower graphs [AliTJ]
- Paths versus powers of paths [Pokr, AllBS]
- Paths versus fans [SaBr2]
- Paths versus $K_1 + P_m$ [SaBr1, SaBr4]
- Paths versus kipas [LiZBBH]
- Paths versus $K_1 + F$, where F is a linear forest [LiNing1]
- Paths versus Jahangir graphs [SuTo]
- Paths and cycles versus trees [FSS2]
- Powers of paths [AllBS]
- Unions of paths [BuRo2]
- Paths and unions of paths versus tK_n [Sudar2]
- Paths and unions of paths versus Jahangir graphs [AliBas, AliBT1, AliSur]
Paths and unions of paths versus $K_{2m} - mK_2$ [AliBB]
Goodness of paths for tK_n [Sudar3]
Goodness of paths, results on graphs H for which P_n is H-good [PoSu1]
Sparse graphs versus paths and cycles [BEFRS2]
Graphs with long tails [Bu2, BuG]
Long paths versus other good graphs [PeiLi, PeiCLY]
Paths versus generalized wheels [BieDa]
Monotone paths [Lef, CaYZ] and monotone cycles [Lef]

5.7. Fans, fans versus other graphs

The fan graph F_n is defined by $F_n = K_1 + nK_2$.

$$R(F_1, F_n) = R(K_3, F_n) = 4n + 1$$ for $n \geq 2$, and bounds for $R(F_m, F_n)$ [LiR2, GuGS]

$$R(F_2, F_n) = 4n + 1$$ for $n \geq 2$ and $R(F_m, F_n) \leq 4n + 2m$ for $n \geq m \geq 2$ [LinLi1]

$9n/2 - 5 \leq R(F_n, F_n) \leq 11n/2 + 6$ for all $n \geq 1$ [ChenYZ]

$$R(K_4, F_n) = 6n + 1$$ for $n \geq 3$ [SuBB3]

$$R(K_5, F_n) = 8n + 1$$ for $n \geq 5$ [ZhaCh]

$$R(K_6, F_n) = 10n + 1$$ for $n \geq 6$ [KaOS]

A conjecture that $R(K_m, F_n) = 2mn - 2n + 1$ for $n \geq m \geq 4$ [SuBB3]

Fans versus paths, formulas for a number of cases including $R(P_6, F_n)$ [SaBr2].

Missing case $R(P_6, F_4) = 12$ solved in [Shao].

$$R(F_m, K_n) \leq (1 + o(1))n^2 / \log n$$ [LiR2]

Fans versus cycles [Shi5]

Exact asymptotics of odd cycles versus generalized fans [LiuLi1]

Fans versus wheels [ZhaBC4, MengZZ]

Fans versus trees and stars [ZhaBC3, Bren1]

Fans versus unicyclic graphs [Bren1]

Lower bounds on $R(F_2, K_n)$ from cyclic graphs for $n \leq 9$ [Shao]

5.8. Wheels versus other graphs

Notes: In this survey the wheel graph $W_n = K_1 + C_{n-1}$ has n vertices, while some authors use the definition $W_n = K_1 + C_n$ with $n + 1$ vertices. For cycles versus W_n see section 4.3. Consider also similarity of wheels to other graphs, like fans, kipas [LiZBBH], sunflower [AliTJ], and Jahangir graphs [SuTo].

$$R(W_5, K_5 - e) = 17$$ [He2][YH]

$$R(W_5, K_5) = 27$$ [He2][RaST]

$33 \leq R(W_5, K_6) \leq 36$ [ShaoWX, LidP]

$45 \leq R(W_5, K_7) \leq 50$ [VO, LidP]

$34 \leq R(W_6, K_6) \leq 40$ [VO, LidP]

$43 \leq R(W_6, K_7) \leq 55$ [VO, LidP]
W_5 and W_6 versus stars and paths [SuBa1]
W_5 versus $nK_{1,m}$ [BaHA]
W_5 versus unions of stars [Has]
W_5 versus theta graphs θ_n [JaBVR]
W_5 and W_6 versus trees [BaSNM]
W_7 and W_8 versus paths [Bas]
W_7 versus trees T_n with $\Delta(T_n) \geq n - 3$, other special trees T_n, and T_n for $n \leq 8$ [ChenZZ3, ChenZZ5, ChenZZ6]
W_7 and W_8 versus trees [ChenZZ4, ChenZZ5]
W_9 versus stars [Zhang2, ZhaCZ1, ZhaCC4, ZhaCC5]
W_9 versus trees of high maximum degree [ZhaCZ2]
W_{2n} versus trees of high maximum degree [HafBa]
$R(C_4, W_n) = R(C_4, K_{1,n-1})$ for $n \geq 7$ [ZhaBC1].
Wheels versus stars [HaBA1, ChenZZ2, Kor, LiSch, HagMa]
Wheels W_n, for even n, versus star-like trees [SuBB1]
Wheels versus paths [BaSu, ChenZZ1, SaBr3, Zhang1]
Wheels versus paths, the last piece completed [LiNing2]
Wheels versus fans and wheels [ZhaBC4, MengZZ]
Wheels versus some trees [RaeZ, ZhuZL]
Wheels versus books [Zhou3]
Wheels versus unions of stars [BaHA, HaBA2, SuBAU1]
Wheels versus linear forests (disjoint unions of paths) [SuBa2]
Some cases of wheels versus $K_n - K_{1,s}$ [ChaMR]
Generalized wheels versus cycles [Shi5, BieDa]
Generalized wheels versus trees [WaCh]
Upper asymptotics for $R(W_n, K_m)$ [Song5, SonBL]
Upper asymptotics for generalized wheels versus K_n [Song9]

5.9. Books versus other graphs

Note: for cycles versus B_n see section 4.4.

$R(B_3, K_4) = 14$ [He3]
$R(B_3, K_5) = 20$ [He2][BaRT]
$R(B_4, K_{1,4}) = 11$ [RoS2]
Cyclic lower bounds for $R(B_m, K_n)$ for $m \leq 7$, $n \leq 9$
and for $R(B_3, K_n - e)$ for $n \leq 7$ [Shao, ShaoWX]
$R(T_n, B_m) = 2n - 1$ for all $n \geq 3m - 3$ [EFRS7]
Books versus paths [RoS2]
Books versus stars [ChRSPS, RoS2] Books versus trees [EFRS7, ZhaCZ]
Books versus K_n [LiR1, Sud2]
Books versus wheels [Zhou3]
Books versus \(K_2 + C_n \) [Zhou3]
Books and \((K_1 + \text{tree})\) versus \(K_n \) [LiR1]
Generalized books \(K_3 + qK_1 \) versus cycles [Shi5]
Generalized books \(K_r + qK_1 \) versus \(K_1 + C_4 \) [LinLiu]
Generalized books \(K_r + qK_1 \) versus \(K_n \) [NiRo1, NiRo4]

5.10. Trees and forests versus other graphs

In this subsection \(T_n \) and \(F_n \) denote \(n \)-vertex tree and forest, respectively.

\[
R(T_n, K_m) = (n-1)(m-1) + 1
\]
[Chv]

\[
R(C_{2m+1}, T_n) = 2n-1 \text{ for all } n > 1512m + 756, \text{ for } n \text{-vertex trees } T_n \quad [BEFRS2].
\]

The range of \(n \) was extended to \(n \geq 25(2m+1) \) in [Bren2].

\[
R(T_n, B_m) = 2n-1 \text{ for all } n \geq 3m-3 \quad [EFRS7]
\]

\[
R(F_{nk}, K_m) = (n-1)(m-2) + nk \quad \text{for all forests } F_{nk} \text{ consisting of } k \text{ trees with } n \text{ vertices each, also exact formula for all other cases of forests versus } K_m \quad [Stahl]
\]

Exact results for almost all small \((n(G) \leq 5)\) connected graphs \(G \) versus all trees [FRS4]

Trees versus stars [Bu1, Cheng, Coc, GuoV, ZhZ1]
Trees versus paths [FS4, FSS2]
Trees versus \(C_4 \) [EFRS4, Bu7, BEFRS5, Chen]
Trees versus cycles [FSS2, EFRS6]
Trees versus books [EFRS7, ZhaCZ]
Trees versus fans [ZhaBC3]
Trees versus \(W_5 \) and \(W_6 \) [BaSNM]
Trees versus \(W_7 \) and \(W_8 \) [ChenZZ4, ChenZZ5]
Some trees versus wheels [RaeZ, ZhuZL]
Trees versus wheels [ZhaBC4]

Trees \(T_n \) with \(\Delta(T_n) \geq n-3 \), other special trees \(T \), and \(T_n \) for \(n \leq 8 \) versus \(W_7 \) [ChenZZ3, ChenZZ5, ChenZZ6]

Trees \(T_n \) with \(\Delta(T_n) \geq n-4 \) versus \(W_9 \) [ZhaCZ2]

Trees \(T_n \) with large \(\Delta(T_n) \) versus \(W_{2m} \) [HafBa]

Star-like trees versus odd wheels [SuBB1, ChenZZ3]
Trees versus \(K_n + K_m \) [RoS2, FSR]
Trees versus generalized wheels [WaCh]
Trees versus bipartite graphs [BEFRS4, EFRS6]
Trees versus almost complete graphs [GoJa2]
Trees versus multipartite complete graphs [EFRS8, BEFRS8]

\[R(T, G) \text{ for most non-star trees } T \text{ and } n(G) \leq 6 \quad [LoM8], \text{ see item 8.1.q} \]

Linear forests versus \(3K_3 \) and \(2K_4 \) [SuBAU2]
Linear forests versus \(2K_m \) [SuAAM]
Linear forests versus tK_n [Sudar2, Sudar3]
Linear forests versus wheels [SuBa2]
Forests versus almost complete graphs [ChGP]
Forests versus complete graphs [BuE1, Stahl, BaHA]
Goodness of bounded degree trees [BalPS]

Study of graphs G for which all or almost all trees are G-good [BuF, BEFRSGJ], see also section 5.15 and 5.16, item [Bu2], for the definition and more pointers.
See also various parts of this survey for special trees, and section 5.4.

5.11. Cases for $n(G), n(H) \leq 5$

Clancy [Clan], in 1977, presented a table of $R(G, H)$ for all isolate-free graphs G with $n(G) = 5$ and H with $n(H) \leq 4$, except 5 entries. All five of the open entries have been solved as follows:

<table>
<thead>
<tr>
<th>Graphs</th>
<th>Value</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R(B_3, K_4)$</td>
<td>14</td>
<td>[He3]</td>
</tr>
<tr>
<td>$R(K_5, K_4-e)$</td>
<td>16</td>
<td>[BoH]</td>
</tr>
<tr>
<td>$R(W_5, K_4)$</td>
<td>17</td>
<td>[He2]</td>
</tr>
<tr>
<td>$R(K_5-e, K_4)$</td>
<td>19</td>
<td>[EHM1]</td>
</tr>
<tr>
<td>$R(K_5, K_4)$</td>
<td>25</td>
<td>$R(4, 5)$</td>
</tr>
</tbody>
</table>

An interesting case in [Clan] is:

$$R(K_4, K_5-P_3) = R(K_4, K_4+e) = R(4, 4) = 18$$

Hendry [He2], in 1989, presented a table of $R(G, H)$ for all graphs G and H on 5 vertices without isolates, except 7 entries. Five of the open entries have been solved:

<table>
<thead>
<tr>
<th>Graphs</th>
<th>Value</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R(K_5, K_4+e)$</td>
<td>25</td>
<td>$R(4, 5)$</td>
</tr>
<tr>
<td>$R(K_5, K_5-P_3)$</td>
<td>25</td>
<td>[Ka1][Boza2, CalSR]</td>
</tr>
<tr>
<td>$R(K_5, B_3)$</td>
<td>20</td>
<td>[He2][BaRT]</td>
</tr>
<tr>
<td>$R(K_5, W_5)$</td>
<td>27</td>
<td>[He2][RaST]</td>
</tr>
<tr>
<td>$R(W_5, K_5-e)$</td>
<td>17</td>
<td>[He2][YH]</td>
</tr>
</tbody>
</table>

The still open cases for K_5 versus K_5-e and K_5 are:

$$30 \leq R(K_5, K_5-e) \leq 33$$ [Ex6][Boza7]
$$43 \leq R(K_5, K_5) \leq 48$$ [Ex4][AnM1]

All critical colorings for the case $R(C_5+e, K_5) = 17$ were found by Hendry [He5].

5.12. Miscellaneous cases

$$R(P, P) \geq 19$$, where P is the 10-vertex Petersen graph [HaKr2]
$$R(Q_3, Q_3) = 13$$, where Q_3 is the 8-vertex 3-dimensional cube graph [LidP]
30 \leq R(K_{2,2,2}, K_{2,2,2}) \leq 31, \text{ where } K_{2,2,2} \text{ is the octahedron [HaKr2, LidP]}

Unicyclic graphs [Gros1, Köh, KrRod]

$K_{2,m}$ and C_{2m} versus K_n [CaLRZ]

$K_{2,n}$ versus any isolate-free graph [RoJa2, JRB]

Union of two stars [Gros2]

Double stars* [GrHK, BahS, NoSZ]

Formulas for some cases of brooms+ [EFRS3], extended to all diagonal cases [YuLi]

Graphs with bridge versus K_n [Li1]

Multipartite complete graphs [BFRS, FRS3, Stev]

Multipartite complete graphs versus trees [EFRS8, BEFRSGJ]

Multipartite complete graphs versus sparse graphs [EFRS4]

Graphs with long tails [Bu2, BuG]

5.13. Multiple copies of graphs, disconnected graphs

(a) $2K_2$ versus isolate-free graphs [ChH2],
 nK_2 versus isolate-free graphs [FSS1].

(b) nK_2 versus mK_2, in particular $R(nK_2, nK_2) = 3n - 1$ for $n \geq 1$ [CocL1, CocL2, Lor]

(c) $R(nK_3, nK_3) = 5n$ for $n \geq 2$, $R(mK_3, nK_3) = 3m + 2n$ for $m, n \geq 2$ [BES].

(d) Let $c(nK_k)$ denote the set of connected graphs containing n vertex disjoint K_k’s. Then:
 $R(c(nK_3), c(nK_3)) = 7n - 2$ for $n \geq 2$ [GySa3], and
 $R(c(nK_k), c(nK_k)) = (k^2 - k + 1)n - k + 1$ for $k \geq 4$ and $n \geq R(k, k)$ [Rob].

