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ABSTRACT: We present data which, to the best of our knowledge,
includes all known nontrivial values and bounds for specific graph,
hypergraph and multicolor Ramsey numbers, where the avoided
graphs are complete or complete without one edge. Many results per-
taining to other more studied cases are also presented. We give refer-
ences to all cited bounds and values, as well as to previous similar
compilations. We do not attempt complete coverage of asymptotic
behavior of Ramsey numbers, but concentrate on their specific values.
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1. Scope and Notation

There is a vast literature on Ramsey type problems starting in 1930 with the original
paper of Ramsey [Ram]. Graham, Rothschild and Spencer in their book [GRS] present an
exciting development of Ramsey Theory. The subject has grown amazingly, in particular with
regard to asymptotic bounds for various types of Ramsey numbers (see the survey paper
[GrRö]), but the progress on evaluating the basic numbers themselves has been very unsatis-
factory for a long time. In the last decade, however, considerable progress has been obtained
in this area, mostly by employing computer algorithms. The few known exact values and
several bounds for different numbers are scattered among many technical papers. This compi-
lation is a fast source of references for the best results known for specific numbers. It is not
supposed to serve as a source of definitions or theorems, but these can be easily accessed via
the references gathered here.

Ramsey Theory studies conditions when a combinatorial object contains necessarily some
smaller given objects. The role of Ramsey numbers is to quantify some of the general existen-
tial theorems in Ramsey Theory.

Let G 1, G 2, . . . , G
m

be graphs or s -uniform hypergraphs (s is the number of vertices
in each edge). R ( G 1, G 2, . . . , G

m
; s ) denotes the m -color Ramsey number for s -uniform

graphs/hypergraphs, avoiding G
i

in color i for 1≤ i ≤ m . It is defined as the least integer n
such that, in any coloring with m colors of the s -subsets of a set of n elements, for some i
the s -subsets of color i contain a sub-(hyper)graph isomorphic to G

i
(not necessarily

induced). The value of R ( G 1, G 2, . . . , G
m

; s ) is fixed under permutations of the first m
arguments.

If s = 2 (standard graphs) then s can be omitted. If G
i

is a complete graph K
k
, then we

can write k instead of G
i
, and if G

i
= G for all i we can use the abbreviation R

m
(G ; s ) or

R
m

(G ). For s = 2, K
k
− e denotes a K

k
without one edge, and for s = 3, K

k
− t denotes a K

k
without one triangle (hyperedge). P

i
is a path on i vertices, C

i
is a cycle of length i , and W

i
is a wheel with i −1 spokes, i.e. a graph formed by some vertex x , connected to all vertices of
some cycle C

i −1. K
n ,m is a complete n by m bipartite graph, in particular K 1,n is a star

graph. The book graph B
i
= K 2 + K

i
= K 1 + K 1,i has i + 2 vertices, and can be seen as i tri-

angular pages attached to a single edge. The fan graph F
n

is defined by F
n

= K 1 + nK 2. For
a graph G , n (G ) and e (G ) denote the number of vertices and edges, respectively. Finally, let
χ(G ) be the chromatic number of G , and let nG denote n disjoint copies of G .

Section 2 contains the data for the classical two color Ramsey numbers R (k , l ) for com-
plete graphs, and section 3 for the two color case when the avoided graphs are complete or
have the form K

k
− e , but not both are complete. Section 4 lists the most studied two color

cases for other graphs. The multicolor and hypergraph cases are gathered in sections 5 and 6,
respectively. Finally, section 7 gives pointers to cumulative data and to some previous sur-
veys, especially those containing data not subsumed by this compilation.
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2. Classical Two Color Ramsey Numbers

l 3 4 5 6 7 8 9 10 11 12 13 14 15

k

40 46 52 59 66 73
3 6 9 14 18 23 28 36

43 51 59 69 78 88

35 49 56 69 80 96 128 133 141 153
4 18 25

41 61 84 115 149 191 238 291 349 417

43 58 80 95 121 141 153 181 193 221 242
5

49 87 143 216 316 442

102 111 127 153 177 253 262 278 292 374
6

165 298 495 780 1171

205 216 322 416 511
7

540 1031 1713 2826

282 316 635 703
8

1870 3583 6090

565 580
9

6588 12677

798
10

23556

Table I. Known nontrivial values and bounds for two color
Ramsey numbers R (k , l ) = R (k , l ; 2).

l 4 5 6 7 8 9 10 11 12 13 14 15

k

Ka2 GR Ka2 Ex5 Ka2 Ex12 Piw1 Ex8 WW
3 GG GG Kéry

GY MZ GR RK2 RK2 Les RK2 RK2 Les

Ka1 Ex9 Ex3 Ex15 RK1 Piw1 Piw1 SLL2 XX1 XX1 XX1
4 GG

MR4 MR5 Mac Mac Mac Mac Spe2 Spe2 Spe2 Spe2 Spe2

Ex4 Ex9 CET Piw1 Haa Ex12 Ex12 Ex12 Ex12 Ex12 SLLL
5

MR5 HZ1 Spe2 Spe2 Mac Mac

Ka1 XX1 XX1 Ex12 XX1 XX1 XX1 XX1 XX1 SLLL
6

Mac Mac Mac Mac Mac

She1 XX1 XX1 XX1 XX1
7

Mac Mac HZ1 Mac

BR XX1 XX1 XX1
8

Mac Ea1 HZ1

She1 XX1
9

ShZ1 Ea1

She1
10

Shi2

References for Table I.

We split the data into the table of values and a table with corresponding references for
the Table I. Known exact values appear as centered entries, lower bounds as top entries, and
upper bounds as bottom entries.
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The task of proving R (3,3) ≤ 6 was the second problem in Part I of the William Lowell
Putnam Mathematical Competition held in March 1953 [Bush].

The construction by Mathon [Mat] (see also sections 4.16 and 5.3.(h)), using data
obtained by Shearer [She1], gives the following lower bounds for higher diagonal numbers:
R (11,11) ≥ 1597, R (13,13) ≥ 2557, R (14,14) ≥ 2989, R (15,15) ≥ 5485, and R (16,16) ≥ 5605.
Similarly, R (17,17) ≥ 8917, R (18,18) ≥ 11005 and R (19,19) ≥ 17885 were obtained in [LSL].
The same approach does not improve on an easy bound R (12,12) ≥ 1597 + 11 + 10. The best
known construction for this case showing R (12,12) ≥ 1637 is given in [XX1] (for the general
case see section 4.16).

All the critical graphs for the numbers R (k , l ) (graphs on R (k , l ) − 1 vertices without K
k

and without K
l

in the complement) are known for k = 3 and l = 3, 4, 5 [Kéry], 6 [Ka2], 7
[RK3, MZ], and there are 1, 3, 1, 7 and 191 of them, respectively. All (3, k )-graphs, for
k ≤ 6, were enumerated in [RK3], and all (4,4)-graphs in [MR2]. There exists a unique critical
graph for R (4,4) [Ka2]. There are 4 such graphs known for R (3,8) [RK2], 1 for R (3,9) [Ka2]
and 350904 for R (4, 5) [MR4], but there might be more of them. In [MR5] evidence is given
for the conjecture that R (5, 5) = 43 and that there exist 656 critical graphs on 42 vertices.

