References

The references are ordered alphabetically by the last name of the first author, and where multiple papers have the same first author they are ordered by the last name of the second author, etc. We preferred that all work by the same author be in consecutive positions. Unfortunately, this causes that some of the abbreviations are not in alphabetical order. For example, [BaRT] is earlier on the list than [BaLS]. We also wish to explain a possible confusion with respect to the order of parts and spelling of Chinese names. We put them without any abbreviations, often with the last name written first as is customary in original. Sometimes this is different from the citations in other sources. One can obtain all variations of writing any specific name by consulting the authors database of Mathematical Reviews at http://www.ams.org/mathscinet/search, or zbMATH (formerly Zentralblatt für Mathematik) at http://www.zbmath.org/authors.

Papers containing results obtained with the help of computer algorithms have been marked with stars. We identify two such categories of papers: those marked with * involving some use of computers where the results are easily verifiable with some computations, and those marked with ** where cpu intensive algorithms have to be implemented to replicate or verify the results. The first category contains mostly constructions done by algorithms, while the second mostly nonexistence results or claims of complete enumerations of special classes of graphs.

A, Ba, Br page 61
Ca, Cl, D, E page 67
F, Ga, Gu, H page 73
I, J, K, La, Li, Lo page 80
M, N, O, P, Q, R page 87
Sa, Sh, Si, Su page 93
T, U, V, W, X, Y, Z page 99 - page 104

A

[-] Adiwijaya, see [SuAM, SuAAM].

[-] B.M.N. Alzaleq, see [BatJA, JaAl1, JaAl2].
\begin{itemize}
 \item [AnM]** V. Angeltveit and B.D. McKay, $R(5, 5) \leq 48$, \emph{in preparation} (2017).
 \item [-] H. Assiyatun, see [HaABS, HaBA1, HaBA2, BaHA, SuAAM, SuAUB, SuBAU1, SuBAU2, SuBAU3].
\end{itemize}

\textbf{Ba - Bo}

\begin{itemize}
 \item [Back1] J. Backelin, Contributions to a Ramsey Calculus, \textit{manuscript} 2000-2012.
 \item [-] P. Bahls, see also [AlmB].
 \item [BaiLi] Bai Lufeng and Li Yusheng, Algebraic Constructions and Applications in Ramsey Theory, \textit{Advances in Mathematics}, 35 (2006) 167-170.
 \item [BaLX] Bai Lufeng, Li Yusheng and Xu Zhiqiang, Algebraic Constructions and Applications in Ramsey Theory, \textit{Journal of Mathematical Study (China)}, 37 (2004) 245-249.
 \item [-] Bai Lufeng, see also [SonBL].
 \item [-] A.Q. Baig, see [AliBB].
 \item [-] A.M.M. Baniabedalruhman, see [JaBa].
 \item [-] Qiquan Bao, see [ShaXB, ShaXBP].
\end{itemize}

L. Boza, Nuevas Cotas Superiores de Algunos Números de Ramsey del Tipo \(r(K_m, K_n - e) \), in proceedings of the *VII Jornada de Matemática Discreta y Algorítmica*, JMDA 2010, Castro Urdiales, Spain, July 2010.

L. Boza, Upper Bounds for Some Ramsey Numbers of \(K_n - e \) versus \(K_m \), manuscript (2012).

L. Boza, Sobre el Número de Ramsey \(R(K_6 - e, K_6) \), VIII Encuentro Andaluz de Matemática Discreta, Sevilla, Spain, October 2013.

L. Boza, Sobre los Número de Ramsey \(R(K_5 - e, K_5) \) y \(R(K_6 - e, K_4) \), IX Jornada de Matemática Discreta y Algorítmica, JMDA 2014, Tarragona, Spain, July 2014.

L. Boza and J.R. Portillo, Sobre el Número de Ramsey \(R(K_4 - e, K_7) \), in proceedings of the *VIII Jornada de Matemática Discreta y Algorítmica*, JMDA 2012, Almeria, Spain, July 2012.

A. Brandis, see [BierB].

G. Brightwell. see [AllBS].

[-] G. Brinkmann, see also [BrBH1, BrBH2].

[-] H.J. Broersma, see [LiZBBH, LiZB, SaBr1, SaBr2, SaBr3, SaBr4, SuBB1, SuBB2, SuBB3, SuBB4, SuBTB, SuUB, ZhaBC1, ZhaBC2, ZhaBC3, ZhaBC4, ZhaBC5].