(e) nK_3 versus mK_4 [LorMu]

(f) $nK_{1,m}$ versus W_5 [BaHA]

(g) $R(nK_4, nK_4) = 7n + 4$ for large n [Bu8]

(h) Stripes mP_2 [CocL1, CocL2, Lor]

(i) $R(G, H)$ for all disconnected isolate-free graphs H on at most 6 vertices versus all G on at most 5 vertices, except 3 cases [LoM5]. Missing cases were completed in [KroMe].

(j) $R(F, G \cup H) \leq \max\{ R(F, G) + n(H), R(F, G) \}$ [Par6]

(k) $R(mG, nH) \leq (m - 1)n(G) + (n - 1)n(H) + R(G, H)$ [BES]

(l) Formulas for $R(nK_3, mG)$ for all isolate-free graphs G on 4 vertices [Zeng]

(m) Variety of results for numbers of the form $R(nG, mH)$ [Bu1, BES, HaBA2, SuBAU1, SuAUB, Sudar2, Sudar3].

(n) Disjoint unions of paths (linear forests) [BuRo2, FS2],
 Linear forests versus $3K_3 \cup 2K_4$ [SuBAU2]

* double star is a union of two stars with their centers joined by an edge
+ broom is a star with a path attached to its center
(o) Forests versus K_n [Stahl, BaHA] and W_n [BaHA]. Generalizations to forests versus other graphs G in terms of $\chi(G)$ and the chromatic surplus of G [Biel4], and for linear forests versus $2K_n$ [SuAM].

(p)Disconnected graphs versus other graphs [BuE1, GoJa1]

(q) See section 4.1 for cases involving unions of cycles

(r) See also [Bu9, BuE1, LorMu, MiSa, Den2, Biel1, Biel2]

5.14. General results for special graphs

(a) $R(K_m^p, K_n^q) = R(K_m, K_n)$ for $m, n \geq 3$, $m + n \geq 8$, $p \leq m/(n-1)$ and $q \leq n/(m-1)$, where K_n^t is a K_t with additional vertex connected to it by t edges [BEFS]. Some applications can be found in [BILR].

(b) $R(K_{2,k}, G) \leq kq+1$ for $k \geq 3$, for isolate-free graphs G with $q \geq 2$ edges [RoJa2, JRB].

(c) $R(W_6, W_6) = 17$ and $\chi(W_6) = 4$ [FM]. This gives a counterexample $G=W_6$ to the Erdős conjecture (see [GRS]) $R(G,G) \geq R(K_{\chi(G)}, K_{\chi(G)})$, since $R(4,4) = 18$.

(d) $R(G+K_1, H) \leq R(K_1, G, H)$ [BuE1].

(e) $R(K_2^2+G, K_2^2+G) \leq 4R(G, K_2^2+G) - 2$ [LiShen].

(f) For arbitrary fixed graphs G and H, if n is sufficiently large then we have $R(K_2+G, K_1+nH) = (k+1)mn+1$, where $k = \chi(G)$ and $m = |V(H)|$ [LiR2].

(g) Study of $R(G+K_1, nH+K_1)$ [LinLD]. Further lower bounds based on the Paley graphs, in particular for $R(K_3^3+K_n, K_3^3+K_n)$ [LinLS].

(h) $R(K_{p+1}^r, B_q^r) = p(q+r-1) + 1$ for generalized books $B_q^r = K_r + qK_1$, for sufficiently large q [NiRo1]. Formula for $R(K_1^r + C_4, B_q^r)$ for sufficiently large q [LinLiu].

(i) Study of the cases $R(K_m^r, K_n-K_{1,s})$ and $R(K_m^r-K_{e}, K_n-K_{1,s})$, with several exact values for special parameters [ChaMR]. This study was extended to some cases involving $R(K_m^r - K_3)$ [MonCR].

(j) Study of $R(T+K_1, K_n)$ for trees T [LiR1]. Asymptotic upper bounds for $R(T+K_2, K_n)$ [Song7], see also [SonQG].

(k) Bounds on $R(H+K_n, K_n)$ for general H [LiR3]. Also, for fixed k and m, as $n \to \infty$, $R(K_k^r+K_m, K_n) \leq (m+o(1))n^k/(\log n)^{k-1}$ [LiRZ1].

(l) Asymptotics of $R(H+K_n, K_n)$. In particular, the order of magnitude of $R(K_m, K_n)$ is $n^{m+1}/(\log n)^m$ [LiTZ]. Upper asymptotics for $R(K_s+K_m, K_k)$ [Song9].

(m) Study of the largest k such that if the star $K_{1,k}$ is removed from K_r, $r = R(G, H)$, any edge 2-coloring of the remaining part still contains monochromatic G or H, as for K_r, for various special G and H [Hols].

(n) Let G'' be a graph obtained from G by deleting two vertices with adjacent edges. Then $R(G, H) \leq A+B+2+2\sqrt{(A^2+AB+B^2)/3}$, where $A = R(G'', H)$ and $B = R(G, H'')$ [LiRZ2].
5.15. General results for sparse graphs

(a) \(R(K_n, T_m) = (n-1)(m-1) + 1 \) for any tree \(T_m \) on \(m \) vertices [Chv].

(b) Graphs yielding \(R(K_n, G) = (n-1)(n(G)-1) + 1 \), called Ramsey \(n \)-good [BuE3], and related results [EFRS5]. An extensive survey and further study of \(n \)-goodness appeared in [NiRo4], 2009. More results on goodness of bounded degree trees [BalPS], 2016, and paths [PoSu1], 2017.

(c) \(R(C_{2m+1}, G) = 2n - 1 \) for sufficiently large sparse graphs \(G \) on \(n \) vertices, little more complicated formulas for \(P_{2m+1} \) instead of \(C_{2m+1} \) [BEFRS2].

(d) \(R(G, G) \leq \frac{c_d n}{2} \) for all \(d \)-arrangeable graphs \(G \) on \(n \) vertices, in particular with the same constant for all planar graphs [ChenS]. The constant \(c_d \) was improved in [Eaton]. An extension to graphs not containing a subdivision of \(K_d \) [RöTh].

(e) Conjecture that \(R(G, G) \leq 12n(G) \) for all planar \(G \), for sufficiently large \(n \) [AllBS].

(f) Study of \(L \)-sets, which are sets of pairs of graphs whose Ramsey numbers are linear in the number of vertices. Conjecture that Ramsey numbers grow linearly for \(d \)-degenerate graphs (graph is \(d \)-degenerate if all its subgraphs have minimum degree at most \(d \)) [BuE1]. Progress towards this conjecture was obtained by several authors, including [KoRö1, KoRö2, KoSu, FoxSu1, FoxSu2]. Further progress was obtained in 2016 in relation to the chromatic number [Lee].

(g) Study of graphs \(G \), called Ramsey size linear, for which there exists a constant \(c_G \) such that for all \(H \) with no isolates \(R(G, H) \leq c_G e(H) \) [EFRS9]. An overview and further results were given in [BaSS].

(h) \(R(G, G) < 6n \) for all \(n \)-vertex graphs \(G \), in which no two vertices of degree at least 3 are adjacent [LiRS]. This improves the result \(R(G, G) \leq 12n \) in [Alon1]. In an early paper by Burr and Erdős [BuE1] it was proved that if any two points of degree at least 3 are at distance at least 3 then \(R(G, G) \leq 18n \).

(i) Ramsey number is linear in a class of graphs \(X \) if \(R_X(p, q) \leq c(p + q) \) for some constant \(c \) and all \(p, q \), where we color the edges of graphs in \(X \). A conjecture that this linearity holds for \(X \) if and only if the co-chromatic number is bounded in \(X \) [AtLZ]. Discussion of various old and new classes of Ramsey linear graphs [NeOs].

(j) Study of graphs \(G \), called Ramsey size linear, for which there exists a constant \(c_G \) such that for all \(H \) with no isolates \(R(G, H) \leq c_G e(H) \) [EFRS9]. An overview and further results were given in [BaSS].

(k) \(R(G, G) < 6n \) for all \(n \)-vertex graphs \(G \), in which no two vertices of degree at least 3 are adjacent [LiRS]. This improves the result \(R(G, G) \leq 12n \) in [Alon1]. In an early paper by Burr and Erdős [BuE1] it was proved that if any two points of degree at least 3 are at distance at least 3 then \(R(G, G) \leq 18n \).

(l) \(R(G_{a,b}, G_{a,b}) = (3/2 + o(1))ab \), where \(G_{a,b} \) is the rectangular \(a \times b \) grid graph. Other similar results hold for bipartite planar graphs with bounded degree and grids of higher dimension [MoSST].
(m) \(R(Q_n, Q_n) \leq 2^{2.62n + o(n)} \), for the \(n \)-dimensional hypercube \(Q_n \) with \(2^n \) vertices [Shi1]. This bound can also be derived from a theorem in [KoRö1]. An improvement was obtained in [Shi4], a further one to \(R(Q_n, Q_n) \leq 2^{2n+5n} \) in [FoxSu1], and another decrease of the upper bound to \(2^{2n+6} \) in [ConFS8]. A lower bound construction for \(12 \leq R(Q_3, Q_3) \) was presented in [HaKr2].

(n) \(R(K_m, Q_n) = (m-1)(2^n-1)+1 \) for every fixed \(m \) and sufficiently large \(n \) [FizGMSS]. This improves on the results in [ConFLS] and [GrMFSS]. The apparent contradiction with publication years is due to the timing of publication processes.

(o) Conjecture that \(R(G, G) = 2n(G)-1 \) if \(G \) is unicyclic of odd girth [Gros1]. Further support for the conjecture was given in [Köh, KrRod].

(p) See also earlier subsections 5.* for various specific sparse graphs.

5.16. General results

(a) \(R(G, H) \geq (\chi(G)-1)(c(H)-1)+1 \), where \(\chi(G) \) is the chromatic number of \(G \), and \(c(H) \) is the size of the largest connected component of \(H \). [ChH2].

(b) \(R(G, G) > (s 2^{e(G)-1})^{1/n(G)} \), where \(s \) is the number of automorphisms of \(G \). Hence \(R(K_n, K_n) > 2^n \), see also item 6.7.1 [ChH3].

(c) \(R(G, G) \geq \lceil (4n(G)-1)/3 \rceil \) for any connected \(G \), and \(R(G, G) \geq 2n-1 \) for any connected nonbipartite \(G \). These bounds can be achieved for all \(n \geq 4 \) [BuE2].

(d) Graphs \(H \) yielding \(R(G, H) = (\chi(G)-1)(n(H)-1)+s(G) \), where \(s(G) \) is the chromatic surplus of \(G \), defined as the minimum number of vertices in some color class under all vertex colorings in \(\chi(G) \) colors (such \(H \)'s are called \(G \)-good) [Bu2]. This idea is a basis of a number of exact results for \(R(G, H) \) for large and sparse graphs \(H \) [BuG, BEFRS2, BEFRS3, Bu5, FaSi, EFRS4, FRS3, BEFSRGJ, BuF, LiR4, Biel2, SuBAU3, Song6, AllBS, PeiLi, PeiCLY, LiBie, BalPS, PoSu1, PoSu2, LinLiu]. Surveys of this area appeared in [FRS5, NiRo4].

(e) Graph \(G \) is Ramsey saturated if \(R(G+e, G+e) > R(G, G) \) for every edge \(e \) in \(G \). The paper [BaLS] contains several theorems involving cycles, cycles with chords and trees on Ramsey saturated and unsaturated graphs, and also seven conjectures including one stating that almost all graphs are Ramsey unsaturated. Some classes of graphs were proved to be Ramsey unsaturated [Ho]. Special cases involving cycles and Jahangir graphs were studied in [AliSur].

(f) Relations between \(R(3, k) \) and graphs with large \(\chi(G) \) [BiFJ]. Further detailed study of the relation between \(R(3, k) \) and the chromatic gap [GySeT].

(g) \(R(G, H) > h(G, d)n(H) \) for all nonbipartite \(G \) and almost every \(d \)-regular \(H \), for some \(h \) unbounded in \(d \) [Bra3].

(h) Lower asymptotics of \(R(G, H) \) depending on the average degree of \(G \) and the size of \(H \) [DoLL1]. This continued the study initiated in [EFRS5], later much enhanced for both lower and upper bounds in [Sud3].
(i) Lower bound asymptotics of $R(G, H)$ for large dense H [LiZa1].

(j) A conjecture posed by Erdős in 1983 that there exists a constant c such that $R(G, G) \leq 2c\sqrt{e(G)}$ for all isolate-free graphs G [Erd4]. Discussion of this conjecture and partial results, proof for bipartite graphs and progress in other cases are included in [AIKS]. In 2011, Sudakov [Sud4] completed the proof of this conjecture. An extension of the latter to some off-diagonal cases is presented in [MaOm1], and an improvement of the constant for bipartite graphs is given in [JoPe]. For the multicolor case see item 6.7.k.

(k) Lower bound on $R(G, K_n)$ depending on the density of subgraphs of G [Kriv]. This construction for $G = K_m$ produces a bound similar to the best known probabilistic lower bound by Spencer [Spe2]. Further lower and upper bounds on $R(G, K_n)$ in terms of n and $e(G)$ can be found in [Sud3].

(l) Upper bounds on $R(G, K_n)$ for dense graphs G [Con3].

(m) The graphs K_n and $K_n + K_{n-1}$ are Ramsey equivalent for $n \geq 4$, i.e. every graph arrows both of them or neither of them. This equivalence does not hold for $n = 3$, and every graph witnessing such nonequivalence contains K_6 [BlLi]. See references therein for history and further results on Ramsey equivalent and nonequivalent pairs of graphs.

(n) Relations between the cases of G or $G + K_1$ versus H or $H + K_1$ [BuE1].

(o) Study of cyclic graphs yielding lower bounds for Ramsey numbers. Exact formulas for paths and cycles, and values for small complete graphs and for graphs with up to five vertices [HaKr1].

(p) Relations between some Ramsey graphs and block designs [Par3, Par4].

(q) Lidický and Pfender used flag algebras to constrain the space of feasible Ramsey colorings of various types. This was implemented, and then led to a number of new upper bounds listed throughout this survey [LidP].