The claim that R (5, 5) = 50 published on the web [Stone] is in error, and despite being
shown so more than once, this incorrect value is being cited by some authors. The bound
R (3, 13) ≥ 60 [XZ] cited in the 1995 version of this survey was shown to be incorrect in
[Piw1]. The graphs constructed by Exoo in [Ex12, Ex15], and some others, are available
electronically from http://isu.indstate.edu/ge/RAMSEY.

By taking a disjoint union of two critical graphs one can easily see that R (k , p ) ≥ s and
R (k , q ) ≥ t imply R (k , p + q −1) ≥ s + t −1. Xu and Xie [XX1] improved this construction to
yield better general lower bounds, in particular R (k , p + q −1) ≥ s + t + k − 3. For example, this
gives a lower bound R (4,13) ≥ 133 with p = 2, q = 12. Only some higher lower bounds
implied this way are shown. Some upper bounds implied by R (k , l ) ≤ R (k −1, l ) + R (k , l −1),
or by its slight improvement with strict inequality when both terms on the right hand side are
even, are marked [Ea1]. There are obvious generalizations of these inequalities for graphs
other than complete.

The bound R (6, 6) ≤ 166, only 1 more than the best known [Mac], is an easy conse-
quence of theorem 1 in [Walk] (see section 4.16) and the inequality R (4, 6) ≤ 41. T. Spencer
[Spe2], Mackey [Mac], and Huang and Zhang [HZ1], using the bounds for minimum and
maximum number of edges in (4,5) Ramsey graphs listed in [MR3, MR5], were able to estab-
lish new upper bounds for several higher Ramsey numbers, improving all the previous long-
standing results of Giraud [Gi3, Gi5, Gi6]. We have recomputed the bounds marked [HZ1]
using the method from the paper [HZ1], because the bounds there relied on an overly optimis-
tic personal communication from T. Spencer. Further refinements of this method are studied in
[HZ2, ShZ1, Shi2].

For a more in depth study of triangle-free graphs in relation to the case of R (3, k ), for
which considerable progress has been obtained in recent years, see also [AKS, Alon2, BBH1,
BBH2, CPR, FL, Fra1, Fra2, Gri, Loc, KM1, RK3, RK4, She2, Stat, Yu1]. In 1995, Kim
[Kim] obtained a breakthrough by proving that R (3, k ) has order of magnitude exactly
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Θ(k 2/ log k ). Good asymptotic bounds for R (k , k ) can be found, for example, in [Chu3, McS]
(lower bound) and [Tho] (upper bound), and for many other asymptotic bounds in the general
case of R (k , l ) consult [Spe1, GRS, GrRö, AP].

The lower bounds marked [XX1] were obtained by a method referenced in section 4.16.
All other lower bounds for higher numbers listed in Table II were obtained by construction of
cyclic graphs, except for the bound R (5, 17) ≥ 284 established by Exoo [Ex15] using pq -
groups.

l 15 16 17 18 19 20 21 22 23

k

73 79 92 98 106 109 122 125 136
3

WW WW WWY1 WWY1 WWY1 WWY1 WWY1 WWY1 WWY1

153 182 198 230 242 282
4

XX1 LSS LSZL SLZL SLZL SL

242 278 284 338 380 422 434
5

SLLL LSS Ex15 SLZL LSS LSZL LSZL

374 434 548 614 710 878 1070
6

SLLL SLLL SLLL SLLL SLLL SLLL SLLL

628 722 908 1214
7

XX1 XX1 SLLL SLLL

703 737 871 1054 1094 1328
8

XX1 XX1 XX1 XX1 SLLL SLLL

Table II. Known nontrivial lower bounds for higher two color
Ramsey numbers R (k , l ), with references.

Exoo [Ex15] gives also the bounds R (3, 27) ≥ 158 and R (3, 31) ≥ 198. The constructions
establishing R (3, 26) ≥ 150, R (3, 29) ≥ 174, R (3, 31) ≥ 198 and R (3, 32) ≥ 212 are presented in
[SLL1], [SLL3], [LSS] and [LSZL], respectively. Yu [Yu2] constructed a special class of
triangle-free cyclic graphs establishing several lower bounds for R (3, k ), for k ≥ 61. Only two
of these bounds, R (3, 61) ≥ 479 and R (3,103) ≥ 955, cannot be easily improved by the inequal-
ity R (3, 4k + 1) ≥ 6R (3, k + 1) − 5 from [CCD] and data from tables I and II. Finally,
R (5, 24) ≥ 488 was given in [SLL3], and R (9, 17) ≥ 1411 and R (10, 16) ≥ 1189 in [XX1].
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3. Two Colors - Dropping One Edge from Complete Graph

H K
3
−e K

4
−e K

5
−e K

6
−e K

7
−e K

8
−e K

9
−e K

10
−e K

11
−e

G

K
3
−e 3 5 7 9 11 13 15 17 19

37 42
K

3
5 7 11 17 21 25 31

38 47

29 34 41
K

4
−e 5 10 13 17 28

38

27 37
K

4
7 11 19

36 52

31 40
K

5
−e 7 13 22

39 66

30 43
K

5
9 16

34 67 112

31 45 59
K

6
−e 9 17

39 70 135

37
K

6
11 21

55 119 205

40 59
K

7
−e 11 28

66 135 251

28 51
K

7
13

34 88 204

Table III. Two types of Ramsey numbers R (G , H ),
includes all known nontrivial values.

The exact values in Table III above involving K 3 − e are trivial, since easily
R (K 3 − e , K

k
) = R (K 3 − e , K

k +1 − e ) = 2k − 1, for all k ≥ 2. Other bounds (not shown in
Table III) can be obtained by using Table I, an obvious generalization of the inequality
R (k , l ) ≤ R (k −1, l ) + R (k , l −1), and by monotonicity of Ramsey numbers, in this case
R (K

k −1, G ) ≤ R (K
k

− e , G ) ≤ R (K
k
, G ).