- 66 -

[-] S. Butler, see [GrBu].

Ca - Ch

[-] J.W. Cain, see [LinCa].

[-] M. Cera, see [BoCGR].

[-] Chen Hong, see also [LiaWXCS, XWCS].

[-] Weiji Chen, see [LinCh].

[-] Chen Yaojun, see also [CheCZN, ZhaCh, ZhaBC1, ZhaBC2, ZhaBC3, ZhaBC4, ZhaCC1, ZhaCC2, ZhaCC3, ZhaCC4, ZhaCZ1, ZhaCZ2, ZhaZC].

[-] Chen Zhi, see [XuXC].

[-] T.C. Edwin Cheng, see also [ChenCMN, ChenCNZ, ChenCX, ChenCZ1, ZhaCC1, ZhaCC2, ZhaCC3, ZhaCC4].

Cl - Cs

[-] L. Clark, see also [RanMCG].

[-] R. Cleve, see also [ChCD].

[-] O. Cooley, see also [KüCFO].

[-] K. Coolsaet, see [BrCGM].

E

[Easy1] Easy to obtain by simple combinatorics from other results, in particular by using graphs establishing lower bounds with smaller parameters.

[Easy2] Unique 2-(6,3,2) design gives lower bound 7, upper bound is easy.

[Easy3] Every edge (3,3,3;2)-coloring of K_{15} has 35 edges in each color [Hein], and since the number of triangles in K_{16} is not divisible by 3, hence no required triangle-coloring of K_{16} exists.

[-] P. Erdős, see also [BoEr, BuE1, BuE2, BuE3, BEFRS1, BEFRS2, BEFRS3, BEFRS4, BEFRSGJ, BEFS, BES, CaET].

[Ex7]* G. Exoo, Three Color Ramsey Number of K_{4-e}, *Discrete Mathematics*, 89 (1991) 301-305.

[-] G. Exoo, see also [CIEHMS, XXER].

F

[-] R.J. Faudree, see also [BEFRS1, BEFRS2, BEFRS3, BEFRS4, BEFRS5, BEFS, BuF, BFRS, EFRS1, EFRS2, EFRS3, EFRS4, EFRS5, EFRS6, EFRS7, EFRS8, EFRS9].

R. Fidytek, see also [DzFi1, DzFi2].

G. Fiz Pontiveros, see also [GrMFSS].

N. Fountoulakis, see [CooFKO1, CooFKO2, KiiCFO].

J. Fox, see also [ConFLS, ConFS1, ConFS2, ConFS4, ConFS5, ConFS6, ConFS7, ConFS8].

M. Frank, see [CodFIM].

Z. Füredi, see [AxFM, BiFJ].

Ga - Gr

F. Gaitan, see [RanMCG].

P. García-Vázquez, see [BoCGR].

[-] A.M. Gleason, see [GG].

[-] J. Goedgebeur, see also [BrCGM, BrGS].

[-] R.J. Gould, see also [BEFRSGJ, ChGP].

[-] N. Graber, see [CoGJ].

[H] A. Gyárfás, see also [AxGLM, GeGy].

[-] T. Harmuth, see [BrBH1, BrBH2].

[-] Hasmawati, see also [BaHA].

[-] G.R.T. Hendry, see also [YH].

[-] J. Hiller, see [BudHLS, BudHR].

[-] P. Holub, see [LiZBBH].

[-] N. Hommowun, see [AlmHS].

[-] Huang Jian, see [HTHZ1, HTHZ2, HWSYZH].

[-] Huang Wenke, see [DuHu].

[HTHZ1] (also abbreviated as HT+) Yiru Huang, Fuping Tan, Jian Huang and Kemin Zhang, New Upper Bounds for Ramsey Number $R(K_m-e, K_n-e)$, *manuscript* (2016).

[-] Huang Yi Ru, see also [BoIY+, YHZ1, YHZ2].

I

[-] R.W. Irving, see also [HiIr].

[-] G. Isaak, see [HoIs].

[-] A. Itzhakov, see [CodFIM].

J

M.S. Jacobson, see also [BEFRSGJ, GoJa1, GoJa2].

S. Jahanbekam, see [BiFJ].

M.M.M. Jaradat, see also [BatJA].

I. Javaid, see [AliTJ].

Jin Xia, see also [RaJi].

J.R. Johnson, see [DayJ].

Journal of Graph Theory, special volume on Ramsey theory, 7, Number 1, (1983).

[-] P. Keevash, see [BohK1, BohK2].

