

}  The class P contains all decision problems
that are decidable by an algorithm that runs
in polynomial time in the size of the input.
◦  Does this define a class of languages?
◦  Yes:
�  Each language is a specific decision problem whose

encodings of “yes instances” (the language) is decided by
a deterministic TM, M, where M decides that particular
language in polynomial time.

◦  Recall: These languages are decidable

}  Are there problems not in P:
◦  Yes, we know that HALT (and others) are not in P
�  They are not even solvable (decidable)

}  Are there decidable problems not in P?
◦  Yes – there are problems that provably need

exponential time
◦  There are other problems for which we don’t know

whether they are in P or not
�  Let’s consider these…

}  Instance
◦  A logical expression containing
�  variables xi
�  logical connectors &, |, and !
�  In conjunctive normal form (C1 & C2 & C3 … & Cn)

}  Question
◦  Is there an assignment of truth values to each of

the variables such that the expression will
evaluate to true.

}  Example of an instance
◦  (x1 | x2 | x3) & (x4 | !x2) & !x4 & (!x1 | !x3)

◦  One solution:
�  x1 = true
�  x2 = false
�  x3 = false
�  x4 = false

}  Is it decidable?

◦  Naïve algorithm to solve
�  Systematically consider all combinations of

assignments of True and False values for all variables
and test the expression

}  What’s the worst case time complexity?
◦  In the worst case, for n variables
�  T(n) = O (2n)

}  Can we do better?
◦  No known polynomial algorithm
�  Either one doesn’t exist… or
�  One exists and we haven’t found it yet.

}  A Hamiltonian cycle in a graph is a cycle that
goes through each vertex exactly once (and
returns to the start)
◦  UHAMCYCLE = {<G> | G is an undirected graph

with a Hamiltonian cycle}

◦  Is UHAMCYCLE decidable?
�  Yes – brute force search takes exponential time

◦  Nobody knows if UHAMCYCLE is solvable in
polynomial time

(U stands for undirected)

}  A clique C in a graph is a subset of vertices
such that every two vertices in C are adjacent
(meaning they have an edge between them).
◦  CLIQUE = {<G,k> | G is a graph, k is an integer, and

G has a clique of size k}
�  Another way of saying this is that there is a complete

subgraph of size k.

◦  Is CLIQUE decidable?
�  Yes, there are fixed number of subsets of size k of a

graph with finite vertices. Brute force search.

}  A verifier for a language A is an algorithm V,
where A = { w | V accepts <w,c> for some
string c}.

}  A polynomial time verifier runs in polynomial
time in the length of w.

}  The string c is called the certificate, or proof,
that w is in A.

}  NP is the class of languages that have
polynomial-time verifiers

}  So, it may be that the algorithm can’t run in
polynomial time, but at least a specific
certificate (or proof) that shows that the
string is in the language can be checked in
polynomial time
◦  (that’s all polynomial verifiability means – given a

certificate, you can use that to confirm in
polynomial time that the string should be accepted)

}  Is SAT polynomially verifiable?
◦  Sure, given the instance, and a supposed solution

for that instance (assignment of truth values to
the variables), just apply it and check.

}  Is UHAMCYCLE polynomially verifiable?
◦  Sure, given the graph and a supposed cycle (in

order), check to make sure each vertex is
included and the edges exist to form the cycle
�  Polynomial time in the size of the graph

}  Is CLIQUE polynomially verifiable?
◦  Sure, given the graph and a supposed clique of size

k, confirm that each pair of vertices has an edge
between them
�  Polynomial time in the size of the graph

�  For graph with |V| vertices, there are at most |V|C2 < |V|2
edges
�  Run through this list of edges at most kC2 < k2 times

looking for an edge in the necessary collection, where k is
the size of the clique

}  Let’s reconsider the NDTM
◦  Same as the ordinary TM except:
�  The transition function will return a set of triplets

�  (q, x, D)
�  For each state / symbol combination, 0 or more

transitions can be defined.
�  The machine can “choose” which transition to take.

◦  δ: Q x Γ → P (Q x Γ x {R, L})

◦  A NDTM will accept as long as one branch accepts

}  Simulating a NDTM on a TM
◦  Consider all paths through the TM.
◦  One way to think about it…
�  A TM “replicates” itself whenever there is a choice.
�  Each “replication” continues computation along a

given path

NOTE – the time complexity of a
non-deterministic TM is defined to
be the time associated with its
longest computing branch

}  If we map all paths that can possibly be
taken:
◦  Number of paths may grow exponentially as a

function of the number of moves considered in any
path
◦  Example:
�  Suppose at each configuration there are 2 possible

moves.
�  Number of paths: 2n paths of length n

}  Theorem 7.20:

◦  A language is in NP if and only if it is decided by
some non-deterministic polynomial time Turing
Machine

Remember that P requires the
language to be decidable in
polynomial time by a deterministic
TM. So NP allows extra flexibility.
There may be an exponential
number of paths, but as long as
they all compute in polynomial time,
it’s in NP.