For the following numbers it was established that the critical graphs are unique:
R (K 3, K

l
− e ) for l = 3 [Tr], 6 and 7 [Ra1], R (K 4 − e , K 4 − e ) [FRS2], R (K 5 − e , K 5 − e ) [Ra3]

and R (K 4 − e , K 7 − e ) [McR]. The number of R (K 3, K
l
− e ) critical graphs for l = 4, 5 and 8

is 4, 2 and 9, respectively [MPR]. Also in [MPR] a bound R (K 3, K 12 − e ) ≥ 46 is given.
Wang, Wang and Yan in [WWY2] constructed cyclic graphs showing R (K 3, K 13 − e ) ≥ 54,
R (K 3, K 14 − e ) ≥ 59 and R (K 3, K 15 − e ) ≥ 69. The upper bounds in [HZ2] were obtained by a
reasoning generalizing the bounds for classical numbers in [HZ1].
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H K
4
−e K

5
−e K

6
−e K

7
−e K

8
−e K

9
−e K

10
−e K

11
−e

G

MPR WWY2
K

3
CH2 Clan FRS1 GH Ra1 Ra1

MPR MPR

Ea1 Ex14 Ex14
K

4
−e CH1 FRS2 McR McR

HZ2

Ex11 Ex14
K

4
CH2 EHM1

Ea1 HZ2

Ex14 Ex14
K

5
−e FRS2 CEHMS

Ea1 HZ2

Ex8 Ea1
K

5
BH

Ex8 HZ2 HZ2

Ex14 Ex14 Ex14
K

6
−e McR

Ea1 HZ2 HZ2

Ex14
K

6
McN

Ea1 ShZ2 ShZ2

Ex14 Ex14
K

7
−e McR

HZ2 HZ2 ShZ1

Ea1 Ex14
K

7 Ea1 ShZ2 ShZ2

References for Table III.
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4. General Graph Numbers in Two Colors

This section includes data with respect to general graph results. We tried to include all
nontrivial values and identities regarding exact results (or references to them), but only those
out of general bounds and other results which, in our opinion, have a direct connection to the
evaluation of specific numbers. If some small value cannot be found below, it may be covered
by the cumulative data gathered in section 7, or be a special case of a general result listed in
this section. Note that B 1 = F 1 = C 3 = W 3 = K 3, B 2 = K 4 − e , P 3 = K 3 − e , W 4 = K 4 and
C 4 = K 2,2 imply other identities not mentioned explicitly.

4.1. Paths

R (P
n

, P
m

) = n +  m / 2  − 1 for all n ≥ m ≥ 2 [GeGy]

4.2. Cycles

R (C 3, C 3) = 6 [GG]
R (C 4, C 4) = 6 [CH1]

Result obtained independently in [Ros] and [FS1], new simple proof in [KáRos]:

R (C
n

, C
m

) =





î max{n − 1 + m / 2, 2m − 1}

n − 1 + m / 2

2n − 1

for 4 ≤ m < n , m even and n odd

for 4 ≤ m ≤ n , m and n even, (n , m ) =/ (4,4)

for 3 ≤ m ≤ n , m odd, (n , m ) =/ (3,3)

Unions of cycles, R (nC
p

, mC
q

), [MS, Den]

R (nC 3, mC 3 ) = 3n + 2m for n ≥ m ≥ 1, n ≥ 2 [BES]

R (nC 4, mC 4 ) = 2n + 4m − 1 for m ≥ n ≥ 1, (n , m ) =/ (1,1) [LiWa]

4.3. Wheels

R (W 3, W 5 ) = 11 [Clan]
R (W 3, W

n
) = 2n −1 for all n ≥ 6 [BE2]

All critical colorings for R (W 3, W
n

) for all n ≥ 3 [RaJi]
R (W 4, W 5 ) = 17 [He3]
R (W 5, W 5 ) = 15 [HM2, He2]

R (W 4, W 6 ) = 19, R (W 5, W 6 ) = 17 and R (W 6, W 6 ) = 17,
and all critical colorings (2, 1 and 2) for these numbers [FM]
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4.4. Books

R (B 1, B
n

) = 2n + 3 for all n >1 [RS1]
R (B 3, B 3) = 14 [RS1, HM2]

R (B 2, B 5) = 16, R (B 3, B 5) = 17, R (B 5, B 5) = 21,
R (B 4, B 4) = 18, R (B 4, B 6) = 22, R (B 6, B 6) = 26 [RS1]
254 ≤ R (B 37, B 88) ≤ 255 [Par6]

in general R (B
n

, B
n

) = 4n + 2 for 4n + 1 a prime power,
and several other general equalities and bounds for R (B

n
, B

m
) [RS1, FRS7, Par6].

4.5. Complete bipartite graphs

R (K 2,3, K 2,3) = 10 [Bu4]
R (K 2,3, K 2,4) = 12 [ExRe]
R (K 2,3, K 1,7) = 13 [Par4]
R (K 2,3, K 3,3) = 13 and R (K 3,3, K 3,3) = 18 [HM3]
R (K 2,2, K 2,8) = 15 and R (K 2,2, K 2,11) = 18 [HM]
R (K 2,2, K 1,15) = 20 [La2]
R (nK 1,3, mK 1,3) = 4n + m − 1 for n ≥ m ≥ 1, n ≥ 2 [BES]

Asymptotics for K 2,m versus K
n

[CLRZ]

R (K 1,n , K 1,m ) = n + m −ε, where ε = 1 if both n and m are even and ε = 0 otherwise
[Har1]. It is also a special case of multicolor numbers for stars obtained in [BuRo1].

R (K 2,n , K 2,n ) ≤ 4n − 2 for all n ≥ 2, exact values 6, 10, 14, 18, 21, 26, 30, 33, 38, 42, 46,
50, 54, 57 and 62 of R (K 2,n , K 2,n ) for 2 ≤ n ≤ 16, respectively.

The first open case is 65 ≤ R (K 2,17, K 2,17) ≤ 66 [EHM2].

4.6. Triangle versus other graphs

R (3, k ) =Θ(k 2/ log k ) [Kim]

Explicit construction for R (3, 4k + 1) ≥ 6R (3, k + 1) − 5, for all k ≥ 1 [CCD]

Explicit triangle-free graphs with independence k on Ω(k 3/2 ) vertices [Alon2, CPR]

R (K 3, K 7 − 2P 2 ) = R (K 3, K 7 − 3P 2 ) = 18 [SchSch2]

R (K 3, K 3 + K
m

) = R (K 3, K 3 + C
m

) = 2m + 5 for m ≥ 212 [Zhou1]

R (K 3, G ) = 2n (G ) − 1 for any connected G on at least 4 vertices and with at most
(17n (G ) + 1)/15 edges, in particular for G = P

i
and G = C

i
, for all i ≥ 4 [BEFRS1]

R (K 3, G ) ≤ 2e (G ) + 1 for any graph G without isolated vertices [Sid3, GK]
R (K 3, G ) ≤ n (G ) + e (G ) for all G , a conjecture [Sid2]
R (K 3, K

n
), see section 2

R (K 3, K
n

− e ), see section 3
R (K 3, G ) for all connected G up to 9 vertices, see section 7.1
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Since B 1 = F 1 = C 3 = W 3 = K 3, other sections apply. See also [AKS, BBH1, BBH2,
FL, Fra1, Fra2, Gri, Loc, KM1, RK3, RK4, She2, Spe1, Stat, Yu1].

