


}  The class P contains all decision problems 
that are decidable by an algorithm that runs 
in polynomial time in the size of the input. 
◦  Does this define a class of languages? 
◦  Yes: 
�  Each language is a specific decision problem whose 

encodings of “yes instances” (the language) is decided by 
a deterministic TM, M, where M decides that particular 
language in polynomial time. 

◦  Recall: These languages are decidable 



}  Are there problems not in P: 
◦  Yes, we know that HALT (and others) are not in P 
�  They are not even solvable (decidable) 

}  Are there decidable problems not in P? 
◦  Yes – there are problems that provably need 

exponential time 
◦  There are other problems for which we don’t know 

whether they are in P or not 
�  Let’s consider these… 



}  Instance 
◦  A logical expression containing  
�  variables xi  
�  logical connectors &, |, and !  
�  In conjunctive normal form (C1 & C2 & C3 … & Cn) 

}  Question 
◦  Is there an assignment of truth values to each of 

the variables such that the expression will 
evaluate to true. 



}  Example of an instance 
◦  (x1 | x2 | x3 ) & (x4 | !x2) & !x4 & (!x1 | !x3) 

◦  One solution: 
�  x1 = true                  
�  x2 = false 
�  x3 = false 
�  x4  = false 



}  Is it decidable? 

◦  Naïve algorithm to solve 
�  Systematically consider all combinations of 

assignments of True and False values for all variables 
and test the expression 

}  What’s the worst case time complexity? 
◦  In the worst case, for n variables 
�  T(n) = O (2n) 



}  Can we do better? 
◦  No known polynomial algorithm 
�  Either one doesn’t exist… or 
�  One exists and we haven’t found it yet. 



}  A Hamiltonian cycle in a graph is a cycle that 
goes through each vertex exactly once (and 
returns to the start) 
◦  UHAMCYCLE = {<G> | G is an undirected graph 

with a Hamiltonian cycle} 

◦  Is UHAMCYCLE decidable? 
�  Yes – brute force search takes exponential time 

◦  Nobody knows if UHAMCYCLE is solvable in 
polynomial time 

(U stands for undirected) 



}  A clique C in a graph is a subset of vertices 
such that every two vertices in C are adjacent 
(meaning they have an edge between them).  
◦  CLIQUE = {<G,k> | G is a graph, k is an integer, and 

G has a clique of size k} 
�  Another way of saying this is that there is a complete 

subgraph of size k. 

◦  Is CLIQUE decidable? 
�  Yes, there are fixed number of subsets of size k of a 

graph with finite vertices.  Brute force search. 



}  A verifier for a language A is an algorithm V, 
where A = { w | V accepts <w,c> for some 
string c}. 

}  A polynomial time verifier runs in polynomial 
time in the length of w. 

}  The string c is called the certificate, or proof, 
that w is in A. 



}  NP is the class of languages that have 
polynomial-time verifiers 

}  So, it may be that the algorithm can’t run in 
polynomial time, but at least a specific 
certificate (or proof) that shows that the 
string is in the language can be checked in 
polynomial time 
◦  (that’s all polynomial verifiability means – given a 

certificate, you can use that to confirm in 
polynomial time that the string should be accepted) 



}  Is SAT polynomially verifiable? 
◦  Sure, given the instance, and a supposed solution 

for that instance (assignment of truth values to 
the variables), just apply it and check. 

}  Is UHAMCYCLE polynomially verifiable? 
◦  Sure, given the graph and a supposed cycle (in 

order), check to make sure each vertex is 
included and the edges exist to form the cycle 
�  Polynomial time in the size of the graph 



}  Is CLIQUE polynomially verifiable? 
◦  Sure, given the graph and a supposed clique of size 

k, confirm that each pair of vertices has an edge 
between them 
�  Polynomial time in the size of the graph 

�  For graph with |V| vertices, there are at most |V|C2 <  |V|2 
edges 
�  Run through this list of edges at most kC2 < k2 times 

looking for an edge in the necessary collection, where k is 
the size of the clique 



}  Let’s reconsider the NDTM 
◦  Same as the ordinary TM except: 
�  The transition function will return a set of triplets 

�  (q, x, D)  
�  For each state / symbol combination, 0 or more 

transitions can be defined. 
�  The machine can “choose” which transition to take. 

◦  δ: Q x Γ → P (Q x Γ x {R, L}) 

◦  A NDTM will accept as long as one branch accepts 



}  Simulating a NDTM on a TM 
◦  Consider all paths through the TM. 
◦  One way to think about it… 
�  A TM “replicates” itself whenever there is a choice. 
�  Each “replication” continues computation along a 

given path 



NOTE – the time complexity of a 
non-deterministic TM is defined to 
be the time associated with its 
longest computing branch 



}  If we map all paths that can possibly be 
taken: 
◦  Number of paths may grow exponentially as a 

function of the number of moves considered in any 
path 
◦  Example: 
�  Suppose at each configuration there are 2 possible 

moves. 
�  Number of paths: 2n paths of length n 



}  Theorem 7.20: 

◦  A language is in NP if and only if it is decided by 
some non-deterministic polynomial time Turing 
Machine 

Remember that P requires the 
language to be decidable in 
polynomial time by a deterministic 
TM.  So NP allows extra flexibility.  
There may be an exponential 
number of paths, but as long as 
they all compute in polynomial time, 
it’s in NP.  