}  The class NP contains all decision problems that
are decidable by a non-deterministic Turing
machine that runs in polynomial time.

}  For each w accepted, there is at least one accepting
branch of computation.
◦  All branches must run in polynomial time

}  Note that NP does not stand for “not” polynomial
◦  Instead it refers to nondeterministic polynomial

}  Recall that the class P is robust

◦  It is the same class for all reasonable deterministic
computational models
�  All reasonable deterministic computational models are

polynomially equivalent

}  A non-deterministic TM is NOT a “reasonable
deterministic computational model”

}  A non-deterministic TM may run exponentially
faster than an equivalent deterministic TM

}  Running SAT on a non-deterministic TM.

◦  Step 1: “Guess” a set of boolean assignments to each
variable (this is the non-deterministic part – 2n different
choices)

◦  Step 2: Evaluate the truth of the entire expression using the
guessed assignment (this part is deterministic)

◦  Can certainly do each step in polynomial time

}  Clearly P is a subset of NP
}  Does P=NP?

P

NP

Is there something in
here?

After 40+ years of research…nobody
knows for certain

(a deterministic TM is just
a special case of a NDTM
that only has one branch
of computation, so
anything in P is in NP)

}  The hardest of the problems in class NP are
in the class of NP-complete problems:

}  If you could find a polynomial-time
algorithm for an NP-complete language,
then this would provide an algorithm for all
languages in NP
◦  P = NP
◦  Fame and fortune would follow

}  All NP-complete problems are “equally”
difficult.

}  To show that a problem is in NP-Complete,
you must show two things:
◦  The problem is in NP
◦  Every other problem in NP can be polynomially

reduced to this problem

�  Thus every other problem can be solved without too
much extra work if we have a solution to this
problem

}  Would seem impossible to show that a
specific problem is NP-complete
◦  i.e. that none of an infinite number of other NP

problems is harder than that specific problem

}  Cook-Levin Theorem: SAT is NP-complete
◦  Showed that any polynomial-time NDTM can be

modeled by a boolean formula

}  From there, other problems can be shown
NP-complete by comparison to SAT

}  What does it mean for “X not to be harder
than Y”
◦  It means that there is a polynomial-time function

that reduces X to Y
◦  X can efficiently be reduced to Y

}  What does it mean for X and Y to be “equally”
difficult
◦  Each can be efficiently reduced to the other

}  SAT
}  CLIQUE
}  UHAMCYCLE

}  All are NP-complete
◦  Once we have SAT, we prove another by showing

that SAT can be reduced to the other problem.
(Same idea of black box that we use to show a
problem is undecidable.)

}  Multiprocessor Scheduling
}  Instance: Set T of tasks, a number m ∈ N of

processors, length l(t) ∈ N for each t ∈ T,
and a deadline D ∈ N

}  Question: Is there an m-processor
schedule for T that meets the overall
deadline D?

}  MAX-CUT
}  Instance: A graph G = (V,E) and an integer k

}  Question: Does G have a cut of size k or
more? That is, can we partition V into S and
T such that there are at least k edges from S
to T?

}  3 COLOR
}  Instance: A graph G

}  Question: Can we color the vertices of G
with 3 colors such that no two adjacent
vertices have the same color

}  BIN PACKING
}  Instance: Finite set U of items, size s(u) ∈ N

for each u ∈ U, a positive integer bin
capacity B, and a positive integer K

}  Question: Can U be packed in K bins? That
is, is there a partition of U into disjoint sets
U1, …, UK such that the sum of the sizes of
the items in each Ui is B or less

}  CROSSWORD PUZZLE CONSTRUCTION
}  Instance: A finite set W of words and an n x n

matrix A of 0’s and 1’s

}  Question: Can an n x n crossword puzzle
be built up from words in W and blank
squares corresponding to the 0’s in A

}  If you can prove that your problem is NP-
complete, it is probably not worth spending a
lot of time searching for an exact polynomial
time solution

}  Options to make the problem polynomial:
◦  Some NP-complete problems have solutions that

are, on the average, polynomial
◦  Restrict the problem
◦  Approximation – good, but not optimal solution
◦  Heuristics – may or may not work out