4.7. Paths versus other graphs

Paths versus stars [Par2, BEFRS2]
Paths versus trees [FS4]
Paths versus books [RS2]
Paths versus cycles [FLPS, BEFRS2]
Paths versus K

n
[Par1]

Paths versus K
n ,m [Häg]

Paths versus W 5 and W 6 [SuBa1]
Paths versus W 7 and W 8 [Bas]
Paths versus wheels [BaSu, ChZZ]
Paths and cycles versus trees [FSS1]
Sparse graphs versus paths and cycles [BEFRS2]
Graphs with long tails [Bu2, BG]

4.8. Cycles versus complete graphs

R (C 4, K 3 ) = R (C 4, C 3 ) = 7 [CS]
R (C 4, K 4 ) = 10 [CH2]
R (C 4, K 5 ) = 14 [Clan]
R (C 4, K 6 ) = 18 [Ex2] [RoJa1]
R (C 4, K 7 ) = 22 [RT] [JR1]
R (C 4, K 8 ) = 26 [RT]
30 ≤ R (C 4, K 9 ), 34 ≤ R (C 4, K 10 ) [RT]
C 4 versus K

n
[CLRZ]

R (C 5, K 3 ) = R (C 5, C 3 ) = 9 [CS]
R (C 5, K 4 ) = 13 [He2, JR4]
R (C 5, K 5 ) = 17 [He2, JR4]
R (C 5, K 6 ) = 21 [JR5]
R (C 5, K 7 ) = 25 [Schi2]

R (C 6, K 4 ) = 16 [JR2]
R (C 6, K 5 ) = 21 [JR2, YHZ2, BJYHRZ]
R (C 6, K 6 ) = 26 [Schi1]
R (C 7, K 5 ) = 25 [YHZ2, BJYHRZ]
Cycles versus K

n
[BoEr, Spe1, FS4, EFRS2, CLRZ, Sud]

R (C
n

, K
m

) = (n − 1)(m − 1) + 1, for n ≥ m 2 − 2 [BoEr], for n > 3 = m [FS1], for
n ≥ 4 = m [YHZ1], for n ≥ 5 = m [BJYHRZ], for n ≥ 6 = m , and for n ≥ m ≥ 7 with
n ≥ m (m − 2) [Schi1]. Since 1976, it was conjectured to be true for all n ≥ m ≥ 3, except
n = m = 3 [FS4, EFRS2].
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4.9. Cycles versus other graphs

C 4 versus stars [Par3, Par5, BEFRS5, Chen]
C 4 versus trees [EFRS4, Bu6, BEFRS5, Chen]
C 4 versus K

m , n
[HM]

C 4 versus all graphs on six vertices [JR3]
R (C 4, B

n
) = 7, 9, 11, 12, 13 and 16, for 2 ≤ n ≤ 7, respectively [FRS6]

R (C 4, B
n

) = 17, 18, 19, 20 and 21, for 8 ≤ n ≤ 12, respectively [Tse]
R (C 4, W

n
) = 10, 9, 10, 9, 11, 12, 13, 14, 16 and 17, for 4 ≤ n ≤ 13, respectively [Tse]

R (C 4, G ) ≤ 2q + 1 for any isolate-free graph G with q edges [RoJa2]
R (C 4, G ) ≤ p + q − 1 for any connected graph G on p vertices and q edges [RoJa2]

R (C 5, W 6 ) = 13 [ChvS]
R (C 5, K 6 − e ) = 17 [JR4]
R (C 5, B 1) = R (C 5, B 2) = 9 [CRSPS]
R (C 5, B 3) = 10, and in general R (C 5, B

n
) = 2n + 3 for n ≥4 [FRS8]

C 5 versus all graphs on six vertices [JR4]
R (C 6, K 5 − e ) = 17 [JR2]
C 6 versus all graphs on five vertices [JR2]

R (C
n

, G ) ≤ 2q +  n / 2  − 1, for 3 ≤ n ≤ 5, for any isolate-free graph G with q > 3 edges.
It is conjectured that it also holds for other n [RoJa2].

Cycles versus paths [FLPS, BEFRS2]
Cycles versus stars [La1, Clark, see Par6]
Cycles versus trees [FSS1]
Cycles versus books [FRS6, FRS8, Zhou1]
Cycles versus W 5 and W 6 [SuBB2]
Cycles versus wheels [Zhou2]
See also bipartite graphs for K 2,2 = C 4

4.10. Stars versus other graphs

Stars versus C 4 [Par3, Par5, Chen]
Stars versus W 5 and W 6 [SuBa1]
Stars versus paths [Par2, BEFRS2]
Stars versus cycles [La1, Clark, see Par6]
Stars versus books [CRSPS, RS2]
Stars versus trees [Bu1, GV, ZZ]
Stars versus stripes [CL, Lor]
Stars versus K 2,n [Par4]
Stars versus K

n ,m [Stev, Par3]
Stars versus K

n
− tK 2 [Hua1, Hua2]

Stars versus 2K 2 [MO]
Union of two stars [Gro2]
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4.11. Books versus other graphs

R (B 3, K 4 ) = 14 [He3]
20 ≤ R (B 3, K 5 ) ≤ 22 [He2]
Books versus paths [RS2]
Books versus trees [EFRS7]
Books versus stars [CRSPS, RS2]
Books versus cycles [FRS6, FRS8, Zhou1, Tse]
Books versus wheels [Zhou3]
Books versus K 2 + C

n
[Zhou3]

Books and (K 1 + tree ) versus K
n

[LR1]

4.12. Wheels versus other graphs

R (W 5, K 5 − e ) = 17 [He2][YH]
27 ≤ R (W 5, K 5 ) ≤ 29 [He2]
W 5 and W 6 versus stars and paths [SuBa1]
W 5 and W 6 versus trees [BSNM]
W 5 and W 6 versus cycles [SuBB2]
W 7 and W 8 versus paths [Bas]
Wheels versus paths [BaSu, ChZZ]
Odd wheels versus star-like trees [SuBB]
R (W 6, C 5 ) = 13 [ChvS]
Wheels versus C 4 [Tse]
Wheels versus cycles [Zhou2]
Wheels versus books [Zhou3]
Wheels versus linear forests [SuBa2]

4.13. Trees and Forests

Trees, forests [EG, GRS, FSS1, GV, CsKo]
Trees versus C 4 [EFRS4, Bu6, Chen]
Trees versus paths [FS4]
Trees versus paths and cycles [FSS1]
Trees versus stars [Bu1, GV, ZZ]
Trees versus books [EFRS7]
Trees versus W 5 and W 6 [BSNM]
Star-like trees versus odd wheels [SuBB]
Trees versus K

n
[Chv]

Trees versus K
n

+ K
m

[RS2, FSR]
Trees versus bipartite graphs [BEFRS5, EFRS6]
Trees versus almost complete graphs [GJ2]
Trees versus small (n (G ) ≤ 5) connected G [FRS4]
Linear forests, forests [BuRo2, FS3, CsKo]
Linear forests versus wheels [SuBa2]
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Forests versus K
n

[Stahl]
Forests versus almost complete graphs [CGP]

4.14. Mixed special cases:

R (C 5 + e , K 5 ) = 17 [He5]
R (W 5, K 5 − e ) = 17 [He2][YH]
20 ≤ R (B 3, K 5 ) ≤ 22 [He2]
27 ≤ R (W 5, K 5 ) ≤ 29 [He2]
25 ≤ R (K 5 − P 3, K 5 ) ≤ 28 [He2]
26 ≤ R (K 2,2,2 , K 2,2,2 ), K 2,2,2 is an octahedron [Ex8]

4.15. Mixed general cases

Unicyclic graphs [Gro1, Köh, KrRod]
K 2,m and C 2m

versus K
n

[CLRZ]
K 2,n versus any graph [RoJa2]
nK 3 versus mK 3, in particular R (nK 3, nK 3 ) = 5n for n ≥ 2 [BES]
nK 3 versus mK 4 [LorMu]
R (nK 4, nK 4 ) = 7n + 4 for large n [Bu7]
Stripes [CL, Lor]
Union of two stars [Gro2]
Double stars* [GHK]
Graphs with bridge versus K

n
[Li]

Fans F
n

= K 1 + nK 2 versus K
m

[LR2]
R (F 1, F

n
) = R (K 3, F

n
) = 4n + 1 and bounds for R (F

m
, F

n
) [GGS]

Multipartite complete graphs [BEFRS3, EFRS4, FRS3, Stev]
Multipartite complete graphs versus trees [EFRS8, BEFRSGJ]
Disconnected graphs versus any graph [GJ1]
Graphs with long tails [Bu2, BG]
Brooms+ [EFRS3]

4.16. Other general results

[Chv] R (K
n

, T
m

) = (n −1)(m −1) + 1 for any tree T on m vertices.