[-] K. Klamroth, see also [ArKM].

[-] M. Klawe, see [GrHK].

[-] D.J. Kleitman, see [GoK].

[-] J. Komlós, see [CsKo, AjKS, AjKSS].

[-] R.L. Kramer, see [FeKR].

[-] S. Krause, see [HaKr1, HaKr2].

[-] D.L. Kreher, see also [RaK1, RaK2, RaK3, RaK4].

[-] M. Krivelevich, see also [AlBK, AIKS].

[-] M. Kubale, see [DzKP].

[-] D. Kühn, see also [CooFKO1, CooFKO2].

La - Le

[-] P.C.B. Lam, see [ShiuLL].

[-] J. Lambert, see [BudHLS].

[-] S.L. Lawrence, see also [FLPS].

[-] Choongbum Lee, see also [ConFLS].

[-] H. Lefmann, see also [DuLR].

[-] J. Lehel, see [BaLS, GyLSS].

[-] D. Leven, see [BILR].
Li

[-] Dongxin Li, see [ZhuZL].

[-] Li Guiqing, see [SLLL, SLZL].

[-] Li Jinwen, see [ZLLS].

[LiSLW]* Li Qiao, Su Wenlong, Luo Haipeng and Wu Kang, Lower Bounds for Some Two-Color Ramsey Numbers, *manuscript* (2011). By 2016, the results there have been improved by others.

[-] Li Qiao, see also [SuLL, SLLL].

[-] Wei Li, see [KrLR].

- 84 -

[LiTZ] Li Yusheng, Tang Xueqing and Zang Wenan, Ramsey Functions Involving $K_{m,n}$ with n Large, *Discrete Mathematics*, **300** (2005) 120-128.

[LiZa1] Li Yusheng and Zang Wenan, Ramsey Numbers Involving $K_m \times n$ with n Large, *Discrete Mathematics*, **29** (2008) 88-94.

[-] Li Yusheng, see also [BaiLi, BaLX, CaLRZ, Doli, DoLL1, DoLL2, GuLi, HeLD, LiLi, LinLi1, LinLi2, LinLD, LinLS, LiuLi, PeiLi, ShiuLL, SunLi, WaLi, YuLi].

[-] Li Zhenchong, see [LuSL, LuLL].

[-] Meilian Liang, see [LuLL].

[LiaWXCS]* Liang Wenzhong, Xu Chengzhang, Chen Hong and Su Wenlong, Using the Two Stage Automorphism of Paley to Calculate the Lower Bound of Ramsey, *Journal of Inner Mongolia Normal University*, **41** (2012) 591-596.

[-] A. Liebenau, see [BLi].

[-] Ko-Wei Lih, see [LiLih].

[LinLS]* Qizhong Lin, Yusheng Li and Jian Shen, Lower Bounds for $r_3(K_1 + G)$ and $r_3(K_1 + G)$ from Paley Graph and Generalization, *European Journal of Combinatorics*, **40** (2014) 65-72.

[-] Qizhong Lin, see also [DoLL1, DoLL2].

[-] Lin Xiaohui, see [SunYLS, SunYLZ1, SunYLZ2].

[-] Andy Liu, see [AbbL].

[-] Hong Liu, see [AxGLM].

[-] Liu Linzhong, see [ZLLS].

Lo - Lu

[Loc] S.C. Locke, see also [FrLo].

[LorMu] P.J. Lorimer, see also [CocL1, CocL2].

[Łuc] T. Łuczak, see also [FiŁu1, FiŁu2, HaLP1+, HaLP2+, HaLT].

[-] Luo Haipeng, see also [LiSLW, SuL, SuLL, SLLL, SLZL, WSLX1, WSLX2].

M

[-] W. Macready, see [RanMCG].

[-] H.R. Maimani, see [HagMa].

[-] J.P. Mayberry, see [LayMa].

[-] B.D. McKay, see also [AnM, FM].

J. McNamara and S.P. Radziszowski, The Ramsey Numbers $R(K_4-e, K_6-e)$ and $R(K_4-e, K_7-e)$, Congressus Numerantium, 81 (1991) 89-96.

H. Mélot, see [BrCGM].

I. Mengersen, see also [ArKM, CIEHMS, EHM1, EHM2, HoMe, HaMe1, HaMe2, HaMe3, HaMe4, KlaM1, KlaM2, KroMe, LoM1, LoM2, LoM3, LoM4, LoM5, LoM6].

Zhengke Miao, see [ChenCMN].

