Computational
Complexity



The Class P

» The class P contains all decision problems
that are decidable by an algorithm that runs
in polynomial time in the size of the input.

- Does this define a class of languages?

> Yes:

- Each language is a specific decision problem whose
encodings of “yes instances” (the language) is decided by
a deterministic TM, M, where M decides that particular
language in polynomial time.

- Recall: These languages are decidable




The Class P

» Are there problems not in P:

- Yes, we know that HALT (and others) are not in P
- They are not even solvable (decidable)

» Are there decidable problems not in P?

> Yes - there are problems that provably need
exponential time

- There are other problems for which we don’t know
whether they are in P or not
- Let’s consider these...




Satisfiability (SAT)

» Instance

> A logical expression containing
- variables x;
- logical connectors &, |, and !
* In conjunctive normal form (C, & C, & C; ... & C))

» Question

> Is there an assignment of truth values to each of
the variables such that the expression will
evaluate to true.




Satisfiability (SAT)

» Example of an instance
o (X | X5 | X3) & (X4 | 1X5) & Ix, & (1 | 1X3)

> One solution:

- X, = false
- X3 = false

- X, = false

p—



Satisfiability (SAT)
» Is it decidable?

- Naive algorithm to solve

- Systematically consider all combinations of
assignments of True and False values for all variables
and test the expression

» What’s the worst case time complexity?

- In the worst case, for n variables
- T(n) = 0 (2"




Satisfiability (SAT)

» Can we do better?

> No known polynomial algorithm
- Either one doesn’t exist... or
- One exists and we haven’t found it yet.




Hamiltonian Cycle

» A Hamiltonian cycle in a graph is a cycle that
goes through each vertex exactly once (and
returns to the start)

- UHAMCYCLE = {<G> | G is an undirected graph
with a Hamiltonian cycle}

> Is UHAMCYCLE decidable?
- Yes - brute force search takes exponential time

- Nobody knows if UHAMCYCLE is solvable in
polynomial time

m Nﬁl (U stands for undirected)



Clique

» A clique C in a graph is a subset of vertices
such that every two vertices in C are adjacent
(meaning they have an edge between them).

- CLIQUE = {<G,k> | G is a graph, k is an integer, and
G has a clique of size k}

- Another way of saying this is that there is a complete
subgraph of size k.

> |Is CLIQUE decidable?

- Yes, there are fixed number of subsets of size k of a
graph with finite vertices. Brute force search.




Polynomially Verifiable

» A verifier for a language A is an algorithm V,
where A = { w | V accepts <w,c> for some
string c}.

» A polynomial time verifier runs in polynomial
time in the length of w.

» The string c is called the certificate, or proof,
that w is in A.




NP

» NP is the class of languages that have
polynomial-time verifiers

» So, it may be that the algorithm can’t run in
polynomial time, but at least a specific
certificate (or proof) that shows that the
string is in the language can be checked in
polynomial time

- (that’s all polynomial verifiability means - given a
certificate, you can use that to confirm in
polynomial time that the string should be accepted)




NP

» Is SAT polynomially verifiable?

> Sure, given the instance, and a supposed solution
for that instance (assignment of truth values to
the variables), just apply it and check.

» Is UHAMCYCLE polynomially verifiable?

> Sure, given the graph and a supposed cycle (in
order), check to make sure each vertex is
included and the edges exist to form the cycle

- Polynomial time in the size of the graph




NP

» Is CLIQUE polynomially verifiable?

- Sure, given the graph and a supposed clique of size
k, confirm that each pair of vertices has an edge
between them

- Polynomial time in the size of the graph
- For graph with |V| vertices, there are at most ,C, < [V|?
edges
 Run through this list of edges at most ,C, < k? times

looking for an edge in the necessary collection, where k is
the size of the clique




Non-Deterministic TM

» Let’s reconsider the NDTM

- Same as the ordinary TM except:
- The transition function will return a set of triplets
- (g, x, D)
- For each state / symbol combination, O or more
transitions can be defined.

- The machine can “choose” which transition to take.

> 3: QXTI —=P(QXT x{R, L}

- A NDTM will accept as long as one branch accepts




Non-Deterministic TM

» Simulating a NDTM on a TM
- Consider all paths through the TM.

- One way to think about it...

- A TM “replicates” itself whenever there is a choice.

- Each “replication” continues computation along a
given path




Non-Deterministic TM

_______________ initial configuration

——————— configurations after one move

O) ) —— conﬁgurations after two moves

halt

-
=
—
=4

| NOTE — the time complexity of a
non-deterministic TM is defined to
be the time associated with its
longest computing branch




Non-Deterministic TM

» If we map all paths that can possibly be
taken:

- Number of paths may grow exponentially as a
function of the number of moves considered in any
path

- Example:

- Suppose at each configuration there are 2 possible
moves.