[CH2] R (G , H ) ≥ ( χ(G ) − 1)(c (H ) − 1) + 1, where χ(G ) is the chromatic number of
G , and c (H ) is the size of the largest connected component of H .

[Walk] R (k , k ) ≤ 4R (k , k − 2) + 2.

[Spe1] Probabilistic asymptotic lower bounds for R (k , l ), also weaker bounds but with
an explicit constructive approach in [AP].

* - A double star is a union of two stars with their centers joined by an edge.

+ - A broom is a star with a path attached to its center.
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[Mat] If the quadratic residues Paley graph Q
p

of prime order p = 4t + 1 contains no
K

k
, then R (k , k ) ≥ p + 1 and R (k + 1, k + 1) ≥ 2p + 3. More data was obtained

in [She1, LSL].

[XX1] For 2 ≤ p ≤ q and 3 ≤ k , if (k , p )-graph G and (k , q )-graph H have a common
induced subgraph on m vertices without K

k −1, then R (k , p + q − 1) > n (G ) +
n (H ) + m . In particular, we have R (k , p + q − 1) ≥ R (k , p ) + R (k , q ) + k − 3 and
R (k , p + q − 1) ≥ R (k , p ) + R (k , q ) + p − 2.

[BE1] R (G ,G ) ≥  (4n (G ) − 1) / 3 for any connected G .

[BE2] Graphs yielding R (K
n

, G ) = (n −1)(n (G ) − 1) + 1 and related results (see also
[EFRS5]).

[BES] Study of Ramsey numbers for multiple copies of graphs. See also [Bu1,
LorMu].

[Zeng] R (nK 3, nG ) for all isolate-free graphs G on 4 vertices.

[Bu7] Study of Ramsey numbers for large disjoint unions of graphs, in particular
R (nK

k
, nK

l
) = n (k + l − 1) + R (K

k −1, K
l −1) − 2, for n large enough. See also

[Bu8].

[Bu2] Graphs H yielding R (G , H ) = (χ(G ) − 1)(n (H ) − 1) + s (G ), where s (G ) is a
chromatic surplus of G , defined as the minimum number of vertices in some
color class under all vertex colorings in χ(G ) colors (such H ’s are called G -
good). This idea, initiated in [Bu2], is a basis of a number of exact results for
R (G , H ) for large and sparse graphs H [BG, BEFRS2, BEFRS4, Bu5, FS,
EFRS4, FRS3, BEFSRGJ, BF, LR4]. A survey of this area appeared in
[FRS5].

[BEFS] Bounds for the difference between consecutive Ramsey numbers.

[Par3] Relations between some Ramsey graphs and block designs. See also [Par4].

[Bra3] R (G , H ) > h (G , d ) n (H ) for all nonbipartite G and almost every d -regular H ,
for some h unbounded in d .

[CSRT] R (G ,G ) ≤ c
d

n (G ) for all G , where constant c
d

depends only on the maximum
degree d in G . The constant was improved in [GRR1]. Tight lower and upper
bounds for bipartite G [GRR2].

[ChenS] R (G ,G ) ≤ c
d

n for all d -arrangeable graphs G on n vertices, in particular with
the same constant for all planar graphs. The constant c

d
was improved in

[Eaton]. An extension to graphs not containing a subdivision of K
d

[RöTh].
Progress towards a conjecture that the same inequality holds for all d -generate
graphs G [KoRö].

[EFRS9] Study of graphs G , called Ramsey size linear, for which there exists a constant
c

G
such that for all H with no isolates R (G , H ) ≤ c

G
e (H ). An overview and

further results were given in [BSS].

[LRS] R (G ,G ) < 6n for all n -vertex graphs G , in which no two vertices of degree at
least 3 are adjacent. This improves the result R (G ,G ) ≤ 12n in [Alon1].
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[Shi1] R (Q
n

, Q
n

) ≤ 2
(3 +√5)n / 2 + o (n )

, for the n -dimensional cube Q
n

with 2
n

vertices.
This bound can be also derived from a theorem in [KoRö].

[Gro1] Conjecture that R (G ,G ) = 2n (G ) − 1 if G is unicyclic of odd girth. Further
support for the conjecture was given in [Köh, KrRod].

[RoJa2] R (K 2,k , G ) ≤ kq + 1, for k ≥ 2, for isolate-free graphs G with q ≥ 2 edges.

[FSS1] Discussion of the conjecture that R (T 1, T 2) ≤ n (T 1) + n (T 2) − 2 holds for all
trees T 1, T 2.

[FM] R (W 6, W 6 ) = 17 and χ(W 6 ) = 4. This gives a counterexample G = W 6 to the
Erdös conjecture (see [GRS]) R (G ,G ) ≥ R (K χ(G ), K χ(G ) ).

[LR3] Bounds on R (H + K
n

, K
n

) for general H . Also, for fixed k and m , as n → ∞,
R (K

k
+ K

m
, K

n
) ≤ (m + o (1)) n k / (log n )k −1 [LRZ].

[-] Special cases of multicolor results listed in section 5.5.

[-] See also surveys listed in section 7.