(r) Relations between the Shannon capacity of noisy communication channels and graph Ramsey numbers [Li2]. See also section 6 in [Ros2], and [XuR3].

(s) Given integer m and graphs G and H, determining whether $R(G, H) \leq m$ holds is NP-hard [Bu6]. Further complexity results related to Ramsey theory were presented by Burr in [Bu10].

(t) Ramsey arrowing is Π_2^P-complete, a rare natural example of a problem higher than NP in the polynomial hierarchy of computational complexity theory [Scha].

(u) Special cases of multicolor results listed in section 6.

(v) See also surveys listed in section 8.
6. Multicolor Ramsey Numbers

Until 2016, the only known value of a multicolor classical Ramsey number was:

\[R_3(3) = R(3, 3, 3) = R(3, 3, 3; 2) = 17 \]

2 critical colorings (on 16 vertices) \:[G, L]\]
2 colorings on 15 vertices \:[H]\]
115 colorings on 14 vertices \:[P, R]\]

Now, we know one more case, namely \(R(3, 3, 4) = 30 \). For some details see 6.1.c.

6.1. Bounds for classical numbers

General upper bound, implicit in [G, L]:

\[R(k_1, \ldots, k_r) \leq 2 - r + \sum_{i=1}^{r} R(k_1, \ldots, k_{i-1}, k_i - 1, k_{i+1}, \ldots, k_r) \]

(a)

The inequality in (a) is strict if the right hand side is even and at least one of the terms in the summation is even. It is suspected that this upper bound is never tight for \(r \geq 3 \) and \(k_i \geq 3 \), except for \(r = k_1 = k_2 = k_3 = 3 \). However, only two parameter cases are known to improve over (a), namely \(R_4(3) \leq 62 \) \:[F, K, R]\], and \(R(3, 3, 4) \leq 31 \) \:[P, R1, R2], \(R(3, 3, 4) \leq 30 \) \:[C-F, I, M]\], for which (a) produces the bounds of 66 and 34, respectively.

Diagonal Cases

<table>
<thead>
<tr>
<th>(r)</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>17 (\text{GG})</td>
<td>128 (\text{Hlhr})</td>
<td>454 (\text{Ex23})</td>
<td>1106 (\text{Row3})</td>
<td>3214 (\text{XuR1})</td>
<td>6132 (\text{Row2})</td>
<td>14081 (\text{Row3})</td>
</tr>
<tr>
<td>4</td>
<td>51 (\text{Chu1})</td>
<td>634 (\text{XXER})</td>
<td>4073 (\text{Row3})</td>
<td>21302 (\text{Row3})</td>
<td>84623 (\text{Row3})</td>
<td>168002 (\text{Row3})</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>162 (\text{Ex10})</td>
<td>4176 (\text{Row1})</td>
<td>38914 (\text{Row3})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>538 (\text{FreSw})</td>
<td>32006 (\text{Row1})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1682 (\text{FreSw})</td>
<td>160024 (\text{Row1})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>5288 (\text{Row3})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table X. Known lower bounds for small parameter diagonal multicolor Ramsey numbers \(R_r(m) \), with references.

A general construction of linear Ramsey graphs as described by Rowley \:[R, 2, R, 3]\] in 2020 leads to lower bounds in higher cases, such as \(R_6(6) \geq 4515702 \). Other lower bounds, implied by general constructions such as those in section 6.2, are not listed.
The most studied and intriguing open case is

\[[\text{Chu1}] \quad 51 \leq R_4(3) = R(3, 3, 3, 3) \leq 62 \quad [\text{FeKR}] \]

The construction for \(51 \leq R_4(3) \) as described in [Chu1] is correct, but be warned of a typo found by Christopher Frederick in 2003 (there is a triangle \((31,7,28)\) in color 1 in the displayed matrix). It was shown that the bound 51 cannot be improved by using group partitioning into disjoint union of symmetric product-free sets [Ana]. The inequality 6.1.a implies \(R_4(3) \leq 66 \), Folkman [Fol] in 1974 improved this bound to 65, and Sánchez-Flores [Sán] in 1995 proved \(R_4(3) \leq 64 \).

The upper bounds in \(162 \leq R_5(3) \leq 307 \), \(538 \leq R_6(3) \leq 1838 \), \(1682 \leq R_7(3) \leq 12861 \), \(128 \leq R_3(4) \leq 230 \) and \(634 \leq R_4(4) \leq 6306 \) are implied by 6.1.a (we repeat lower bounds from Table X just to see easily the ranges). All the latter and other upper bounds obtainable from known smaller bounds and 6.1.a can be computed with the help of a LISP program written by Kerber and Rowat [KerRo].

Off-Diagonal Cases

Three colors:

<table>
<thead>
<tr>
<th>(m)</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k)</td>
<td>(30)</td>
<td>(45)</td>
<td>(61)</td>
<td>85</td>
<td>103</td>
<td>129</td>
<td>150</td>
<td>174</td>
<td>194</td>
<td>217</td>
<td>242</td>
<td>269</td>
<td>291</td>
</tr>
<tr>
<td>3</td>
<td>Ka2</td>
<td>Ex2</td>
<td>ExT</td>
<td>Ex18</td>
<td>Ex18</td>
<td>ExT</td>
<td>ExT</td>
<td>Ex17</td>
<td>Ex17</td>
<td>Ex17</td>
<td>6.2.g</td>
<td>Ex17</td>
<td>ExT</td>
</tr>
<tr>
<td>4</td>
<td>55</td>
<td>89</td>
<td>117</td>
<td>152</td>
<td>193</td>
<td>242</td>
<td>ExT</td>
<td>ExT</td>
<td>ExT</td>
<td>ExT</td>
<td>ExT</td>
<td>Ex17</td>
<td>Ex17</td>
</tr>
<tr>
<td>5</td>
<td>89</td>
<td>139</td>
<td>181</td>
<td>241</td>
<td>6.2.g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table XI. Known nontrivial lower bounds for 3-color Ramsey numbers of the form \(R(3, k, m) \), with references. See also 6.1.b/c/d below.

(b) In addition to Table XI, the bounds \(303 \leq R(3, 6, 6) \), \(609 \leq R(3, 7, 7) \) and \(1689 \leq R(3, 9, 9) \) were derived in [XXER] (used there for building other lower bounds for some diagonal cases). These three bounds were improved to 314, 623 and 1739, respectively, by Rowley [Row2].

(c) In several past revisions of this survey we wrote: "The other most studied, and perhaps the only open case of a classical multicolor Ramsey number, for which we can anticipate exact evaluation in the not-too-distance future is

\[[\text{Ka2}] \quad 30 \leq R(3, 3, 4) \leq 31 \quad [\text{PR1, PR2}] \]

In [PR1] it was conjectured that \(R(3, 3, 4) = 30 \), and the results in [PR2] eliminate some cases which could give \(R(3, 3, 4) = 31 \). Since 2016, we can write that \(R(3, 3, 4) = 30 \) due to the computations completed by Codish, Frank, Itzhakov and Miller [CodFIM].
(d) The upper bounds in the inequalities $45 \leq R(3, 3, 5) \leq 57$, $55 \leq R(3, 4, 4) \leq 77$ and $89 \leq R(3, 4, 5) \leq 158$ are implied by 6.1.a. We repeat lower bounds from Table XI to show explicitly the current ranges.

(e) In 2015, Exoo and Tatarevic obtained several lower bounds improvements which are marked as [ExT] in Table XI. The same paper improves also on several classical two-color cases in Table I, see also comments 2.1.n and 2.1.o.

Four colors:

$$
\begin{align*}
97 & \leq R(3, 3, 3, 4) \leq 149 & \text{[Ex17], 6.1.a} \\
174 & \leq R(3, 3, 4, 4) \leq 450 & \text{[Row2], 6.1.a} \\
381 & \leq R(3, 4, 4, 4) \leq 1577 & \text{6.2.j, 6.1.a} \\
162 & \leq R(3, 3, 3, 5) & \text{[XXER]} \\
513 & \leq R(3, 3, 3, 10) & \text{6.2.g} \\
597 & \leq R(3, 3, 3, 11) & \text{6.2.g} \\
693 & \leq R(3, 4, 5, 5) & \text{[Row2]}
\end{align*}
$$

Lower bounds for higher numbers can be obtained by using general constructive results from section 6.2 below. For example, the bounds $261 \leq R(3, 3, 15)$ and $247 \leq R(3, 3, 3, 7)$ were not published explicitly but are implied by 6.2.g and 6.2.h, respectively.

6.2. General results for complete graphs

(a) $R(k_1, \ldots, k_r) \leq 2 - r + \sum_{i=1}^{r} R(k_1, \ldots, k_{i-1}, k_i - 1, \ldots, k_r)$ [GG].

(b) $R_r(3) \geq 3R_{r-1}(3) + R_{r-3}(3) - 3$ [Chu1].

(c) $R_r(m) \geq c_m(2m - 3)^r$, and some slight improvements of this bound for small values of m were described in [AbbH, Gi1, Gi2, Song2]. For $m = 3$, the best known lower bound is $R_r(3) \geq (3.199\ldots)^r$ [XXER].

(d) $R_r(3) \leq r!(e - e^{-1} + 3)/2 \approx 2.67 r!$ [Wan] improved over the classical upper bound $3r!$ in [GG, GRS]. This was further improved to $R_r(3) \leq r!(e - 1/6) + 1 \approx 2.55 r!$ for all $r \geq 4$ [XuXC]. Drawing from the latter, further conditional upper bounds depending on the value of $R_4(3)$ were obtained in [Eli]. In particular, assuming that $R_4(3) = 51$, we have $R_r(3) \leq r!(e - 5/8) + 1 \approx 2.09 r!$ for all $r \geq 4$.

(e) The limit $L = \lim_{r \to \infty} r^{1/r}$ exists, though it can be infinite [ChGri]. It is known that $3.199 < L$, as implied by (c) above. The lower bounds on the limits $\lim_{r \to \infty} R_r(k)^{1/r}$ for small fixed k are gathered in [Row1, Row3], see also 6.2.v. The best lower bounds for $R_r(k)$ from the k-th residue Paley graphs for $k = 3$ and $k = 4$ are described in [LocMc], though they are much weaker than those in Table X. For some older related results,
mostly on the asymptotics of $R_r(3)$, see [AbbH, Fre, Chu2, GRS, GrRö].

(f) In 2020, the limit $\lim_{r \to \infty} R_r(3)^{1/r}$ was studied by Fox, Pach and Suk [FoxPS1] assuming a conjecture for multicolorings with bounded VC-dimension, and further for $\lim_{r \to \infty} R_r(k)^{1/r}$ when restricted to the so-called semi-algebraic colorings [FoxPS2].

(g) $R(3, k, l) \geq 4R(k, l-1) - 3$ for $k \geq 3$, $l \geq 5$, and in general for $r \geq 2$ and $k_i \geq 2$ it holds $R(3, k_1, \ldots, k_r) \geq 4R(k_1 - 1, k_2, \ldots, k_r) - 3$ for $k_1 \geq 5$, and $R(k_1, 2k_2 - 1, k_3, \ldots, k_r) \geq 4R(k_1 - 1, k_2, \ldots, k_r) - 3$ for $k_1 \geq 5$ [XuX2, XXER].

(h) $R(3, 3, 3, k_1, \ldots, k_r) \geq 3R(3, 3, k_1, \ldots, k_r) + R(k_1, \ldots, k_r) - 3$ [Rob2].

For $r+1$ colors, avoiding K_3 in the first r colors and avoiding K_m in the last color, $R(3, \ldots, 3, m) \leq r!m^{r+1}$ [Sár1].

(i) $R(k_1, \ldots, k_r) \geq S(k_1, \ldots, k_r) + 2$, where $S(k_1, \ldots, k_r)$ is the generalized Schur number [AbbH, Gi1, Gi2]. In particular, the special case $k_1 = \ldots = k_r = 3$ has been widely studied [Fre, FreSw, Ex10, Rob3].

(j) $R(k_1, \ldots, k_r) \geq L(k_1, \ldots, k_r) + 1$, where $L(k_1, \ldots, k_r)$ is the maximal order of any cyclic (k_1, \ldots, k_r)-coloring, which can be considered a special case of Schur partitions defining (symmetric) Schur numbers. Many lower bounds for Ramsey numbers were established by cyclic colorings. The following recurrence can be used to derive lower bounds for higher parameters. For $k_i \geq 3$ [Gi2],

$$L(k_1, \ldots, k_r, k_{r+1}) \geq (2k_{r+1} - 3)L(k_1, \ldots, k_r) - k_{r+1} + 2.$$

(k) $R_r(m) \geq p + 1$ and $R_r(m+1) \geq r(p+1)+1$ if there exists a K_m-free cyclotomic r-class association scheme of order p [Mat].

(l) If the quadratic residues Paley graph Q_p of prime order $p = 4t + 1$ contains no K_k, then $R(s, k+1, k+1) \geq 4ps - 6p + 3$ [XXER].

(m) $R_r(pq + 1) > (R_r(p+1) - 1)(R_r(q+1) - 1)$ [Abb1]

(n) $R_r(pq + 1) > R_r(p+1)(R_r(q+1) - 1)$ for $p \geq q$ [XXER]

(o) $R(p_1q_1+1, \ldots, p_rq_r+1) > (R(p_1+1, \ldots, p_r+1)-1)(R(q_1+1, \ldots, q_r+1)-1)$ [Song3]

(p) $R_{r+s}(m) > (R_r(m)-1)(R_s(m)-1)$ [Song2]

(q) $R(k_1, k_2, \ldots, k_r) > (R(k_1, \ldots, k_i) - 1)(R(k_{i+1}, \ldots, k_r) - 1)$ in [Song1], see [XXER].

(r) $R(k_1, k_2, \ldots, k_r) > (k_1 + 1)(R(k_2 - k_1 + 1, k_3, \ldots, k_r) - 1)$ [Rob4].

(s) Further lower bound constructions, though with more complicated assumptions, were presented in [XuX2, XXER].

(t) Golomvuz [Gro1] generalized the classical constructive lower bound by Frankl and Wilson [FraWi] (item 2.3.6) to more colors and to hypergraphs [Gro3] (item 7.4.m).

(u) $R(n, n, n) \leq R(n-2, n, n) + 8R(n-1, n-1, n) - 6$ for $n \geq 3$ [HTHZ2].