A. Miller, see [CodFIM].

M. Miller, see [BaSNM].

E.L. Monte Carmelo, see also [GoMC].

L.P. Montejano, see [ChaMR].

R. Morris, see [FizGM, FizGMSS, GrMFSS].

D. Mubayi, see also [AxFM, AxGLM, KosMV1, KosMV2, LaMu, LeMu].

P.R. Mullins, see [LorMu].

S. Musdalifah, see [SuAM, SuAAM].

S.M. Nababan, see [BaSNM].

[-] J. Nešetřil, see also [GrNe].

[-] C.T. Ng, see [ChenCMN, ChenCNZ, CheCZN].

[-] T. Nguyen, see [BroNN].

[-] Bo Ning, see [LiNing1, LiNing2].

[-] A. Nowik, see [DzNS].

[-] E. Nystrom, see [BroNN].

O

[-] J. Oeckermann, see [MeO].

[-] S. Olsen, see [NaORS].

[-] G.R. Omidi, see also [MaORS1, MaORS2].
[-] P. Ossona de Mendez, see [NeOs].
[-] D. Osthus, see [CooFKO1, CooFKO2, KühFO].

[-] S.P. Pal, see [MiPal].
[-] Linqiang Pan, see [ShaXBP, ShaXSP].

[Par1] T.D. Parsons, The Ramsey Numbers \(r(P_m, K_n) \), *Discrete Mathematics*, 6 (1973) 159-162.

[-] T.D. Parsons, see also [FLPS].

[-] Yuejian Peng, see [HaŁP1+, HaŁP2+].

[-] Y. Person, see [JoPe].

[-] O. Pikhurko, see [BePi].

[-] K. Piwakowski, see also [MPR, DzKP].

[-] A. Pokrovskiy, see also [BalPS].

J. Polcyn, see also [JacPR, LuPo].

A.D. Polimeni, see [ChGP, ChRSPS].

J.R. Portillo, see [BoPo].

L.M. Pretorius, see [SwPr].

P. Pudlák, see [AlPu, CoPR, KosPR].

Qian Xinjin, see [SonGQ].
A. Rao, see [BarRSW].

A. Rapp, see [BudHR].

G. Resta, see [CoPR].

M.P. Revuelta, see [BoCGR].

S.W. Reyner, see [BurR].

D.F. Reynolds, see [ExRe].

B. Roberts, see [BudHR].

J.A. Roberts, see [BuRo1, BuRo2].

S. Roberts, see [GR].

B. Roberts, see also [DavJR].

V. Rödl, see also [AlRoś, ChRST, DuLR, GrRō, GRR1, GRR2, HaŁP1+, HaŁP2+, KosPR, KoRō1, KoRō2, KoRō3, MuR, NaORS, PoRRS].

B.L. Rothschild, see [GRS].

[-] C. Rowan, see [KerRo].
[-] P. Rowlinson, see [YR1, YR2, YR3].
[-] A. Ruciński, see [JacPR, GRR1, GRR2, HaŁP1+, HaŁP2+, PoRRS, PoRu].
[-] M. Ruszinkó, see [GyRSS].

Sa - Se

[-] M. Salerno, see [JiSa].
[-] A.N.M. Salman, see also [HaABS].
[-] C. Sanford, see [BudHLS].
[-] G.N. Sárközy, see also [GyLSS, GyRSS, GySá1, GySá2, GySá3, GySS1, GySS2, MoSST].
[-] I. Sato, see [MiSa].
[-] D. Saxton, see [FizGMSS, GrMFSS].
[-] M. Schacht, see [MoSST, NaORS].
[-] R.H. Schelp, see [BaLS, BaSS, BEFRS1, BEFRS2, BEFRS3, BEFRS4, BEFRSGJ, BEFS, BFRS, ChenS, EFRS1, EFRS2, EFRS3, EFRS4, EFRS5, EFRS6, EFRS7, EFRS8, EFRS9, FLPS, FRS1, FRSS, FRS3, FRSS, FRS4, FRS5, FRS6, FS1, FS2, FS3, FS4, FSR, FSS1, GyLSS, NiRS].
[-] A. Schelten, see also [FSS2].
[Schiermeyer] I. Schiermeyer, see also [FSS2, LiSch, SchSch1, SchSch2].

[J.C. Schlage-Puchta] J.C. Schlage-Puchta, see [BrGS].

[A. Schneider] A. Schneider, see [AlmHS].

[J. Schönheim] J. Schönheim, see [BiaS].