- 16 -



THE ELECTRONIC JOURNAL OF COMBINATORICS (2002), DS1.9

5. Multicolor Graph Numbers

The only known value of a multicolor classical Ramsey number:

R 3(3) = R (3,3,3) = R (3,3,3 ; 2) = 17 [GG]
2 critical colorings [KS, LayMa]

5.1. Bounds for multicolor classical numbers

51 ≤ R 4(3) = R (3,3,3,3) ≤ 62 [Chu1] [FKR]
162 ≤ R 5(3) ≤ 307 [Ex10]; [FKR], 5.3.(a)
538 ≤ R 6(3) ≤ 1838 [FreSw], 5.3.(a)
1682 ≤ R 7(3) ≤ 12861 [FreSw], 5.3.(a)

128 ≤ R (4,4,4) ≤ 236 [HI], 5.3.(a)
578 ≤ R (4,4,4,4) [ExRa]
2295 ≤ R (4,4,4,4,4) [XX2]

415 ≤ R (5,5,5) [ExRa]
2501 ≤ R (5,5,5,5) 5.3.(j)
25922 ≤ R (5,5,5,5,5) 5.3.(j)

1070 ≤ R (6,6,6) [Mat], 5.3.(h)
10407 ≤ R (6,6,6,6) [XX2]
3211 ≤ R (7,7,7) [Mat], 5.3.(h)
42117 ≤ R (7,7,7,7) [XX2]
4930 ≤ R (8,8,8) [XX2]
8461 ≤ R (9,9,9) [XX2]

30 ≤ R (3,3,4) ≤ 31 [Ka2] [PR1, PR2]
45 ≤ R (3,3,5) ≤ 57 [Ex2, KLR], 5.3.(a)
60 ≤ R (3,3,6) [Rob3, Rob4]
79 ≤ R (3,3,7) [Ex16]
98 ≤ R (3,3,8) [ZSL]
110 ≤ R (3,3,9) [SLZL]

141 ≤ R (3,3,10) [XX2], 5.3.(c)
157 ≤ R (3,3,11) [XX2], 5.3.(c)
181 ≤ R (3,3,12) [XX2], 5.3.(c)
205 ≤ R (3,3,13) [XX2], 5.3.(c)
233 ≤ R (3,3,14) 5.3.(c)
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55 ≤ R (3,4,4) ≤ 79 [KLR], 5.3.(a)
80 ≤ R (3,4,5) ≤ 160 [Ex12], 5.3.(a)
99 ≤ R (3,4,6) 5.3.(g)
123 ≤ R (3,5,5) 5.3.(g)

93 ≤ R (3,3,3,4) ≤ 153 [Ex16], 5.3.(a)
137 ≤ R (3,3,3,5) [Rob3]
171 ≤ R (3,3,4,4) [Ex16]
561 ≤ R (3,3,3,11) [XX2]

The best published upper bound R 4(3) ≤ 64 by Sánchez-Flores [San] improved a very old
bound R 4(3) ≤ 65 obtained by Folkman [Fo] in 1974. In [PR1] it is conjectured that
R (3,3,4) = 30, and the results in [PR2] eliminate some cases which could give R (3,3,4) = 31.

Lower bounds for higher numbers can be obtained by applying various constructive ine-
qualities from the section 5.3 below. For example, the bounds 261 ≤ R (3,3,15),
241 ≤ R (3,3,3,7) and 2501 ≤ R (5,5,5,5) were not published explicitly but are implied by gen-
eral constructions in 5.3.(c), [Rob3] and [Abb1]. Similarly, other lower bounds for parameters
not listed here can be easily derived.

5.2. Multicolor special cases

R 3(C 4 ) = 11 [BS, see also Clap]
R 3(C 5 ) = 17 [YR1]
R 3(C 6 ) = 12 [YR2]
R 3(C 7 ) = 25 [FSS2]
18 ≤ R 4(C 4 ) ≤ 21 [Ex2] [Ir]
27 ≤ R 5(C 4 ) ≤ 29 [LaWo1]

R (C 4, C 4, K 3 ) = 12 [Schu]
R (C 4, K 3, K 3 ) = 17 [ExRe]
13 ≤ R (C 3, C 4, C 5 ) [Rao]
R (K 1,3, C 4, K 4 ) = 16 [KM2]

R (K 4 − e , K 4 − e , P 3 ) = 11 [Ex7]
28 ≤ R 3(K 4 − e ) ≤ 30 [Ex7] [Piw2]
R (C 4, C 4, C 4, T ) = 16 for T = P 4 and T = K 1,3 [ExRe]
25 ≤ R (C 3, C 3, C 4, C 4 ) [Rao]

All colorings on at least 14 vertices for the parameters ( K 3, K 3, K 3 ), and all colorings
for (K 4 − e , K 4 − e , P 3) were found in [Piw2].
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5.3. Multicolor results for complete graphs

(a) R (k 1, ... , k
r
) ≤ 2 − r +

i = 1
Σ
r

R (k 1, ... , k
i − 1, k

i
− 1, k

i + 1, ... , k
r
), implicit in [GG]

Inequality in (a) is strict if the right hand side is even, and at least one of the terms in
the summation is even. It is suspected that this upper bound is never tight for r ≥ 3 and
k

i
≥ 3, except for r = k 1 = k 2 = k 3 = 3. However, the only known such case is

R 4(3) ≤ 62, for which (a) gives an upper bound of 66.

(b) R
k
(3) ≥ 3R

k −1(3) + R
k −3(3) − 3 [Chu1]

(c) R (3, k 1, ... , k
r
) ≥ 4R (k 1 − 1, k 2, ... , k

r
) − 3 for k 1 ≥ 5, r ≥ 2 and k

i
≥ 3 [XX2]

(d) R (3, 3, 3, k 1, ... , k
r
) ≥ 3R (3, 3, k 1, ... , k

r
) + R (k 1, ... , k

r
) − 3 [Rob2]

(e) Bounds for R
k
(3) [AH, Fre, Chu2, ChGri, GrRö, Wan]

(f) R (k 1, ... , k
r
) ≥ S (k 1, ... , k

r
) + 2, where S (k 1, ... , k

r
) is the generalized Schur number

[AH, Gi1, Gi2]. In particular, the special case k 1 = ... = k
r

= 3 has been widely studied
[Fre, FreSw, Ex10, Rob3].

(g) R (k 1, ... , k
r
) ≥ L (k 1, ... , k

r
) + 1, where L (k 1, ... , k

r
) is the maximal order of cyclic

(k 1, ... , k
r
)-coloring, which can be considered a special case of Schur partitions defining

(symmetric) Schur numbers. Many lower bounds for Ramsey numbers were established
by cyclic colorings, and thus the following recurrence can be used to derive lower
bounds for higher parameters.

L (k 1, ... , k
r
, k

r + 1 ) ≥ (2k
r + 1 − 3)L (k 1, ... , k

r
) − k

r + 1 + 2 [Gi2]

(h) R
r
(m ) ≥ p + 1 and R

r
(m + 1) ≥ r ( p + 1) + 1 if there exists a K

m
-free cyclotomic r -class

association scheme of order p [Mat].

(i) R
r
(m ) ≥ c

m
(2m − 3)

r
, and some slight improvements of the exponent r for small values

of m [AH, Gi1, Gi2, Song2].

(j) R
r
( pq + 1) > (R

r
( p + 1) − 1)(R

r
(q + 1) − 1) [Abb1]

(k) R ( p 1q 1+ 1, ... , p
r
q

r
+ 1) > (R ( p 1+ 1, ... , p

r
+ 1) − 1)(R (q 1+ 1, ... , q

r
+ 1) − 1) [Song3]

(l) R
r + s

(m ) > (R
r
(m ) − 1)(R

s
(m ) − 1) [Song2]

(m) R (k 1, k 2, ... , k
r
) > (R (k 1, ... , k

i
) − 1)(R (k

i +1, ... , k
r
) − 1) in [Song1], see [ExRa, XX2].

(n) R (k 1, k 2, ... , k
r
) > (k 1 + 1)(R (k 2 − k 1 + 1, k 3, ... , k

r
) − 1) [Rob5]

(o) Constructions in [XX2] show how to increase the right hand side in (k) and (m) by a
suitable choice and composition of colorings for smaller parameters. Several of the best
known constructions for specific parameters can be obtained this way.