(v) A conjecture that $R(k_1, k_2, \ldots, k_r) \geq R(k_1, k_2, \ldots, k_{r-2}, k_{r-1} - 1, k_r + 1)$ holds for all $k_r \geq k_{r-1} \geq 3$ (called DC), its implications, evidence for validity, and related problems
For two-color case see also item 2.3.f. If we set $L_k = \lim_{r \to \infty} R_r(k)^{1/r}$, then the limit L_k exists, finite or infinite, for every $k \geq 3$ [ChGri]. If DC holds, then all L_k’s are finite or all of them are infinite [LiaRX]. See also 6.2.e.

(w) In 2020, Conlon and Ferber [ConFer] showed constructively that $R_3(k) > 2^{7k/8+o(k)}$ and $R_4(k) > 2^{k/23^{k/8+o(k)}}$, and they discussed more general best known lower and upper bounds on $R_r(k)$. An improvement to their construction by Wigderson [Wig] yields $R_r(k) \geq (2^{3r/8-1/4})^{k-o(k)}$, for any fixed $r \geq 2$.

(x) Exact asymptotics of a very special but important case is known, namely we have $R(3, 3, n) = \Theta(n^3 \text{poly-log} n)$ [AlRo]. Generalizations to other parameters and more colors [HeWi]. For earlier results on general upper bounds and more asymptotics see [Chu4, ChGra2, ChGri, GRS, GrRo].

All lower bounds in (b) through (t) above are constructive. Item (h) generalizes (b), (o) generalizes both (m) and (q), and (q) generalizes (p). (n) is stronger than (m). Finally, we note that the construction in (o) with $q_1 = \ldots = q_i = 1 = p_{i+1} = \ldots = p_r$ is the same as (q).

6.3. Cycles

Note: The paper *Ramsey Numbers Involving Cycles* [Ra4] is based on the revision #12 of this survey. It collects and comments on the results involving cycles versus any graphs, in two or more colors. It contains some more details than this survey, but only until 2009.

6.3.1. Three colors

(a) One long cycle.

The first larger paper in this area by Erdős, Faudree, Rousseau and Schelp [EFRS1] appeared in 1976. It gives several formulas and bounds for $R(C_m, C_n, C_k)$ and $R(C_m, C_n, C_k, C_l)$ for large m. For three colors [EFRS1] includes:

$$R(C_m, C_{2p+1}, C_{2q+1}) = 4m - 3 \quad \text{for} \; p \geq 2, \; q \geq 1,$$

$$R(C_m, C_{2p}, C_{2q+1}) = 2(m + p) - 3 \quad \text{and}$$

$$R(C_m, C_{2p}, C_{2q}) = m + p + q - 2 \quad \text{for} \; p, \; q \geq 1 \; \text{and large} \; m.$$

(b) Triple even cycles.

$R_3(C_{2m}) \geq 4m$ for all $m \geq 2$ [DzNS], see also 6.3.2.d/e/f. It was proven that $R(C_n, C_n, C_n) = (2 + o(1))n$ for even n [FiŁu1, GyRSS], which was improved to exactly $2n$, for large n, by Benevides and Skokan [BenSk]. In 2005, Dzido [Dzi1] conjectured that $R_3(C_{2m}) = 4m$ for all $m \geq 3$. The first open case is for $R_3(C_{10})$, known to be at least 20. A more general result holds for some off-diagonal cases [FiŁu1]:

$$R(C_{2[\alpha_1n]}, C_{2[\alpha_2n]}, C_{2[\alpha_3n]}) =$$

$$(\alpha_1 + \alpha_2 + \alpha_3 + \max\{\alpha_1, \alpha_2, \alpha_3\} + o(1))n, \; \text{for all} \; \alpha_1, \alpha_2, \alpha_3 > 0.$$
The conjectured equality $R_3(C_{2m}) = 4m$, whenever true, implies $R_3(P_{2m+1}) = 4m + 1$ [DyDR] (see also section 6.4). For general mixed-parity case see 6.3.1.d/e below.

<table>
<thead>
<tr>
<th>m</th>
<th>n</th>
<th>k</th>
<th>$R(C_m, C_n, C_k)$</th>
<th>references</th>
<th>general results</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>17</td>
<td>GG</td>
<td>2 critical colorings [KaSt, LayMa]</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>17</td>
<td>ExRe</td>
<td>$5k - 4$ for $k \geq 5$, $m = n = 3$ [Sun1+]</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>5</td>
<td>21</td>
<td>Sun1+/Tse3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>6</td>
<td>26</td>
<td>Sun1+</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>7</td>
<td>31</td>
<td>Sun1+</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>4</td>
<td>12</td>
<td>Schu</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>13</td>
<td>Sun1+/Rao/Tse3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>6</td>
<td>13</td>
<td>Sun1+/Tse3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>7</td>
<td>15</td>
<td>Sun1+/Tse3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>5</td>
<td>17</td>
<td>Tse3/LidP</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>6</td>
<td>21</td>
<td>Sun1+</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>7</td>
<td>25</td>
<td>Sun1+</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>6</td>
<td>15-18</td>
<td>LidP</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>7</td>
<td>21</td>
<td>Sun1+</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>11</td>
<td>BiaS</td>
<td>1000 critical colorings [Ra4]</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>5</td>
<td>12</td>
<td>Sun2+/Tse3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>6</td>
<td>12</td>
<td>Sun2+/Tse3</td>
<td>$k + 2$ for $k \geq 11$, $m = n = 4$ [Sun2+]</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>7</td>
<td>12</td>
<td>Sun2+/Tse3</td>
<td>values for $k = 8, 9, 10$ are 12, 13, 13 [Sun2+]</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>5</td>
<td>13</td>
<td>Tse3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>13</td>
<td>Sun1+</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>7</td>
<td>15</td>
<td>Sun1+</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>6</td>
<td>11</td>
<td>Tse3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>7</td>
<td>13</td>
<td>Sun1+/Tse3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>17</td>
<td>YR1</td>
<td>1701746176 critical colorings [Nar]</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>6</td>
<td>21</td>
<td>Sun1+</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>7</td>
<td>25</td>
<td>Sun1+</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>6</td>
<td>15-17</td>
<td>LidP</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>21</td>
<td>Sun1+</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>12</td>
<td>YR2</td>
<td>$R_3(C_{2q}) \geq 4q$ for $q \geq 2$ [DzNS]</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>7</td>
<td>15</td>
<td>Sun1+</td>
<td>see 6.3.1.a for larger parameters</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>7</td>
<td>25</td>
<td>FSS3</td>
<td>see 6.3.1.a for larger parameters</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>7</td>
<td></td>
<td></td>
<td>$R_3(C_{2q+1}) = 8q + 1$ for large q [KoSS1, KoSS2]</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
<td>16</td>
<td>Sun/SunY</td>
<td>$R_3(C_{2q}) = 4q$ for large q [BenSk]</td>
</tr>
</tbody>
</table>

Table XII. Ramsey numbers $R(C_m, C_n, C_k)$ for $m, n, k \leq 7$ and $m = n = k = 8$;
Sun1+ abbreviates SunYWLX, Sun2+ abbreviates SunYLZ2,
the work in [SunYWLX] and [SunYLZ2] is independent from [Tse3].

(c) Triple odd cycles.
Bondy and Erdős conjectured that $R(C_n, C_n, C_n) \leq 4n - 3$ for all $n \geq 4$ (see for example [Erd2]). If true, then for all odd $n \geq 5$ we have $R(C_n, C_n, C_n) = 4n - 3$. The first open case is for $R_3(C_9)$, known to be at least 33. Erdős [Erd3] and other authors credit this
conjecture to Bondy and Erdős, often pointing to a 1973 paper [BoEr]. Interestingly, however, the conjecture is not mentioned in this paper.

Łuczak proved that $R(C_n, C_n, C_n) \leq (4 + o(1))n$, with equality for odd n [Łuc]. The result $R_3(C_{2m+1}) = 8m + 1$ for all sufficiently large m, or equivalently $R(C_n, C_n, C_n) = 4n - 3$ for large odd n, was announced with an outline of the proof by Kohayakawa, Simonovits and Skokan [KoSS1], followed by the full proof in [KoSS2].

(d) Three mixed-parity cycles.

Ferguson [Ferg] shows that $R(C_m, C_n, C_k) = \max\{2m + n, 2n + m, (n + m)/2 + k - 2\}$, for all m, n, k sufficiently large, which generalizes and improves on all even case in [FiŁu1]. The reference [Ferg] consists of a Ph.D. thesis and three long arXiv preprints.

(e) Asymptotics for triples of cycles of mixed parity similar in form to (b) [FiŁu2].

(f) $R(C_3, C_3, C_k) = 5k - 4$ for $k \geq 5$ [SunYWLX], and $R(C_4, C_4, C_k) = k + 2$ for $k \geq 11$ [SunYLZ2]. All exceptions to these formulas for small k are listed in Table XII.

(g) Almost all of the off-diagonal cases in Table XII required the use of computers.

6.3.2. More colors

<table>
<thead>
<tr>
<th>m</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>17</td>
<td>11</td>
<td>17</td>
<td>12</td>
<td>25</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>51</td>
<td>62</td>
<td>33</td>
<td>77</td>
<td>18</td>
<td>49</td>
</tr>
<tr>
<td>5</td>
<td>162</td>
<td>307</td>
<td>27</td>
<td>29</td>
<td>65</td>
<td>26</td>
</tr>
<tr>
<td>6</td>
<td>538</td>
<td>1838</td>
<td>34</td>
<td>43</td>
<td>129</td>
<td>193</td>
</tr>
</tbody>
</table>

Table XIII. Known values and bounds for $R_k(C_m)$ for small k, m;

(a) For the entries in the row $k = 3$ and in the column $m = 3$ in Table XIII, more details and all corresponding references are in sections 6.3.1 and 6.1, respectively. The lower bounds for $m = 5, 7$ are implied by 6.3.2.1. The bound $R_4(C_5) \leq 158$ follows from 6.3.2.k, and using a reasoning as in [Li4] and the equality $R_3(C_5) = 17$ one can obtain $R_4(C_5) \leq 137$. The bound $R_4(C_5) \leq 77$ was obtained in 2020 with the help of flag algebras [LidP]. The references to other cases with $k, m \geq 4$ can be found below in this section.
For each c_3, there exists a positive constant such that for every $k \geq \text{fixed } m$

Bounds in (d)-(j) below cover different situations and each is interesting in some respect.

(d) $R_k(C_{2m}) \geq (k+1)m$ for odd k and $m \geq 2$, and $R_k(C_{2m}) \geq (k+1)m-1$ for even k and $m \geq 2$ [DzNS].

(e) $R_k(C_{2m}) \geq 2(k-1)(m-1) + 2$ [SunYXL].

(f) $R_k(C_{2m}) \geq k^2 + 2m - k$ for $2m \geq k+1$ and prime power k [SunYLS].

(g) $R_k(C_{2m}) = \Theta(k^{m/2(m-1)})$ for fixed $m = 2, 3$ and 5 [LiLih].

(h) $R_k(C_{2m}) \leq 201km$ for $k \leq 10^m/201m$ [ErdG].

(i) $R_k(C_{2m}) \leq 2km + o(m)$ for all fixed $k \geq 2$ [ŁucSS].

(j) $R_k(C_{2m}) \leq 2(k-c_k)m + o(m)$ for some small $c_k > 0$, for all fixed $k \geq 2$ [Sár2]. This was improved to an absolute constant $c = c_k = 1/4$ in [DavJR], and further to $c = 1/2$ in [KniSu]. See also 6.4.2.c.

(k) $R_k(C_{2}) < (18^k k!)^{1/2}/10$ [Li4].

(l) $2^k m < R_k(C_{2m+1}) \leq (k+2)!(2m+1)$ [BoEr].

Better upper bound $R_k(C_{2m+1}) < 2(k+2)!m$ was obtained in [ErdG].

Still better upper bound $R_k(C_{2m+1}) \leq (c^k k!)^{1/m}$, for some positive constant c, if all Ramsey-critical colorings for C_{2m+1} are not far from regular, was obtained in [Li4].

(m) For each fixed $m \geq 3$, there exists a positive constant c such that for every $k \geq 3$, $R_k(C_{2m+1}) < c^{k-1}m^{1/2+\delta}$, where δ is approaching 0 for large m [LinCh].

(n) $R_k(C_{2m+1}) \leq k2^k(2m+1) + o(m)$ for all fixed $k \geq 4$ [ŁucSS].

(o) Conjecture that $R_k(C_{2m+1}) = 2^k m + 1$ for all $m \geq 2$ was credited by several authors to Bondy and Erdős [BoEr], though only lower bound, not the conjecture, is in this paper.
After more than 40 years, in 2016, Jenssen and Skokan [JenSk] posted on arXiv a proof of the conjecture for each fixed k with sufficiently large m. On the other hand, the work by Day and Johnson [DayJ] shows that the lower bound of the conjecture does not hold for each m and sufficiently large k.

(p) $R(C_n, C_{l_1}, \ldots, C_{l_{k}}) = 2^k(n-1)+1$ for all l_i's odd with $l_i > 2^i$, and sufficiently large n, and support for the conjecture that $R_k(C_n) = 2^{k-1}(n-1)+1$ for large odd n [AllBS].

(q) $R_l(C_{\leq l+1}) = 2l + 3$ for all odd $l \geq 3$. For even l we have: $R_4(C_{\leq 5}) = 12$, $R_6(C_{\leq 7}) = 12$, and $R_l(C_{\leq l+1}) = 2l + 3$ for $l = 8, 10$ and 12 [ZhuSWZ].

(r) Progress of asymptotic bounds for $R_k(C_n)$ [Bu1, GRS, ChGra2, Li4, LiLih, ŁucSS].

(s) Survey of multicolor cycle cases [Li3].