}  The class NP contains all decision problems that 
are decidable by a non-deterministic Turing 
machine that runs in polynomial time. 

}  For each w accepted, there is at least one accepting 
branch of computation. 
◦  All branches must run in polynomial time 

}  Note that NP does not stand for “not” polynomial 
◦  Instead it refers to nondeterministic polynomial 



}  Recall that the class P is robust 

◦  It is the same class for all reasonable deterministic 
computational models  
�  All reasonable deterministic computational models are 

polynomially equivalent 

}  A non-deterministic TM is NOT a “reasonable 
deterministic computational model” 

}  A non-deterministic TM may run exponentially 
faster than an equivalent deterministic TM  



}  Running SAT on a non-deterministic TM. 

◦  Step 1:  “Guess” a set of boolean assignments to each 
variable (this is the non-deterministic part – 2n different 
choices) 

◦  Step 2: Evaluate the truth of the entire expression using the 
guessed assignment (this part is deterministic) 

◦  Can certainly do each step in polynomial time 



}  Clearly P is a subset of NP 
}  Does P=NP? 

P 

NP 

Is there something in 
here? 

After 40+ years of research…nobody 
knows for certain 

(a deterministic TM is just 
a special case of a NDTM 
that only has one branch 
of computation, so 
anything in P is in NP) 



}  The hardest of the problems in class NP are 
in the class of NP-complete problems: 

}  If you could find a polynomial-time 
algorithm for an NP-complete language, 
then this would provide an algorithm for all 
languages in NP 
◦  P = NP 
◦  Fame and fortune would follow 

}  All NP-complete problems are “equally” 
difficult. 



}  To show that a problem is in NP-Complete, 
you must show two things: 
◦  The problem is in NP 
◦  Every other problem in NP can be polynomially 

reduced to this problem 

�  Thus every other problem can be solved without too 
much extra work if we have a solution to this 
problem 



}  Would seem impossible to show that a 
specific problem is NP-complete 
◦  i.e. that none of an infinite number of other NP 

problems is harder than that specific problem 

}  Cook-Levin Theorem:  SAT is NP-complete 
◦  Showed that any polynomial-time NDTM can be 

modeled by a boolean formula 

}  From there, other problems can be shown 
NP-complete by comparison to SAT 



}  What does it mean for “X not to be harder 
than Y” 
◦  It means that there is a polynomial-time function 

that reduces X to Y 
◦  X can efficiently be reduced to Y 

}  What does it mean for X and Y to be “equally” 
difficult 
◦  Each can be efficiently reduced to the other 



}  SAT 
}  CLIQUE 
}  UHAMCYCLE 

}  All are NP-complete 
◦  Once we have SAT, we prove another by showing 

that SAT can be reduced to the other problem.  
(Same idea of black box that we use to show a 
problem is undecidable.) 



}  Multiprocessor Scheduling 
}  Instance:  Set T of tasks, a number m ∈ N of 

processors, length l(t) ∈ N for each t ∈ T, 
and a deadline D ∈ N 

}  Question:  Is there an m-processor 
schedule for T that meets the overall 
deadline D? 



}  MAX-CUT 
}  Instance:  A graph G = (V,E) and an integer k 

}  Question:  Does G have a cut of size k or 
more?  That is, can we partition V into S and 
T such that there are at least k edges from S 
to T? 



}  3 COLOR 
}  Instance:  A graph G 

}  Question:  Can we color the vertices of G 
with 3 colors such that no two adjacent 
vertices have the same color 



}  BIN PACKING 
}  Instance:  Finite set U of items, size s(u) ∈ N 

for each u ∈ U, a positive integer bin 
capacity B, and a positive integer K 

}  Question:  Can U be packed in K bins?  That 
is, is there a partition of U into disjoint sets 
U1, …, UK such that the sum of the sizes of 
the items in each Ui is B or less 



}  CROSSWORD PUZZLE CONSTRUCTION 
}  Instance:  A finite set W of words and an n x n 

matrix A of 0’s and 1’s 

}  Question:  Can an n x n crossword puzzle 
be built up from words in W and blank 
squares corresponding to the 0’s in A 



}  If you can prove that your problem is NP-
complete, it is probably not worth spending a 
lot of time searching for an exact polynomial 
time solution 

}  Options to make the problem polynomial: 
◦  Some NP-complete problems have solutions that 

are, on the average, polynomial 
◦  Restrict the problem 
◦  Approximation – good, but not optimal solution 
◦  Heuristics – may or may not work out 