All lower bounds in (b) through (o) above are constructive. (d) generalizes (b), (k) gen-
eralizes both (j) and (m), and (m) generalizes (l). Observe that the construction (k) with
q 1 = ... = q

i
= 1 = p

i +1 = ... = p
r

is the same as (m).
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5.4. Multicolor results for cycles

- R 3(C 4 ) = 11 [BS] and R 4(C 4 ) ≥ 18 [Ex2].

- R (C
n

, C
n

, C
n

) ≤ (4 + o (1)) n , with equality for odd n [Łuc]. It was conjectured in
[BoEr, Erd] that for all odd n ≥ 5 we have R (C

n
, C

n
, C

n
) = 4n − 3.

- Formulas for R (C
n

, C
m

, C
k
) and R (C

n
, C

m
, C

k
, C

l
) for n sufficiently large [EFRS1].

- R
k
(C 4 ) ≤ k 2 + k + 1 for all k ≥ 1, R

k
(C 4 ) ≥ k 2 − k + 2 for all k − 1 which is a

prime power [Ir, Chu2, ChGra], and R
k
(C 4 ) ≥ k 2 + 2 for odd prime power k

[LaWo1]. The latter was extended to all prime power k in [Ling, LaMu].

- Bounds for R
k
(C

m
) [GRS]

- See also section 5.2 above.

5.5. Other general multicolor results

- General bounds for R
k
(G ) [CH3, Par6]

- Formulas for R
k
(G ) for G being P 3, 2K 2 and K 1,3 for all k , and for P 4 if k is not

divisible by 3 [Ir]. Wallis [Wall] showed R 6(P 4 ) = 13, which already implied
R 3t

(P 4 ) = 6t + 1, for all t ≥ 2. Independently, the case R
k
(P 4 ) for k =/ 3

m
was com-

pleted by Lindström in [Lind], and later Bierbrauer proved R
3

m (P 4 ) = 2.3
m

+ 1 for all

m ≥ 1.

- Bounds on R
k
(K

s , t
), in particular for K 2,2 = C 4 and K 2, t

[ChGra, AFM].

- Bounds on R
k
(G ) for unicyclic graphs G of odd girth. Some exact values for spe-

cial graphs G , for k = 3 and k = 4 [KrRod].

- tk 2 + 1 ≤ R
k
(K 2, t +1) ≤ tk 2 + k + 2, where upper bound is general, and lower bound

holds when both t and k are prime powers [LaMu].

- Monotone paths and cycles [Lef].

- Formulas for R (P
n 1

, . . . , P
nk

), except few cases [FS2].

- Formulas for R (S 1, . . . , S
k
), where S

i
’s are arbitrary stars [BuRo1].

- Formulas for R (S 1, . . . , S
k
, K

n
), where S

i
’s are arbitrary stars [Jac].

- Formulas for R (S 1, . . . , S
k
, nP 2), where S

i
’s are arbitrary stars [CL2].

- Formulas for R (S 1, . . . , S
k
, T ), where S

i
’s are stars and T is a tree [ZZ].

- Formulas for R (pP 3, qP 3, rP 3) and R (pP 4, qP 4, rP 4) [Scob].

- Cockayne and Lorimer [CL1] found the exact formula for R (n 1P 2, . . . , n
k
P 2), and

later Lorimer [Lor] extended it to a more general case of R (K
m

, n 1P 2, . . . , n
k
P 2).

Still more general cases of the latter, with multiple copies of the complete graph and
forests, were studied in [Stahl, LorSe, LorSo].

- If G is connected and R (K
k

, G ) = (k −1)(n (G ) − 1) + 1, in particular if G is any tree,
then R (K

n 1
, . . . , K

nk
, G ) = (R (K

n 1
, . . . , K

nk
) − 1)(n (G ) − 1) + 1 [BE2]. A generali-
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zation for connected G 1, . . . , G
n

in place of G appeared in [Jac].

- Study of R (S , G 1, . . . , G
k
) for large sparse S [EFRS1, Bu3].

- Constructive bound R (G 1, ..., G
t n −1 ) ≥ t n + 1 for some families of decompositions of

Kt n [LaWo1, LaWo2].

- Bounds for trees R
k
(T ) and forests R

k
(F ) [EG, GRS, BB, GT, Bra1, Bra2, SwPr].

- See also surveys listed in section 7.

6. Hypergraph Numbers

The only known value of a classical Ramsey number for hypergraphs:

R (4,4 ; 3) = 13 [MR1]
more than 200000 critical colorings

Other hypergraph cases:

33 ≤ R (4, 5 ; 3) [Ex13]
63 ≤ R (5, 5 ; 3) [Ea1]
56 ≤ R (4,4,4 ; 3) [Ex8]
34 ≤ R (5, 5 ; 4) [Ex11]

R (K 4 − t , K 4 − t ; 3) = 7 [Ea2]
R (K 4 − t , K 4 ; 3) = 8 [Sob, Ex1, MR1]
14 ≤ R (K 4 − t , K 5 ; 3) [Ex1]
13 ≤ R (K 4 − t , K 4 − t , K 4 − t ; 3) ≤ 17 [Ex1] [Ea1]

The computer evaluation of R (4,4 ; 3) in [MR1] consisted of an improvement of the
upper bound from 15 to 13, which followed an extensive theoretical study of this number in
[Gi4, Is1, Sid1]. Exoo in [Ex1] announced the bounds R (4, 5 ; 3) ≥ 30 and R (5, 5 ; 4) ≥ 27
without presenting the constructions. The bound of R (4, 5 ; 3) ≥ 24 was obtained by Isbell
[Is2]. Shastri in [Sha] shows a weak bound R (5, 5 ; 4) ≥ 19 (now 34 in [Ex11]), nevertheless
his lemmas and those in [Ka3, Abb2, GRS, HuSo] can be used to derive other lower bounds
for higher numbers.

Several lower bound constructions for 3-uniform hypergraphs were presented in [HuSo].
Study of lower bounds on R ( p , q ; 4) can be found in [Song3] and [SYL, Song4] (the latter
two papers are almost identical in contents). Most lower bounds in these papers can be easily
improved by using the same techniques, but starting with better constructions for small param-
eters listed above.
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Let H (r )(s , t ) be the complete r -partite r -uniform hypergraph with r − 2 parts of size 1,
one part of size s , and one part of size t (for example, for r = 2 it is the same as K

s , t
). For

the multicolor numbers, Lazebnik and Mubayi [LaMu] proved that

tk 2 − k + 1 ≤ R
k
(H (r )(2, t +1)) ≤ tk 2 + k + r ,

where the lower bound holds when both t and k are prime powers. For the general case of
H (r )(s , t ), more bounds are presented in [LaMu].

Lower bounds on R
m

(k ; s ) are discussed in [DLR, AW]. In [AS], it is shown that for
some values of a , b the numbers R (m , a , b ; 3) are at least exponential in m . General lower
bounds for large number of colors were given in an early paper by Hirschfeld [Hir], and some
of them were later improved in [AL]. Other theoretical results on hypergraph numbers are
gathered in [GrRö, GRS].