6.3.3. Cycles versus other graphs

(a) Some cases involving C_4:
\[
20 \leq R(C_4, C_4, K_4) \leq 21 \quad \text{[DyDz1] [LidP]}
\]
\[
27 \leq R(C_3, C_4, K_4) \leq 32 \quad \text{[DyDz1] [XSR1]}
\]
\[
52 \leq R(C_4, K_4, K_4) \leq 71 \quad \text{[XSR1] [LidP]}
\]
\[
34 \leq R(C_4, C_4, C_4, K_4) \leq 48 \quad \text{[DyDz1] [LidP]}
\]
\[
43 \leq R(C_3, C_4, C_4, C_4, K_4) \leq 76 \quad \text{[DyDz1] [XSR1]}
\]
\[
87 \leq R(C_4, C_4, K_4, K_4) \leq 179 \quad \text{[XSR1]}
\]
\[
R(K_{1,3}, C_4, K_4) = 16 \quad \text{[KlaM2]}
\]
\[
R(C_4, C_4, K_4-e) = 16 \quad \text{[DyDz1]}
\]
\[
R(C_4, C_4, C_4, K_4) = 16 \text{ for } T=P_4 \text{ and } T=K_{1,3} \quad \text{[ExRe]}
\]

(b) Study of $R(C_n, K_{l_1}, \ldots, K_{l_k})$ and $R(C_n, K_{t_1, s_1}, \ldots, K_{t_k, s_k})$ for large n [EFRS1].

(c) $R(C_n, K_{l_1}, \ldots, K_{l_k}) = (n-1)(r-1)+1$ for $n \geq 4r+2$, where $r = R(K_{l_1}, \ldots, K_{l_k})$. This equality was obtained as a special case of more general results in [OmRa2]. Similar proof was presented later in [Mad]. Further, see items 6.6.f and 6.7.f.

(d) Study of asymptotics for $R(C_m, \ldots, C_m, K_n)$, in particular for any fixed number of colors $k \geq 4$ we have $R(C_4, C_4, \ldots, C_4, K_n) = \Theta(n^2/\log^2 n)$ [AlRö].

(e) Study of asymptotics for $R(C_{2m}, C_{2m}, K_n)$ for fixed m [AlRö, ShiuLL], in particular $R(C_4, C_4, K_n) = \Theta(n^2 \text{poly-log } n)$ [AlRö].

(f) Study of the general upper bound on $R(C_4, \ldots, C_4, K_{1,n})$, which for 3 colors implies $R(C_4, C_4, K_{1,n}) \leq n + 3 + \left[\sqrt{4n+5}\right]$ [ZhaCC4].

(g) Study of $R(C_4, K_{1,m}, P_n)$ [ZhZC, SunSh].

(h) Monotone paths and cycles [Lef].

(i) For combinations of C_3 and K_n see sections 2.2, 3.2, 4.2, 6.1 and 6.2.
6.4. Paths, paths versus other graphs

In 2007, Gyárfás, Ruszinkó, Sárközy and Szemerédi [GyRSS] established that for all n large enough we have

$$R(P_n, P_n, P_n) = 2n - 2 + (n \mod 2).$$

Faudree and Schelp [FS2] conjectured that the latter holds for all $n \geq 1$. It is true for $n \leq 9$ (see (c) below), and the first open case is that for P_{10}. The conjectured equality $R(C_{2m}, C_{2m}, C_{2m}) = 4m$ (see 6.3.1.a), whenever true, implies the above for three paths P_{2m+1} [DyDR].

6.4.1. Three-color path and path-cycle cases

(a) $R(P_m, P_n, P_k) = m + \lfloor n/2 \rfloor + \lfloor k/2 \rfloor - 2$ for $m \geq 6(n + k)^2$ [FS2],

the equality holds asymptotically for $m \geq n \geq k$ with an extra term $o(m)$ [FiŁu1], extensions of the range of m, n, k for which (a) holds were obtained in [Biel3].

(b) $R(P_3, P_m, P_n) = m + \lfloor n/2 \rfloor - 1$ for $m \geq n$ and $(m, n) \neq (3, 3), (4, 3)$ [MaORS2].

(c) $R_3(P_3) = 5$ [Ea1], $R_3(P_4) = 6$ [Ir],

$R(P_m, P_n, P_k) = 5$ for other $m - n - k$ combinations with $3 \leq m, n, k \leq 4$ [ArKM],

$R_3(P_5) = 9$ [YR1], $R_3(P_6) = 10$ [YR1], and $R_3(P_7) = 13$ [YY],

$R_3(P_8) = 14, R_3(P_9) = 17$ [DyDR].

(d) $R(P_4, P_4, P_{2n}) = 2n + 2$ for $n \geq 2$,

$R(P_5, P_5, P_5) = R(P_5, P_5, P_6) = 9$,

$R(P_5, P_5, P_n) = n + 2$ for $n \geq 7$,

$R(P_5, P_6, P_n) = R(P_4, P_6, P_n) = n + 3$ for $n \geq 6$,

$R(P_6, P_6, P_{2n}) = R(P_4, P_8, P_{2n}) = 2n + 4$ for $n \geq 14$ [OmRa1].

(e) $R(P_m, P_n, C_k) = 2n + 2 \lfloor m/2 \rfloor - 3$ for large n and odd $m \geq 3$ [DzFi2],

improvements on the range of m, n, k [Biel3, Fid1].

(f) $R(P_3, P_3, C_m) = 5, 6, 6$ for $m = 3, 4$ [ArKM], 5,

$R(P_3, P_3, C_m) = m$ for $m \geq 6$ [Dzi2].

$R(P_3, P_4, C_m) = 7$ for $m = 3, 4$ [ArKM] and 5,

$R(P_3, P_4, C_m) = m + 1$ for $m \geq 6$ [Dzi2].

$R(P_4, P_4, C_m) = 9, 7, 9$ for $m = 3, 4$ [ArKM] and 5 [Dzi2],

$R(P_4, P_4, C_m) = m + 2$ for $m \geq 6$ [DzKP].

(g) $R(P_3, P_5, C_m) = 9, 7, 9, 7$ for $m = 3, 4, 5, 6, 7$ [Dzi2, DzFi2],

$R(P_3, P_5, C_m) = m + 1$ for $m \geq 8$ [DzKP].

A table of $R(P_3, P_k, C_m)$ for all $3 \leq k \leq 8$ and $3 \leq m \leq 9$ [DzFi2].

(h) $R(P_4, P_5, C_m) = 11, 7, 11, 11$ and $m + 2$ for $m = 3, 4, 5, 7$ and $m \geq 23$,

$R(P_4, P_6, C_m) = 13, 8, 13, 13, and m + 3$ for $m = 3, 4, 5, 7 and m \geq 18$ [ShaXSP].
(i) $R(P_3, P_n, C_4) = n + 1$ for $n \geq 6$ [DzFi2],
$R(P_3, P_n, C_6) = n + 2$ for $n \geq 6$,
$R(P_3, P_n, C_8) = n + 3$ for $n \geq 7$ [Fid1],
$R(P_3, P_n, C_k) = 2n - 1$, and
$R(P_4, P_n, C_k) = 2n + 1$ for odd $k \geq 3$ and $n \geq k$ [DzFi2].

(j) $R(P_3, P_6, C_m) = m + 2$ for $m \geq 23$,
$R(P_6, P_6, C_m) = R(P_4, P_8, C_m) = m + 4$ for $m \geq 27$,
$R(P_6, P_7, C_m) = m + 4$ for $m \geq 57$,
$R(P_4, P_n, C_4) = R(P_5, P_n, C_4) = n + 2$ for $n \geq 5$ [OmRa1].

(k) $R(P_3, C_3, C_3) = 11$ [BuE3], $R(P_3, C_4, C_4) = 8$ [ArKM], $R(P_3, C_6, C_6) = 9$ [Dzi2],
$R(P_3, C_m, C_m) = R(C_m, C_m) = 2m - 1$ for odd $m \geq 5$ [DzKP] (for $m = 5, 7$ [Dzi2]),

(l) $R(P_3, C_n, C_m) = R(C_n, C_m)$ for $n \geq 7$ and odd m, $5 \leq m \leq n$, and
some values and bounds on $R(P_3, C_n, C_m)$ in other cases [Fid1].

(m) $R(P_3, C_3, C_4) = 8$ [ArKM], $R(P_3, C_3, C_5) = 9$, $R(P_3, C_3, C_6) = 11$,
$R(P_3, C_3, C_7) = 13$, $R(P_3, C_4, C_5) = 8$, $R(P_3, C_4, C_6) = 8$,
$R(P_3, C_4, C_7) = 8$, $R(P_3, C_5, C_6) = 11$, $R(P_3, C_5, C_7) = 13$ and
$R(P_3, C_6, C_7) = 11$ [Dzi2].

(n) $R(P_4, C_3, C_5) = 13$, $R(P_4, C_4, C_5) = 10$, $R(P_4, C_4, C_6) = 9$,
$R(P_4, C_5, C_5) = 13$, $R(P_4, C_6, C_6) = 10$ [SunSh].

(o) A formula for $R(P_m, P_n, C_k)$ for k large enough and m, n satisfying some constraints.
In addition, some cases involving tK_2 instead of C_k are derived as side results [KhoDz].

(p) Study of $R(P_n, C_4, K_{1,m})$ [ZhZC, SunSh].

(q) Formulas for $R(pP_3, qP_3, rP_3)$ and $R(pP_4, qP_4, rP_4)$ [Scob].

(r) $R(P_3, K_4-e, K_4-e) = 11$ [Ex7]. All colorings which can form any color neighborhood for the case $R_3(K_4-e)$ (see section 6.5) were found in [Piw2].

6.4.2. More colors

(a) $R_k(P_3) = k + 1 + (k \mod 2)$, $R_k(2P_2) = k + 3$ for all $k \geq 1$ [Ir].

(b) $R_k(P_4) = 2k + c_k$ for all k and some $0 \leq c_k \leq 2$. If k is not divisible by 3 then $c_k = 3 - k \mod 3$ [Ir]. Wallis [Wall] showed $R_6(P_4) = 13$, which already implied $R_3t(P_4) = 6t + 1$, for all $t \geq 2$. Independently, the case $R_k(P_4)$ for $k \neq 3^m$ was completed by Lindström in [Lind], and later Bierbrauer proved $R_3w(P_4) = 2(3^m) + 1$ for all $m > 1$. $R_3(P_4) = 6$ [Ir].

(c) $R_k(P_n) \leq (k-c_k)n + o(m)$ for some small $c_k > 0$, for all fixed $k \geq 2$ [Sár2]. This was improved to an absolute constant $c = c_k = 1/4$ in [DavJR], and further to $c = 1/2$ in [KniSu]. See also 6.3.2.j/o.
(d) Formula for $R(P_{n_1}, \ldots, P_{n_k})$ for large n_1 [FS2], and some extensions [Biel3].
Conjectures about $R(P_{n_1}, \ldots, P_{n_k})$ when all or all but one of n_i’s are even [OmRa1].

(e) Formulas for $R(P_{n_1}, \ldots, P_{n_k}, C_m)$ for some cases, for large m [OmRa1].

(f) Formula for $R(n_1 P_2, \ldots, n_k P_2)$, in particular $R(n_1 P_2, n_2 P_2, n_3 P_2) = 4n - 2$ [CocL1].
New proof with characterization of all critical graphs [XuYZ]. Note how close the latter is to $R(C_2 n, C_2 n, C_2 n) = 4n$, and see an earlier item 6.3.1.b.

(g) Cockayne and Lorimer [CocL1] found the exact formula for $R(n_1 P_2, \ldots, n_k P_2)$, and later Lorimer [Lor] extended it to a more general case of $R(K_m, n_1 P_2, \ldots, n_k P_2)$. More general cases of the latter, with multiple copies of the complete graph, paths, stars and forests, were studied in [Stahl, LorSe, LorSo, GyRSS]. A special 3-color case $R(P_3, m P_2, n P_2) = 2m + n - 1$ for $m \geq n \geq 3$ is given in [MaORS2], and some other cases in [KhoDz]. The general case of multicolor combinations of stars and stripes is completed in [OmRR]. Ramsey numbers for path-matchings and covering designs, generalizing $R(n_1 P_2, \ldots, n_k P_2)$, are studied in [DeBGS].

(h) Multicolor cases for one large path or cycle involving small paths, cycles, complete and complete bipartite graphs [EFRS1].

(i) See sections 6.5 and 8.2, especially [ArKM, BoDD], for a number of cases for triples of small graphs.

6.5. Special cases

Denote $K_3 + e = K_4 - P_3$.

- $R_3(K_3 + e) = R_3(K_3)$ \[= 17\] [YR3, ArKM]
- $R(K_3 + e, K_3 + e, K_4 - e) = R(K_3, K_3, K_4 - e) = 17$ [ShWR]
- $R(K_3 + e, K_3 + e, K_5 - P_3) = R(K_3, K_3, K_4)$ \[= 30\] [ShWR]

If $R_4(K_3) = 51$ then $R_4(K_3 + e) = 52$, and if $R_4(K_3) > 51$ then $R_4(K_3 + e) = R_4(K_3)$ [ShWR]

- $R_3(K_4 - e) = 28$ [Ex7] [LidP]
- $R(P_3, K_4 - e, K_4 - e) = 11$ [Ex7], all colorings [Piw2]
- $R(P_3, K_4 - e, K_4) = 17$ [ArKM]
- $R(P_3, K_4, K_4) = 35$ [BuE3], special case of 6.7.d

- $472 \leq R_3(K_6 - e)$ [HeLD]
- $1102 \leq R_3(K_7 - e)$ [HeLD]

- $21 \leq R(K_3, K_4 - e, K_4 - e) \leq 22$ [ShWR] [LidP]
- $31 \leq R(K_3, K_4, K_4 - e) \leq 40$ [VO] [LidP]
- $33 \leq R(K_4, K_4 - e, K_4 - e) \leq 47$ [ShWR] [LidP]
- $55 \leq R(K_4, K_4, K_4 - e) \leq 94$ [Ea1] [LidP]
6.6. General results for special graphs

(a) Formulas for $R_k(G)$, where G is one of the graphs P_3, $2K_2$ and $K_{1,3}$, for all k, and for P_4 if k is not divisible by 3 [Ir]. For some details see section 6.4.2.b.

(b) $tk^2 + 1 \leq R_k(K_{2,t+1}) \leq tk^2 + k + 2$, where the upper bound is general, and the lower bound holds when both t and k are prime powers [ChGrAl, LaMu].

(c) $(m-1)(k+1)/2 < R_k(T_m) \leq 2km + 1$ for any tree T_m with m edges [ErdG], see also [GRS]. The lower bound can be improved for special large k [ErdG, GRS]. The upper bound was improved to $R_k(T_m) < (m-1)(k+\sqrt{k(k-1)}) + 2$ in [GyTu].