- Number of paths: 2" paths of length n




Another View of the Class NP

» Theorem 7.20:

- A language is in NP if and only if it is decided by
some non-deterministic polynomial time Turing
Machine

Remember that P requires the
language to be decidable in
polynomial time by a deterministic
TM. So NP allows extra flexibility.
There may be an exponential
number of paths, but as long as
they all compute in polynomial time,
it's in NP.




The Class NP

» The class NP contains all decision problems that
are decidable by a non-deterministic Turing
machine that runs in polynomial time.

» For each w accepted, there is at least one accepting
branch of computation.

> All branches must run in polynomial time

» Note that NP does not stand for “not” polynomial
> Instead it refers to nondeterministic polynomial




Recall: P is Robust

» Recall that the class P is robust

> It is the same class for all reasonable deterministic
computational models

- All reasonable deterministic computational models are
polynomially equivalent

» A non-deterministic TM is NOT a “reasonable
deterministic computational model”

» A non-deterministic TM may run exponentially
faster than an equivalent deterministic TM




Satisfiability (SAT) using NDTM

» Running SAT on a non-deterministic TM.

- Step 1: “Guess” a set of boolean assignments to each
variable (this is the non-deterministic part - 2" different
choices)

- Step 2: Evaluate the truth of the entire expression using the
guessed assignment (this part is deterministic)

> Can certainly do each step in polynomial time




The Class NP

: a deterministic TM is just

» Does P=NP? that only has one branch
' of computation, so

anything in P is in NP)

there something in

After 40+ years of research...nobody
knows for certain



The Class NP-Complete

» The hardest of the problems in class NP are
in the class of NP-complete problems:

» If you could find a polynomial-time
algorithm for an NP-complete language,
then this would provide an algorithm for all
languages in NP
- P = NP
- Fame and fortune would follow

» All NP-complete problems are “equally”
difficult.




The Class NP-Complete

» To show that a problem is in NP-Complete,
you must show two things:
- The problem is in NP

- Every other problem in NP can be polynomially
reduced to this problem

- Thus every other problem can be solved without too
much extra work if we have a solution to this
problem




NP-Complete Problems

» Would seem impossible to show that a
specific problem is NP-complete

> j.e. that none of an infinite number of other NP
problems is harder than that specific problem

» Cook-Levin Theorem: SAT is NP-complete

- Showed that any polynomial-time NDTM can be
modeled by a boolean formula

» From there, other problems can be shown
NP-complete by comparison to SAT



The Class NP-Complete

» What does it mean for “X not to be harder
than Y”

> |t means that there is a polynomial-time function
that reduces Xto Y

- X can efficiently be reduced to Y
» What does it mean for X and Y to be “equally”
difficult

- Each can be efficiently reduced to the other

p—



Examples in NP-Complete

» SAT
» CLIQUE
» UHAMCYCLE

» All are NP-complete

- Once we have SAT, we prove another by showing
that SAT can be reduced to the other problem.
(Same idea of black box that we use to show a
problem is undecidable.)




Examples in NP-Complete

» Multiprocessor Scheduling

» Instance: Set T of tasks, a number m € N of
processors, length I(t) € N for each t € T,
and a deadline D €N

» Question: Is there an m-processor
schedule for T that meets the overall
deadline D?




Examples in NP-Complete

» MAX-CUT
» Instance: A graph G = (V,E) and an integer k

» Question: Does G have a cut of size k or
more? That is, can we partition V into S and
T such that there are at least k edges from S
to T?

p—



Examples in NP-Complete

» 3 COLOR
» Instance: A graph G

» Question: Can we color the vertices of G
with 3 colors such that no two adjacent
vertices have the same color




Examples in NP-Complete

» BIN PACKING

» Instance: Finite set U of items, size s(u) € N
for each u € U, a positive integer bin
capacity B, and a positive integer K

» Question: Can U be packed in K bins? That
is, is there a partition of U into disjoint sets
U,, ..., U such that the sum of the sizes of
the items in each U; is B or less




Examples in NP-Complete

» CROSSWORD PUZZLE CONSTRUCTION

» Instance: A finite set W of words and an n x n
matrix A of O’s and 1’s

» Question: Can an n x n crossword puzzle
be built up from words in W and blank
squares corresponding to the 0’s in A

p—



Dealing with NP-Completeness

» If you can prove that your problem is NP-
complete, it is probably not worth spending a
lot of time searching for an exact polynomial
time solution

» Options to make the problem polynomial:

- Some NP-complete problems have solutions that
are, on the average, polynomial

> Restrict the problem
- Approximation - good, but not optimal solution
- Heuristics - may or may not work out