7. Cumulative Data and Surveys

7.1. Cumulative data for two colors

[CH1] R (G ,G ) for all graphs G without isolates on at most 4 vertices.

[CH2] R (G , H ) for all graphs G and H without isolates on at most 4 vertices.

[Clan] R (G , H ) for all graphs G on at most 4 vertices and H on 5 vertices, except
five entries (now all solved).

[He4] All critical colorings for R (G , H ), for isolate-free graphs G and H as in
[Clan] above.

[Bu4] R (G ,G ) for all graphs G without isolates and with at most 6 edges.

[He1] R (G ,G ) for all graphs G without isolates and with at most 7 edges.

[HM2] R (G ,G ) for all graphs G on 5 vertices and with 7 or 8 edges.

[He2] R (G , H ) for all graphs G and H on 5 vertices without isolates, except 7
entries (5 still open).

[HoMe] R (G , H ) for G = K 1,3 + e and G = K 4 − e versus all connected graphs H on 6
vertices, except R (K 4 − e , K 6 ). The result R (K 4 − e , K 6 ) = 21 was claimed by
McNamara [McN, unpublished].

[FRS4] R (G , T ) for all connected graphs G on at most 5 vertices and all (except some
cases) trees T .

[FRS1] R (K 3, G ) for all connected graphs G on 6 vertices.

[Jin] R (K 3, G ) for all connected graphs G on 7 vertices. Some errors in [Jin] were
found by [SchSch1].

[Brin] R (K 3, G ) for all connected graphs G on at most 8 vertices. The numbers for
K 3 versus sets of graphs with fixed number of edges, on at most 8 vertices,
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were presented in [KM1].

[BBH1] R (K 3, G ) for all connected graphs G on 9 vertices. See also [BBH2].

[JR3] R (C 4, G ) for all graphs G on at most 6 vertices.

[JR4] R (C 5, G ) for all graphs G on at most 6 vertices.

[JR2] R (C 6, G ) for all graphs G on at most 5 vertices.

Chvátal and Harary [CH1, CH2] formulated several simple but very useful observations
how to discover values of some numbers. All five missing entries in the tables of Clancy
[Clan] have been solved. Out of 7 open cases in [He2] 2 have been solved, the bounds for 2
were improved, and the status of the other 3 did not change. Section 4.14 lists 4 of them
(labeled [He2]): 1 solved and 3 still open. R (4, 5) = R (G 19, G 23 ) = 25 is the second solved
case. The other 2 open entries are K 5 versus K 5 (see section 2) and K 5 versus K 5 − e (see
section 3).

7.2. Cumulative data for three colors

[YR3] R 3(G ) for all graphs G with at most 4 edges and no isolates.

[YR1] R 3(G ) for all graphs G with 5 edges and no isolates, except K 4 − e . The case
of R 3(K 4 − e ) remains open (see section 5.2).

[YY] R 3(G ) for all graphs G with 6 edges and no isolates, except 10 cases.

[AKM] R (F , G , H ) for most triples of isolate-free graphs with at most 4 vertices.
Some of the missing cases completed in [KM2].

7.3. Surveys

[Bu1] A general survey of results in Ramsey graph theory by S. A. Burr (1974)

[Par6] A general survey of results in Ramsey graph theory by T. D. Parsons (1978)

[Har2] Summary of progress by Frank Harary (1981)

[ChGri] A general survey of bounds and values by F. R. K. Chung and C. M. Grin-
stead (1983)

[JGT] Special volume of the Journal of Graph Theory (1983)

[Rob1] Nice textbook-type review of Ramsey graph theory for newcomers (1984)

[Bu6] What can we hope to accomplish in generalized Ramsey Theory ? (1987)

[GrRö] Survey of asymptotic problems by R. L. Graham and V. Rödl (1987)

[GRS] An excellent book by R. L. Graham, B. L. Rothschild and J. H. Spencer,
second edition (1990)

[FRS5] Survey of graph goodness results, i.e. conditions for the formula
R (G , H ) = ( χ(G ) − 1 ) ( n (H ) − 1 ) + s (G ) (1991)

[Nes̆] A chapter in Handbook of Combinatorics (1996)
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[Caro] Survey of zero-sum Ramsey theory (1996)

[Chu4] Among 114 open problems and conjectures of Paul Erdös, presented and com-
mented by F. R. K. Chung, 31 are concerned directly with Ramsey numbers.
216 references are given. (1997)

The surveys by S. A. Burr [Bu1] and T. D. Parsons [Par6] contain extensive chapters on
general exact results in graph Ramsey theory. F. Harary presented the state of the theory in
1981 in [Har2], where he also gathered many references including seven to other survey
papers. Two decades ago, Chung and Grinstead in their survey paper [ChGri] gave less data
than in this note, but included a broad discussion of different methods used in Ramsey com-
putations in the classical case. S. A. Burr, one of the most experienced researchers in Ramsey
graph theory, formulated in [Bu6] seven conjectures on Ramsey numbers for sufficiently large
and sparse graphs, and reviewed the evidence for them found in the literature. Three of them
have been refuted in [Bra3].

For newer extensive presentations see [GRS, GrRö, FRS5, Nes̆], though these focus on
asymptotic theory not on the numbers themselves. Finally, this compilation could not pretend
to be complete without mentioning a special 1983 volume of the Journal of Graph Theory
[JGT] dedicated entirely to Ramsey theory. Besides a number of research papers, it includes
historical notes and presents to us Frank P. Ramsey (1903-1930) as a person.

8. Concluding Remarks

This compilation does not include information on numerous variations of Ramsey
numbers, nor related topics, like size Ramsey numbers, zero-sum Ramsey numbers, irredun-
dant Ramsey numbers, induced Ramsey numbers, local Ramsey numbers, connected Ramsey
numbers, chromatic Ramsey numbers, avoiding sets of graphs in some colors, coloring graphs
other than complete, or the so called Ramsey multiplicities. Interested reader can find such
information in the surveys listed in section 7 here.

The author apologizes for any omissions or other errors in reporting results belonging to
the scope of this work. Suggestions for any kind of corrections or additions will be greatly
appreciated and considered for inclusion in the next year revision of this survey.
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[Kéry] G. Kéry, On a Theorem of Ramsey (in Hungarian), Matematikai Lapok, 15 (1964) 204-224.

[Kim] J.H. Kim, The Ramsey Number R (3, t ) has Order of Magnitude t
2
/ log t , Random Structures and

Algorithms, 7 (1995) 173-207.

[KM1] K. Klamroth and I. Mengersen, Ramsey Numbers of K 3 versus (p , q )-Graphs, Ars Combinatoria, 43
(1996) 107-120.

[KM2] K. Klamroth and I. Mengersen, The Ramsey Number of r (K 1,3, C 4, K 4 ), Utilitas Mathematica, 52
(1997) 65-81.

[-] K. Klamroth, see also [AKM].

[-] M. Klawe, see [GHK].

[-] D.J. Kleitman, see [GK].
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