(d) $k(\sqrt{m} - 1)/2 < R_k(F_m) < 4km$ for any forest F_m with m edges [ErdG], see [GRS]. See also pointers in items (p) and (r) below.

(e) $R(S_1, \ldots, S_k) = n + \epsilon$, where S_i’s are arbitrary stars, $n = n(S_1) + \ldots + n(S_k) - 2k$, and we set $\epsilon = 1$ if n is even and some $n(S_i)$ is odd, and $\epsilon = 2$ otherwise [BuRo1]. See also [GauST, Par6]. Note that for graph G (here the set of edges in a given color), to avoid star $S = K_{1,n}$, is equivalent to have $\delta(G) < n$.

(f) Formula for $R(S_1, \ldots, S_k, K_r)$, where S_i’s are arbitrary stars [Jaco]. It was generalized to a formula for $R(S_1, \ldots, S_k, K_{k_1}, \ldots, K_{k_r})$ expressed in terms of $R(k_1, \ldots, k_r)$ and star orders [BoCG1]. A much shorter proof of the latter was presented in [OmRa2]. Special cases for bistars [AlmHS], and bounds for stars and trees instead of stars [Bai].

(g) Formula for $R(S_1, \ldots, S_k, nK_2)$, where S_i’s are arbitrary stars [CocL2], and a formula for $R(n_1K_2, \ldots, n_kK_2)$ [CocL1]. A new proof with characterization of all critical graphs [XuYZ]. See also cases involving P_2 in section 6.4.2.

(h) Formula for $R(S_1, \ldots, S_k, G)$, where S_i’s are stars and G is a tree [ZhZ1], or G is a cycle or wheel [RaeZ], for G of some orders depending on stars. Extension of these results to larger ranges of orders of G, and for G being a path [Wang]. Special cases when S_i’s are trees and G is a wheel [RaeZ].

(i) Formulas for $R(S_1, \ldots, S_k)$, where each S_i’s is a star or m_iK_2 [ZhZ2, ErdG, OmRR], formula for the case $R(S, mK_2, nK_2)$ [GySa2].
(j) Formula for $R(F, K_{k_1}, \ldots, K_{k_r})$ in terms of $R(K_{k_1}, \ldots, K_{k_r})$ and the size and structure of any forest F [KamRa]. This corrects a claim in an earlier version of [AlmBCL]. The latter studies the concept of p-goodness.

(k) Bounds on $R_k(G)$ for unicyclic graphs G of odd girth. Some exact values for special graphs G, for $k=3$ and $k=4$ [KrRod].

(l) For prime $p = 3q + 1$, if the cubic residues Paley graph Q_p contains no $K_k - e$, then $R_3(K_{k+1} - e) > 3p$ [HeLD]. The cases $k=5$ and $k=6$ give two bounds listed in section 6.5. Also based off Paley graphs, several new lower bounds for $R_3(K_1 + G)$, and in particular for $R_3(B_n)$, were derived in [LinS].

(m) $R_k(K_{3,3}) = (1 + o(1))k^3$ [AlRoS].

(n) Bounds on $R_k(K_{s,t})$, in particular for $K_{2,2} = C_4$ and $K_{2,t}$ [ChGra1, AxFM]. Asymptotics of $R_k(K_{s,t})$ for fixed k and s [DoLi, LiTZ]. Upper bounds on $R_k(K_{s,t})$ [SunLi].

(o) Exact asymptotics $R(K_t, s, \ldots, K_t, s, K_m) = \Theta(m^t / \log^t m)$, for any fixed $t > 1$ and large $s \geq (t - 1)! + 1$ [AlRo].

(p) Variety of asymptotic results on $R(K_{2,s}, \ldots, K_{2,s}, K_m)$ [LeMu].

(q) Bounds on $R_k(G)$ for trees, forests, stars and cycles [Bu1].

(r) If T_n is the set of all n-vertex trees (and all monochromatic n-vertex trees are avoided), then $R_3(T_n) = 2n - 2$ for even n, and $R_3(T_n) = 2n - 1$ for odd n [GeGy].

(s) Bounds for trees $R_k(T)$ and forests $R_k(F)$ [ErdG, GRS, BierB, GyTu, Bra1, Bra2, SwPr].

(t) $R_3(G_{a,b}) = (2 + o(1))ab$, where $G_{a,b}$ is the rectangular $a \times b$ grid graph. Lower and upper bounds on $R_3(G)$ for graphs G with small bandwidth and bounded $\Delta(G)$ [MoSST].

(u) Study of the case $R(K_m, n_1P_2, \ldots, n_kP_2)$ [Lor]. Other similar results include $R(P_3, mK_2, nK_2) = 2m + n - 1$ for $m \geq n \geq 3$ [MaORS2] and $R(S_n, nK_2, nK_2) = 3n - 1$ [GySa2]. More general cases, with multiple copies of the complete graph, stars and forests, were investigated in [Stahl, LorSe, LorSo, GyRSS, OmRR]. See also section 6.4.2.

(v) See section 8.2, especially [ArKM, BoDD], for a number of cases for other small graphs, similar to those listed in sections 6.3 and 6.4.

6.7. General results

(a) In 2020, the limit $\lim_{r \to \infty} R_r(3)^1/r$ was studied by Fox, Pach and Suk [FoxPS1] assuming a conjecture for multicolorings with bounded VC-dimension, and further for $\lim_{r \to \infty} R_r(k)^1/r$ when restricted to the so-called semi-algebraic colorings [FoxPS2].

(b) Szemerédi’s Regularity Lemma [Szem] states that the vertices of every large graph can be partitioned into similar size parts so that the edges between these parts behave almost randomly. This lemma has been used extensively in various forms to prove the upper
bounds, including those studied in [BenSk, GyRSS, GySS1, HaŁP1+, HaŁP2+, KoSS1, KoSS2].

(c) \(R(m_1G_1, \ldots, m_kG_k) \leq R(G_1, \ldots, G_k) + \sum_{i=1}^{k} n(G_i)(m_i - 1) \), exercise 8.3.28 in [West].

(d) If \(G \) is connected and \(R(K_{k}, G) = (k-1)(n(G)-1) + 1 \), in particular if \(G \) is any \(n \)-vertex tree, then \(R(K_{k_1}, \ldots, K_{k_r}, G) = (R(k_1, \ldots, k_r) - 1)(n - 1) + 1 \) [BuE3]. A generalization for connected \(G_1, \ldots, G_n \) in place of \(G \) appeared in [Jaco].

(e) Conjecture that \(R_3(H) \leq 2^{A(H)-n} \), where \(A = \Delta(H) \) [ConFS7].

(f) For connected graphs \(G_1, \ldots, G_s \) with \(s = R(G_1, \ldots, G_n) \) and \(t = R(K_{k_1}, \ldots, K_{k_r}) \), if \(m \geq 2 \) and \(R(G_1, \ldots, G_n, G_k) = (s-1)(m-1) + 1 \), then \(R(G_1, \ldots, G_n, K_{k_1}, \ldots, K_{k_r}) = (s-1)(t-1) + 1 \) [OmRa2]. This generalizes a result in [BoCGR]. The same result was presented much later in [Mad].

(g) If \(F, G, H \) are connected graphs then \(R(F, G, H) \geq R(F, G, H - 1)(\chi(H) - 1) + \min\{ R(F, G), s(H) \} \), where \(s(G) \) is the chromatic surplus of \(G \) (see item [Bu2] in section 5.16). This leads to several formulas and bounds for \(F \) and \(G \) being stars and/or trees when \(H = K_n \) [ShiuLL].

(h) \(R(K_{k_1}, \ldots, K_{k_r}, G_1, \ldots, G_s) \geq R(k_1, \ldots, k_r)(R(G_1, \ldots, G_s) - 1) \) for arbitrary graphs \(G_1, \ldots, G_s \) [Bev]. This generalizes 6.2.q, but is a special case of 6.7.f.

(i) Constructive bound \(R(G_1, \ldots, G_{n-1}) \geq t^n + 1 \) for decompositions of \(K_n \) [LaWo1, LaWo2].

(j) \(R(G_1, \ldots, G_k) \leq 32\Delta k^{\Delta} n \), where \(n \geq n(G_i) \) and \(\Delta \geq \Delta(G_i) \) for all \(1 \leq i \leq k \), \(R(G_1, \ldots, G_k) \leq k^{2\Delta q} n \), where \(q \geq \chi(G_i) \) for all \(1 \leq i \leq k \) [FoxSu1].

(k) \(R_k(G) \leq k^{6e(G)/v_k^3} \) for all isolate-free graphs \(G \) and \(k \geq 3 \) [JoPe].

For the original two-color conjecture, now a theorem, see item 5.16.j [Erd4].

(l) \(R_k(G) \geq (sk^{e(G) - 1})^{1/n(G)} \), where \(s \) is the number of automorphisms of \(G \) [ChH3]. Other general bounds for \(R_k(G) \) [ChH3, Par6].

(m) Study of \(R(G_1, \ldots, G_k, G) \) for large sparse \(G \) [EFRS1, Bu3].

(n) Study of asymptotics for \(R(H, \ldots, H, K_m) \), in particular when \(H \) is a fixed bipartite graph, and for \(R(C_n, \ldots, C_n, K_m) \) [AlRö]. See also sections 6.3.3.d/e.

(o) Relations between the Shannon capacity of noisy communication channels and graph Ramsey numbers. A lower bound construction for \(R_k(m) \) implying that supremum of the Shannon capacity over all graphs with bounded independence cannot be achieved by any finite graph power [XuR3]. For some other links between Shannon capacity and Ramsey numbers see section 6 in [Ros2], and [Li2].

(p) See surveys listed in section 8.
7. Hypergraph Numbers

7.1. Values and bounds for numbers

The only known value of a classical Ramsey number for hypergraphs:

\[R(4, 4 ; 3) = 13 \quad \text{[MR1]} \]

there are exactly 434714 critical colorings on 12 points, none of which extends to a 2-coloring of all triples in \(K_{13} - t \) without monochromatic \(K_4 \) \[McK2\]

The computer evaluation of \(R(4, 4 ; 3) \) in 1991 consisted of an improvement of the upper bound from 15 to 13. This result followed an extensive theoretical study of this number by several authors [Gi4, Isb1, Sid1].

(a) \[35 \leq R(4, 5 ; 3) \quad \text{[Dyb2]} \]
\[63 \leq R(4, 6 ; 3) \quad \text{[Dyb3]} \]
\[88 \leq R(5, 5 ; 3) \quad \text{[Dyb3]} \]
\[79 \leq R(4, 4, 4 ; 3) \quad \text{[Dyb3]} \]
\[34 \leq R(5, 5 ; 4) \quad \text{[Ex11]} \]
\[163 \leq R(5, 5, 5 ; 3) \quad \text{[BudHR1]} \]

The last bound can be much improved to \(7570 \leq R(5, 5, 5 ; 3) \) by using \(88 \leq R(5, 5 ; 3) \) and a general constructive result in [BrBH], which yields \(R_k(5; 3) \geq 872^{k-2} \).

(b) \[R(K_4 - t, K_4 - t ; 3) = 7 \quad \text{[Ea2]} \]
\[R(K_4 - t, K_4 ; 3) = 8 \quad \text{[Sob, Ex1, MR1]} \]
\[R(K_4 - t, K_5 - t ; 3) \leq 12 \quad \text{[LidP]} \]
\[14 \leq R(K_4 - t, K_5 ; 3) \leq 16 \quad \text{[Ex1] [LidP]} \]
\[13 \leq R(K_4 - t, K_4 - t, K_4 - t ; 3) \leq 14 \quad \text{[Ex1] [LidP]} \]

(c) The first bound on \(R(4, 5 ; 3) \geq 24 \) was obtained by Isbell [Isb2]. Shastri [Shas] gave a weak bound \(R(5, 5 ; 4) \geq 19 \) (now 34 in [Ex11]), nevertheless his lemmas, the stepping-up lemmas by Erdős and Hajnal (see [GRS, GrRö], also item 7.4.a), and others in [Ka3, Abb2, GRS, GrRö, HuSo, SonYL] can be used to derive better lower bounds for higher numbers.

(d) Several lower bound constructions for 3-uniform hypergraphs were presented in [HuSo]. Study of lower bounds on \(R(p, q ; 4) \) can be found in [Song3] and [SonYL, Song4] (the latter two papers are almost the same in contents). Most of the concrete lower bounds in these papers can be easily improved by using the same techniques, but starting with better constructions for small parameters as listed above.

(e) \[R(p, q ; 4) \geq 2R(p - 1, q ; 4) - 1 \quad \text{for } p, q > 4, \text{ and} \]
\[R(p, q ; 4) \geq (p - 1)R(p - 1, q ; 4) - p + 2 \quad \text{for } p \geq 5, \quad q \geq 7 \quad \text{[SonYL].} \]
Lower bound asymptotics for \(R(p, q ; 4) \) [SonLi].

(f) Recurrence relations in the form \(R(p, q ; r) \geq d(R(p - 1, q ; r) - 1) + 1 \), where \(d \) depends on \(p, q \) and \(r \), including the following: There exists \(c \geq 25 \), such that for \(k, 5 \leq k \leq c, \) and any \(p \geq k + 2 \) and \(q \geq k + 1 \), we have \(R(p, q ; r) \geq (p - 1)(R(p - 1, q ; r) - 1) + 1 \) [Liu].
Such relations lead to the following bounds:

\[
\begin{align*}
R(5, 6; 4) & \geq 67, & R(6, 6; 4) & \geq 133, & R(7, 6; 4) & \geq 661, \\
R(7, 7; 4) & \geq 3961, & R(8, 8; 4) & \geq 194041, & R(13, 6; 4) & \geq 50689, \\
R(6, 6; 5) & \geq 72.
\end{align*}
\]

(g) \(R(K_{1, 1, c}, K_{1, 1, c}; 3) = c + 2\) for \(2 \leq c \leq 4\), and
a conjecture that this equality also holds for all \(c \geq 5\) \cite{MiPal}.

(h) Lower bound asymptotics for \(R(4, n; 3)\) \cite{ConFS2},
lower bound asymptotics for \(R(5, n; 4)\) \cite{MuSuk2, MuSuk3}, and
lower bound asymptotics for \(R(6, n; 4)\) \cite{MuSuk3}.