[M.J. Schuster] M.J. Schuster, see [CalSR].

[S. Schuster] S. Schuster, see [ChaS].

[A. Schwenk] A. Schwenk, see [ChvS].

[M.W. Scobee] M.W. Scobee, On the Ramsey Number $R(m_1P_3, m_2P_3, m_3P_3)$ and Related Results, ..., MA thesis, University of Louisville (1993).

[A. Sebő] A. Sebő, see [GySeT].

[R.J. Segedin] R.J. Segedin, see [LorSe].

[M. Shahsiah] M. Shahsiah, see [MaORS1, MaORS2, OmSh1, OmSh2, OmSh3, OmSh4].

[R. Shaltiel] R. Shaltiel, see [BarRSW].

[Zehui Shao: X] Zehui Shao, Xiaodong Xu, Xiaolong Shi and Linqiang Pan, Some Three-Color Ramsey Numbers $R(P_4, P_5, C_k)$ and $R(P_4, P_6, C_k)$, European Journal of Combinatorics, 30 (2009) 396-403.

[Zehui Shao] Zehui Shao, see also [XSR1, XSR2].

[J. Sheehan] J. Sheehan, see [ChRSPS, CIEHMS, FRS7, FRS8, FRS9, RoS1, RoS2].

[Jian Shen] Jian Shen, see [LiShen, LinLS].

[Shen Yun-Qiu] Shen Yun-Qiu, see [LuSS1, LuSS2].

[Sheng Wancheng] Sheng Wancheng, see [HWSYZH].

[Shi Lei] Shi Lei, see [SunYJLS].

[-] Xiaolong Shi, see [ShaXSP].

Si - St

[-] M. Simonovits, see [AjKSS, BaSS, FSS1, FaSi, HaŁP1+, KoSS1, KoSS2, ŁucSS].

[-] J. Skokan, see [AllBS, BenSk, FizGMSS, GrMFSS, HaŁP1+, HaŁP2+, JenSk, KoSS1, KoSS2, ŁucSS].

[-] M.J. Smuga-Otto, see [AbbS].

[-] W. Solomon, see [LorSo].

[-] L. Lovász, see [LiRS].

[-] Song En Min, see also [HuSo, ZLLS].

[Song9] Hongxue Song, Asymptotic Upper Bounds for $K_{1,m,k}$: Complete Graph Ramsey Numbers, *Ars Combinatoria*, 111 (2013) 137-144.

[-] Song Hongxue, see also [GuSL].

[-] J.H. Spencer, see also [BES, GRS].

[-] T.S. Spencer, see [BahS].

[Spe4]* T. Spencer, University of Nebraska at Omaha, personal communication (1993), and, Upper Bounds for Ramsey Numbers via Linear Programming, manuscript (1994).

[-] A.K. Srivastava, see [GauST].

[-] R.G. Stanton, see [KaSt].

[-] A. Steger, see [McS].

[-] J. Stinehour, see [RaST].

[-] M.J. Stewart, see [ChRSPS].

- 96 -
Su - Sz

[-] Su Wenlong, see also [LiaWXCS, LiaWXS, LuSL, LiSLW, LuSS1, LuSS2, WSLX1, WSLX2, XWCS].

[-] B. Sudakov, see also [AIKS, BalPS, ConFLS, ConFS1, ConFS2, ConFS3, ConFS4, ConFS5, ConFS6, ConFS7, ConFS8, FoxSu1, FoxSu2, KoSu, PoSu].

[-] A. Sudan, see [GuGS].

[-] A. Suk, see [MuSuk1, MuSuk2, MuSuk3].

[-] Yue Ru Sun, see [NoSZ].

[SunYLZ2]* Sun Yongqi, Yang Yuansheng, Lin Xiaohui and Zheng Wenping, On the Three Color Ramsey Numbers $R(C_m, C_4, C_4)$, Ars Combinatoria, 84 (2007) 3-11.

[SunYWLX]* Sun Yongqi, Yang Yuansheng, Wang Wei, Li Bingxi and Xu Feng, Study of Three Color Ramsey Numbers $R(C_m, C_m, C_m)$ (in Chinese), Journal of Dalian University of Technology, ISSN 1000-8608, 46 (2006) 428-433.

[-] Sun Yongqi, see also [WuSR, WuSZR, ZhaSW].

[SunLi] Sun Yuqin and Li Yusheng, On an Upper Bound of Ramsey Number $r_k(K_m, n)$ with Large n, Heilongjiang Daxue Ziran Kexue Xuebao, ISSN 1001-7011, 23 (2006) 668-670.