(i) Lower and upper bounds on \(R(K_4 - t, K_n; 3)\) \cite{ErdH, MuSuk2}. Extensions to \(r\)-half-
graph \(B'\), where \(B^3 = K_4 - t\) \cite{MuSuk2}.

(j) Several constructive lower bounds for hypergraph numbers, including constructions
which introduce a new color. In particular, they imply that \(R_k(5; 3)\) is equal to at least
82, 163, 131073, 262145 or 524289, for \(k = 2, 3, 4, 5\) and 6 colors, respectively
\cite{BudHR1}. Using 7.1.e and other known concrete lower bounds,
\(R(5, 6; 4) \geq 67\) and
\(R(4, 4, 5, 5, 5, 5; 3) \geq 17179869185\) are noted in \cite{BudHP}.

7.2. Cycles and paths

Definitions. \(P_n^r\) is called an \(s\)-path in an \(r\)-uniform hypergraph \(H\), if it consists of \(n\) hyperedges \(\{e_1, ..., e_n\}\) in \(E(H)\), such that \(|e_i \cap e_{i+1}| = s\) for all \(1 \leq i < n\), and all other vertices in \(e_j\)'s are distinct \cite{Peng}. An \(s\)-cycle \(C_n^r\) is defined analogously. Several authors use the terms of **loose** paths and **loose** cycles, which are 1-path and 1-cycles, and **tight** paths and **tight** cycles, the latter most often for 3-uniform hypergraphs when they are 2-paths and 2-cycles, respectively. A 3-uniform **Berge** cycle is formed by \(n\) distinct vertices, such that all consecutive pairs of vertices are in an edge of the cycle, and all of the cycle edges are distinct. Berge cycles are not determined uniquely.

In the following items (b) to (i), when \(r = 3\) or \(r \) is implied by the context, we write \(C_n\) and \(P_n\) for the \(r\)-uniform loose cycles and paths, \(C_n^r\) and \(P_n^r\), respectively. In other cases special comments are added.

Two colors

(a) Tetrahedron is formed by four triples on the set of four points. The Ramsey number of tetrahedron is \(R(4, 4; 3) = 13\) \cite{MR1}.

(b) For loose cycles and paths, \(R(C_3, C_3; 3) = 7, R(C_4, C_4; 3) = 9\), and for the \(r\)-uniform case we have in general \(R(P_3, P_3; r) = R(P_3, C_3; r) = R(C_3, C_3; r) + 1 = 3r - 1\) and
\(R(P_4, P_4; r) = R(P_4, C_4; r) = R(C_4, C_4; r) + 1 = 4r - 2\), for \(r \geq 3\). These results and discussion of several related cases were presented in \cite{GyRa}.

(c) \(R(P_m, P_n; 3) = R(C_m, C_n; 3) + 1 = R(P_m, C_n; 3) = 2m + \lfloor (n + 1)/2 \rfloor\), for all \(m \geq n\),
and \(R(C_m, P_n; 3) = 2m + \lfloor (n - 1)/2 \rfloor\), for \(m > n\) \cite{MaORS1, OmSh1}.
d) For loose cycles, $R(C_{2n}, C_{2n}; 3) > 5n - 2$ and $R(C_{2n+1}, C_{2n+1}; 3) > 5n + 1$, and asymptotically these lower bounds are tight [HaLP1+]. Generalizations to r-uniform hypergraphs and graphs other than cycles appeared in [GySS1].

e) For loose cycles, $R(C_n, C_n; r) = (r-1)n + \lceil (n-1)/2 \rceil$ for $n \geq 2$, $r \geq 8$ [OmSh2], and it also holds for $r=4$ [OmSh3]. Further extensions to off-diagonal cases as in (c) are obtained in [OmSh4]. Based on these results, it was conjectured that for $n \geq m \geq 3$ and $r \geq 3$, we have $R(C_n, C_m; r) = (r-1)n + \lfloor (m-1)/2 \rfloor$. In [Shah], the known cases of this conjecture are discussed, and it is shown that it holds for $r=5$ with large n.

f) For tight cycles, $R(C_{3n}, C_{3n}; 3) \approx 4n$ and $R(C_{3n+i}, C_{3n+i}; 3) \approx 6n$ for $i=1$ or 2, and for tight paths $R(P_n, P_n; 3) \approx 4n/3$ [HaLP2+]. Some related results are discussed in [PoRRS].

g) Exact values for Ramsey numbers involving s-paths for even r and $s = r/2$, in particular for $P^r_{n,s}$ versus $P^r_{3,s}$ and $P^r_{4,s}$, when this value is $(n+1)s + 1$ [Peng].

h) For 3-uniform Berge cycles and two colors, $R(C_n, C_n; 3) = n$ for $n \geq 5$ [GyLSS].

i) Lower and upper asymptotic bounds for $R(C_{3,1}^3, K_m; 3)$ and $R(C_{5,1}^5, K_m; r)$ [KosMV2].

j) Lower and upper asymptotic bounds for $R(C_s, K_m; 3)$ for tight cycles C_s [MuR]. An improvement of the upper bound from the latter [Mub1].

k) Gyárfás, Sárközy and Szemerédi proved that, for sufficiently large n, every 2-coloring of the edges of the complete 4-uniform hypergraph K_n contains a monochromatic 3-tight Berge cycle C_n [GySS2]. Exact formulas and bounds for Berge-K_n hypergraphs, including higher uniformity r [SaTWZ].

l) Upper bounds on asymptotics of $R(C^1_{r,1}, K_m; r)$ for even and odd n [ColGJ]. Improvements of the results from the latter, in particular for the case of $n=5$ and $r=3$, and for general n [Mér].

m) Summary of known values and ranges for hypergraph numbers for loose paths (and some other trees) versus complete hypergraphs, $R(P_m, K_n; 3)$, for $n \leq 10$ and odd m [BudP].

n) Study of the growth rate of $R(P_m, K_n; r)$ for tight paths P_m with $m \geq r+3$, and links between the growth of $R(P_{r+1}, K_n; r)$ and $R(n, n; r)$ [MuSuk1]. The correct tower growth rate for ordered tight paths versus cliques [Mub2].

(o) Study of $R(G, nH; r)$ and $R(mG, nH; r)$ for loose/tight path, cycles and stars, including several exact results for large m or n [OmRa3]. The case of loose t-tight paths versus stars and some tripartite hypergraphs is explored in [BudHR2].

p) Let F be the Fano plane, seen as a 3-uniform hypergraph of 7 hyperedges. If P_n and C_n are tight path and cycle on n vertices, respectively, then for sufficiently large n we have $R(P_n, F; 3) = 2n-1$ and $R(C_n, F; 3) = 2n-1$ [BalCSW].

More colors

(q) For loose cycles, $R_3(C_3; 3) = R(C_3, C_3, C_3; 3) = 8$, and in general for $k \geq 4$ colors Gyárfás and Raeisi established the bounds $k + 5 \leq R_k(C_3; 3) \leq 3k$ [GyRa].
(r) For loose paths, we have $R_3(P_3; 3) = 9$ and $10 \leq R_4(P_3; 3) \leq 12$ [Jack]. This was improved to $R_k(P_3; 3) = k + 6$ for all $2 \leq k \leq 9$ [JacPR, PoRu], and extended to $k = 10$ [Pol]. The general upper bound $R_k(P_3; 3) \leq 2k + \sqrt{18k + 1} + 2$ was obtained in [LuPo1], then improved to $R_k(P_3; 3) \leq 1.975k + 7\sqrt{k} + 2$ [LuPo2], and then further improved to $R_k(P_3; 3) \leq 1.546k$ for large k [BohZ]. For the messy path $M_3 = \{abc, bcd, def\}$, we have $R_k(M_3; 3) \leq 1.6k$ for large k [BohZ]. The general case $R_k(P_3; r)$ for loose path was asymptotically solved in [LuPR], though do not be confused by notation in this paper because their bounds are expressed in terms of r colors and k-uniform paths.

(s) For tight paths P_m, study of the growth rate of $R(P_m, \ldots, P_m, K_m; r)$ [MuSuk1].

(t) For 3-uniform Berge cycles, $R_3(C_n; 3) = (1 + o(1))5n/4$ [GySa1]. Some special cases for r-uniform hypergraphs with respect to Berge cycles were studied in [GyLSS].

(u) Study of Turán and Ramsey numbers of sets of minimal 3-uniform paths of length 4 for up to 4 colors [HanPR]. Minimality of path here means that there are no redundant edge intersections, in particular no vertex belongs to more than two edges.

7.3. General results for 3-uniform hypergraphs

(a) $2^{cn^2} < R(n, n; 3) < 2^n$ is credited to Erdős, Hajnal and Rado (see [ChGra2] p. 30).

(b) For some a, b the numbers $R(m, a, b; 3)$ are at least exponential in m [AbbS].

(c) Improved lower and upper asymptotics for $R(s, n; 3)$ for fixed s and large n, proof of related Erdős and Hajnal conjecture on the growth of $R(4, n; 3)$, and the lower bound $2^{n^{0.99}} < R(n, n, n; 3)$ [ConFS2].

(d) The hedgehog H_t is a 3-uniform hypergraph with $t + t(t - 1)/2$ vertices such that for every (i, j) with $1 \leq i < j \leq t$ there exists a unique vertex $k > t$ such that ijk is an edge, and H_t has no other edges. Conlon, Fox and Rödl studied the bounds on $R_k(H_t; 3)$ for $2 \leq k \leq 4$ and large t [ConFR]. The hypergraphs H_t constitute the first family of hypergraphs whose Ramsey numbers show a strong dependence on the number of colors: their 2-color Ramsey numbers grow polynomially in t, while in the 4-color case they grow exponentially. $R_k(H_t; 3) = O(t^2 \ln t)$ was obtained in [FoxLi].

(e) $R(G, G; 3) \leq cn(H)$ for some constant c depending only on the maximum degree of a 3-uniform hypergraph H [CooFKO1, NaORS]. Similar results were proved for r-uniform hypergraphs in [KüCFO, Ishi, CooFKO2, ConFS1], see also item 7.4.h.

(f) Asymptotic lower bounds for $R(K_{a,b,c}, K_{a,b,c}; 3)$, where $K_{a,b,c}$ is formed by all abc triples on sets of orders a, b, c [MiPal].

(g) If G is a 3-uniform H-free hypergraph, then G contains a complete or empty tripartite subgraph with parts of order $(\log n(H))^{c+1/2}$, where $c > 0$ depends only on H. Furthermore, for $k \geq 4$ no analogue of it can hold for k-uniform hypergraphs [ConFS5].

(h) Asymptotic or exact values of $R_k(H; 3)$ when H is a bow $\{abc, ade\}$, kite $\{abc, abd\}$, tight path $P_{3,2}^3 = \{abc, bcd, cde\}$, or windmill $\{abc, bde, cef, bce\}$, and a special case $R_6(kite; 3) = 8$. General bounds $R_k(K_3; 2) = R_{4k}(K_4; t; 3) \leq R_{4k}(K_3; 2) + 1$ [AxGLM].
(i) Study of 3-uniform Berge-G graphs in r colors: asymptotic lower and upper bounds, and several exact values for small r with $G = K_3$ or $G = K_4$. Some asymptotics in the nonuniform case [AxGy]. This extends the results in 7.2.h [GyLSS] and 7.2.t [GySá1].

(j) Variety of general lower bound constructions for 3-uniform complete or complete missing one hyperedge hypergraphs from liftings of graphs, for two and more colors. For example, we have $R(K_{2s_1-1} - t, K_{2s_2-1}, K_{2s_3-1}; 3) \geq R(s_1, s_2, s_3)$ [BudHMP] and $R(K_5, K_{43} - t, K_{43} - t, K_{43} - t; 3) > 1257480$ [BudHLS].

(k) Upper bounds on $R_k(H; 3)$ for complete multipartite 3-uniform hypergraphs H, a 4-color case, and some other general and special cases [ConFS1, ConFS2, ConFS3]. $R_k(H; 3)$ ranges from $\sqrt{6k}(1 + o(1))$ to double exponential in k [AxGLM].

7.4. General results

(a) If $R(n, n; r) > m$ then $R(2n + r - 4, 2n + r - 4; r + 1) > 2^m$, for $n > r \geq 3$ (see [GRS] p. 106). This is the so-called stepping-up lemma, usually credited to Erdős and Hajnal. An improvement of the stepping-up lemma implying better lower bounds for a few types of hypergraph Ramsey numbers were obtained by Conlon, Fox and Sudakov [ConFS6].

(b) Lower bounds on $R_k(n; r)$ are discussed in [AbbW, DuLR].

(c) General lower bounds for large number of colors were given in an early paper by Hirschfeld [Hir], and some of them were later improved in [AbbL].

(d) Lower and upper asymptotics of $R(s, n; k)$ for fixed s [ConFS2, MuSuk2, MuSuk3].

(e) Exact and asymptotic results generalizing 7.2.d/e to r-uniform case for cycles, and 2- and 3-color cases for all r-uniform diamond matchings [GySS1].

(f) Exact formulas and bounds for Berge-K_n hypergraphs, including multiple colors [AxGy] and higher uniformity r [AxGy, SaTWZ]. Progress on the conjecture that every $(r-1)$-coloring of K_r^n, for fixed r and large n, contains a monochromatic Hamiltonian Berge cycle [MaOm2]. Determination of some cases of uniformity r, number of colors and G, for which the Ramsey number of Berge-G is superlinear [Gerbn]. Further study of multicolor Ramsey numbers for such Berge-G hypergraphs, with some equalities, were obtained in [GerMOV].

(g) Study of $R(G, nH; r)$ and $R(mG, nH; r)$ for loose/tight path and cycles (possibly with some additions), stars, r-partite hypergraphs, including several exact results for large m or n [OmRa3].

(h) $R(H, H; r) \leq cn(H)^{1+\epsilon}$, for some constant $c = c(\Delta, r, \epsilon)$ depending only on the maximum degree of H, r and $\epsilon > 0$ [KoR03]. The proofs of the linear bound $cn(H)$ were obtained independently in [KüCFO] and [Ishi], the latter including the multicolor case, and then without regularity lemma in [ConFS1]. More discussion of lower and upper bounds for various cases can be found in [ConFS1, ConFS2, ConFS3, CooFKO2].

(i) Let T_r be an r-uniform hypergraph with r edges containing a fixed $(r-1)$-vertex set S and the $(r+1)$-st edge intersecting all former edges in one vertex outside S. Then $R(T_r, K_i; r) = O(t^r/\log t)$ [KosMV1].
(j) Study of tree-star and tree-complete cases of Ramsey numbers for \(r \)-uniform hypergraphs. Several bounds and equalities for special cases [BudHR1]. This was posed and explored as a problem of which trees are Ramsey \(n \)-good hypergraphs [BudP]. Study of the Ramsey numbers of disjoint union of \(H \)-good hypergraphs [RaeK].

(k) Let \(H^r(s, t) \) be the complete \(r \)-partite \(r \)-uniform hypergraph with \(r-2 \) parts of size 1, one part of size \(s \), and one part of size \(t \) (for example, for \(r=2 \) it is the same as \(K_{s,t} \)). For the multicolor numbers, Lazebnik and Mubayi [LaMu] proved that

\[
 tk^2 - k + 1 \leq R_k(H^r(2, t+1); r) \leq tk^2 + k + r,
\]

where the lower bound holds when both \(t \) and \(k \) are prime powers. For the general case of \(H^r(s, t) \), more bounds are presented in [LaMu].

(l) \(R_k(H; r) \) is polynomial in \(k \) when a fixed \(r \)-uniform \(H \) is \(r \)-partite, otherwise it is at least exponential in \(k \) [AxGLM].

(m) Grolmusz [Grol1] generalized the classical constructive lower bound by Frankl and Wilson [FraWi] (item 2.3.6) to more colors and to hypergraphs [Grol3].

(n) Lower and upper asymptotics, and other theoretical results on hypergraph numbers, are discussed in [GrRö, GRS, ConFS1, ConFS2, ConFS3, ConFS7, Song8, MuSuk1, MuSuk2, MuSuk3]. An extensive overview of progress and open problems in hypergraph Ramsey theory by Mubayi and Suk was compiled in 2018 [MuSuk4].

8. Cumulative Data and Surveys

8.1. Cumulative data for two colors

(a) \(R(G, G) \) for all graphs \(G \) without isolates on at most 4 vertices [ChH1].

(b) \(R(G, H) \) for all graphs \(G \) and \(H \) without isolates on at most 4 vertices [ChH2].

(c) \(R(G, H) \) for all graphs \(G \) on at most 4 vertices and \(H \) on 5 vertices, except five entries [Clan], now all solved, see section 5.11. All critical colorings for the isolate-free graphs \(G \) and \(H \) studied in [Clan] were found in [He4].

(d) \(R(G, G) \) for all graphs \(G \) without isolates and with at most 6 edges [Bu4].

(e) \(R(G, G) \) for all graphs \(G \) without isolates and with at most 7 edges [He1].

(f) \(R(G, G) \) for all graphs \(G \) on 5 vertices and with 7 or 8 edges [HaMe2].

(g) \(R(G, H) \) for all graphs \(G \) and \(H \) on 5 vertices without isolates, except 7 entries [He2]. Only 2 cases are still open, see 5.11 and the paragraph at the end of this section.

(h) Tables of \(R(G, H) \) for most connected graphs on up to 5 vertices and \(R(G, G) \) for all isolate-free graphs with up to 7 edges [ReWi].

(i) \(R(G, H) \) for all disconnected isolate-free graphs \(H \) on at most 6 vertices versus all \(G \) on at most 5 vertices, except 3 cases [LoM5]. Missing cases were completed in [KroMe].
(j) \(R(G, H) \) for some \(G \) on 5 vertices versus all connected graphs on 6 vertices [LoM6].

(k) \(R(G, H) \) for \(G = K_{1,3} + e \) and \(G = K_4 - e \) versus all connected graphs \(H \) on 6 vertices, except \(R(K_4 - e, K_6) \) [HoMe]. The result \(R(K_4 - e, K_6) = 21 \) was claimed by McNamara [McN, unpublished], now confirmed in [ShWR].

(l) \(R(G, H) \) for some graphs \(G \) with 4 vertices versus all graphs \(H \) with 7 vertices [Boza4].

(m) \(R(G, T) \) for all connected graphs \(G \) with \(n(G) \leq 5 \), and almost all trees \(T \) [FRS4].

(n) \(R(T_m, T_n) \) for \(6 \leq m, n \leq 8 \), for \(k \)-vertex trees \(T_k \) [RanMCG].

(o) \(R(K_3, G) \) for all connected graphs \(G \) on 6 vertices [FRS1].

(p) \(R(K_3, G) \) for all connected graphs \(G \) on 7 vertices [Jin]. Some errors in the latter were found [SchSch1].

(q) \(R(S, G) \) for stars \(S \) versus almost all connected graphs \(G \) on 6 vertices [LoM7]. This was extended to \(R(T, G) \) for most non-star trees \(T \), in particular for all trees on at most 5 vertices versus all connected graphs \(G \) on at most 6 vertices [LoM8].

(r) Formulas for \(R(nK_3, mG) \) for all \(G \) of order 4 without isolates [Zeng].

(s) \(R(K_3, G) \) for all connected graphs \(G \) on at most 8 vertices [Brin]. The numbers for \(K_3 \) versus sets of graphs with fixed number of edges, on at most 8 vertices, were presented in [KlaM1].

(t) \(R(K_3, G) \) for all connected graphs \(G \) on 9 vertices [BrBH1, BrBH2].

(u) \(R(K_3, G) \) for all graphs \(G \) on 10 vertices, except 10 cases [BrGS]. Three of the open cases, including \(G = K_{10} - e \), were solved [GoR2].

(v) \(R(C_b, G) \) for all graphs \(G \) on at most 6 vertices [JR3]. This work was followed by two errata listed in the references.

(w) \(R(C_5, G) \) for all graphs \(G \) on at most 6 vertices [JR4].

(x) \(R(C_6, G) \) for all graphs \(G \) on at most 5 vertices [JR2].

(y) \(R(K_{2,n}, K_{2,m}) \) for all \(2 \leq n, m \leq 10 \) except 8 cases, for which lower and upper bounds are given [LoM3]. Further data for other complete bipartite graphs are gathered in section 3.3 and [LoMe4].

(z) All best lower bounds up to 102 from cyclic graphs. Formulas for best cyclic lower bounds for paths and cycles, and values for small complete graphs and for graphs with up to five vertices [HaKr1].

Chvátal and Harary [ChH1, ChH2] formulated several simple but very useful observations on how to discover values of some numbers. All five missing entries in the tables of Clancy [Clan] have been solved (section 5.11). Out of 7 open cases in [He2] 5 have been solved, including \(R(4, 5) = R(G_{19}, G_{23}) = 25 \) and other cases listed in section 5.11. The 2 cases still open are for \(K_5 \) versus \(K_5 \) (section 2.1) and \(K_5 \) versus \(K_5 - e \) (section 3.1). Many extremal and other Ramsey graphs for various parameters are available at [BrCGM, McK1, Ex18, Fuj1], see section 8.3 below.
8.2. Cumulative data for three colors

(a) $R_3(G)$ for all graphs G with at most 4 edges and no isolates [YR3].
(b) $R_3(G)$ for all graphs G with 5 edges and no isolates, except K_4-e [YR1]. The case of $R_3(K_4-e)$ remains open (see section 6.5).
(c) $R_3(G)$ for all graphs G with 6 edges and no isolates, except 10 cases [YY].
(d) $R(F, G, H)$ for many triples of isolate-free graphs with at most 4 vertices [ArKM]. Some of the missing cases completed in [KlaM2].
(e) Extension of [ArKM] to most triples of graphs with at most 4 vertices [BoDD].
(f) $R(P_3, P_k, C_m)$ for all $3 \leq k \leq 8$ and $3 \leq m \leq 9$ [DzFi2].

8.3. Electronic Resources

(a) W. Gasarch [Gas] maintains a website gathering over 60 pointers to literature on applications of Ramsey theory in computer science, and in particular logic, complexity theory and algorithms, http://www.cs.umd.edu/~gasarch/TOPICS/ramsey/ramsey.html.
(b) Many of the Ramsey graph constructions found by G. Exoo [Ex1-Ex23] are posted at http://cs.indstate.edu/ge/RAMSEY.
(d) B.D. McKay, presents some graphs related to classical Ramsey numbers [McK1], http://cs.anu.edu.au/people/bdm/data/ramsey.html.
(g) M. Rubey, an electronic GUI resource for values of some small Ramsey numbers [Rub], http://www.findstat.org/StatisticsDatabase/St000479.
(h) S. Van Overberghe, Ramsey graph constructions associated with MS Thesis, Ghent University, Belgium, 2020 [VO], https://github.com/Steven-VO/circulant-Ramsey.
8.4. Surveys

(1980) Survey of results and new problems on multiplicities and Ramsey multiplicities by S.A. Burr and V. Rosta [BuRo3]
(1981) Summary of progress by Frank Harary [Har2]
(1983) Special volume of the Journal of Graph Theory [JGT]
(1991) Survey by R.J. Faudree, C.C. Rousseau and R.H. Schelp of graph goodness results, i.e. conditions for the formula $R(G, H) = (\chi(G) - 1)(n(H) - 1) + s(G)$ [FRS5]
(1997) Among 114 open problems and conjectures of Paul Erdős, presented and commented by F.R.K. Chung, 31 are concerned directly with Ramsey numbers [Chu4]. 216 references are given. An extended version of this work was prepared jointly with R.L. Graham [ChGra2] in 1998.
(2001) An extensive chapter on Ramsey theory in a widely used student textbook and researcher’s guide of graph theory by D. West [West]
(2011) Ramsey Theory. Yesterday, Today and Tomorrow, a special volume in the series Progress in Mathematics [Soi2]. A survey of Ramsey numbers involving cycles by the author is included in this volume [Ra4].
(2013) Problems in Graph Theory from Memphis, "a summary of problems and results coming out of the 20 year collaboration between Paul Erdős and the authors", by R.J. Faudree, C.C. Rousseau and R.H. Schelp [FRS6].
The surveys by S.A. Burr [Bu1] and T.D. Parsons [Par6] contain extensive chapters on general exact results in graph Ramsey theory. F. Harary presented the state of the theory in 1981 in [Har2], where he also gathered many references including seven to other early surveys of this area. More than three decades ago, Chung and Grinstead in their survey paper [ChGri] gave much less data than in this work, but they included a broad discussion of different methods used in Ramsey computations in the classical case. S. A. Burr, one of the most experienced researchers in Ramsey graph theory, formulated in [Bu7] seven conjectures on Ramsey numbers for sufficiently large and sparse graphs, and reviewed the evidence for them found in the literature. Three of them have been refuted in [Bra3].

For newer extensive presentations see [GRS, GrRö, FRS5, Neš, Chu4, ChGra2, ConFS7], though these focus on asymptotic theory not on the numbers themselves. A very welcome addition is the 2004 compilation of applications of Ramsey theory by V. Rosta [Ros2]. This survey could not be complete without recommending special volumes of the Journal of Graph Theory [JGT, 1983] and Combinatorics, Probability and Computing [CoPC, 2003], which, besides a number of research papers, include historical notes and present to us Frank P. Ramsey (1903-1930) as a person. Read a colorful book by A. Soifer [Soi1, 2009] on history and results in Ramsey theory, followed by a collection of essays and technical papers based on presentations from the 2009 Ramsey theory workshop at DIMACS [Soi2, 2011]. A 70-page long paper from 2015, entitled Recent Developments in Graph Ramsey Theory, by D. Conlon, J. Fox and B. Sudakov [ConFS7] documents in details what the title says.

The historical perspective and, in particular, the timeline of progress on prior best bounds, can be obtained by checking all the previous versions of this survey since 1994 at http://www.cs.rit.edu/~spr/ElJC/eline.html.
9. Concluding Remarks

This compilation does not include much information on numerous variations of Ramsey numbers, nor related topics, like

- anti-Ramsey numbers,
- chromatic Ramsey numbers,
- connected Ramsey numbers,
- directed Ramsey numbers,
- edge-ordered Ramsey numbers,
- induced Ramsey numbers,
- list Ramsey numbers,
- k-Ramsey numbers,
- multipartite Ramsey numbers,
- ordered Ramsey numbers,
- oriented Ramsey numbers,
- planar Ramsey numbers,
- proper Ramsey numbers,
- Ramsey game numbers,
- restricted online Ramsey numbers,
- semi-algebraic Ramsey numbers,
- size Ramsey numbers,
- star-critical Ramsey numbers,
- zero-sum Ramsey numbers,
- Ramsey games,
- coloring graphs other than complete,
- bipartite Ramsey numbers,
- complementary Ramsey numbers,
- defective Ramsey numbers,
- edge-chromatic Ramsey numbers,
- Gallai-Ramsey numbers,
- irredundant Ramsey numbers,
- local Ramsey numbers,
- mixed Ramsey numbers,
- online Ramsey numbers,
- ordered size Ramsey numbers,
- oriented size Ramsey numbers,
- potential Ramsey numbers,
- rainbow Ramsey numbers,
- Ramsey-Turán numbers,
- restricted size Ramsey numbers,
- singular Ramsey numbers,
- size multipartite Ramsey numbers,
- weakened Ramsey numbers,
- Ramsey equivalence,
- avoiding sets of graphs in some colors,
- or the so called Ramsey multiplicities.

Interested readers can find such information in some of the surveys listed in section 8 here.

Readers may be also interested in knowing that the US patent 6965854 B2 issued on November 15, 2005 claims a method of using Ramsey numbers in "Methods, Systems and Computer Program Products for Screening Simulated Traffic for Randomness." Check the original document at http://www.uspto.gov/patft if you wish to find out whether your usage of Ramsey numbers is covered by this patent.

Acknowledgements

In addition to the many individuals who helped to improve consecutive versions of this survey, the author would like to specially thank his Ramsey collaborator Xiaodong Xu. He has seen more revisions of this survey than one would wish. The author would also like to extend his thanks to Brendan McKay, Geoffrey Exoo and Heiko Harborth for their help in gathering data throughout the years. Those who contributed to the development and improvement of new revisions over the years are greatly appreciated.

The author apologizes for any omissions or other errors in reporting results belonging to the scope of this work. Suggestions for any kind of corrections or additions will be greatly appreciated and considered for inclusion in the next revision of this survey.