[-] M.M. Sweet, see [FreSw].

[-] T. Szabó, see [AlRoS].

[-] E. Szemerédi, see also [AjKS, AjKSS, ChRST, GyRSS, GySS1, GySS2, PoRRS].

[-] P. Szuca, see [DzNS].

T

[-] Fuping Tan, see [HTHZ1, HTHZ2].

[-] Tang Xueqing, see [LiTZ].

[-] A. Taraz, see [MoST].

[-] M. Tatarevic, see [ExT].

[-] R. Thomas, see [RoTh].

[-] P.W. Tingley, see [HaŁT].

[-] I. Tomescu, see [AliBT1, AliBT2, AliTJ, SuBT1, SuBT2, SuBTB, SuTo].

[-] C.A. Tovey, see [CaET].

[-] A. Tripathi, see [GauST].

[Tr] Trivial results.

[-] N. Trotignon, see [GySeT].

[-] W.T. Trotter Jr., see [ChRST].

[-] Kung-Kuen Tse, see also [BaRT, RaST, RaT].

[-] Z. Tuza, see [GyTu].
U

S. Uttunggadewa, see [SuAUB, SuBAU1, SuBAU2, SuBAU3, SuBUB].

V

J. Verstraeete, see [KosMV1, KosMV2].

L. Volkmann, see [GuoV].

W

Wang Gongben, see [WW, WWY1, WWY2].

Lin-Lin Wang, see [SunW, SunWW].

Wang Yuandi, see [HWSYZH].

Wang Zhihai, see [SunYW].

Wang Zhi Jian, see [LiWa1, LiWa2].

Wang Zicheng, see [ShaoWX].

A. Widgerson, see [BarRSW].

E.R. Williams, see [AbbW].

R.J. Wilson, see [ReWi].

R.M. Wilson, see [FraWi].

A. Woldar, see [LaWo1, LaWo2].

Wu Kang, see also [LiaWXCS, LiaWXS, LiSLW, XWCS].

Yi-Li Wu, see [SunWW].

M. Wurtz, see [ShWR].

Xiao Jianhua, see [ShaoWX].

Xie Zheng, see [XuX1, XuX2, XuXC, XXER, XuXR].

Xu Chengzhang, see also [LiaWXCS].

Jin Xu, see [ShaXBP].

Xu Feng, see [SunYWLX, SunYXL].

Ran Xu, see [ChenCX].

[XuR2] Xiaodong Xu and S.P. Radziszowski, $28 \leq R(C_4; C_4, C_3, C_3) \leq 36$, *Utilitas Mathematica*, **79** (2009) 253-257.

[§] Xu Xiaodong, see also [LiaWXS, ShaXB, ShaXSP, WSLX1, WSLX2, ZhuXR].
[§] Xu Zhiqiang, see [BaLX].

Y

[§] J. Yackel, see [GrY].
[§] Yan Shuda, see [WWY1, WWY2].

[§] Yang Jian Sheng, see also [BolJY+, HWSYZH].

[§] Yang Yuansheng, see also [SunY, SunYJLS, SunYLZ1, SunYLZ2, SunYW, SunYWXL, SunYXL].

[§] Ye Weiguo, see [SonYL].

[§] R. Yuster, see [CaYZ].

Z

[§] A. Zaghian, see [RaeZ].
[§] Zang Wenan, see [LiRZ1, LiRZ2, LiTZ, LiZa1, LiZa2].
[§] C. Zarb, see [CaYZ].

[§] Zhang Chaohui, see [HTHZ2].

[§] Zhang Ke Min, see also [BolJY+, ChenZZ1, ChenZZ2, ChenZZ3, ChenZZ4, ChenZZ5, ChenZZ6, HTHZ1, HWSYZH, HZ1, HZ2, HZ3, McZ, ShZ1, ShZ2, YHZ1, YHZ2, ZhaCZ1, ZhaCZ2, ZZ3].

[Zhang3] Zhang Yunqing, see also [ChenCNZ, ChenCZ1, ChenZZ1, ChenZZ2, ChenZZ3, ChenZZ4, ChenZZ5, ChenZZ6, CheCZN, ZhaZC, ZhaZZ].

[Zhang4] Zhang Zhengyou, see [SLZL].

[-] Yi Zhao, see also [NoSZ].

[-] Zheng Wenping, see [SunYLZ1, SunYLZ2].

[-] Zhu Shiping, see [ZhaZZ].