Computational
Complexity

Decision Problem

» Running a decision problem on a TM.

- Once encoded, the encoded instance is provided
as input to a TM.

> The TM must then

- Determine if the input is a valid encoding

- Run and halt:
- In accept state if the answer for the input is yes
- In reject state if the answer for the input is no

> If such a TM exists for a given decision problem,
the problem is decidable or solvable. Otherwise
the problem is called undecidable or unsolvable.

What Mak

» Suppose we
decidable. F

es a Good Algorithm?

<know that a decision problem is
ow do we know that there is a

good algorit

- Consider the
problem.

nm that solves the problem?

complexity of a TM that can solve the

Complexity

» Complexity refers to the rate at which the
storage or time required to solve the
problem grows as a function of the length
of the input to the algorithm

> T(n) = time complexity (amount of time an
algorithm will take based on input)

> S(n) = space complexity (amount of space an
algorithm will take based on input)

» We’ll focus on time complexity

Complexity

» Definition 7.1

- Let M be a deterministic TM that halts on all inputs.
The time complexity of M is the function T: N - N
where T(n) is the maximum number of steps that M
uses on any input of length n.

> n is used to represent the length (encoding) of the
Input string

> T(n) can be thought of as the number of TM
“‘moves” needed to accept or reject

m L —

Asymptotic Analysis

» Based on the idea that as the input to an
algorithm gets large:

- The complexity will become proportional to a
known function.

- Only worry about the highest order term
- Notation:
- O (Big-0) - upper bound on the complexity
- © (Big-Theta) - tight bounds on the complexity

p—

Asymptotic Analysis

» Big-0 (order of)

> T(n) € O(f(n)) if and only if there are constants:
- ¢ > 0 and ny = 0 such that
* T(n) = cf(n) forallnz=n,

- What this means

- The algorithm may have some lower order “start-up”
costs

- Eventually, when the size of the input gets large

enough (n = ny), the runtime will be bounded above by
a scaled (c > 0) function f(n).

- Using c allows us to ignore constant factors when
discussing asymptotic complexity

Algorithm Efficiencies

Axes are log scale,
so all polynomial
terms look linear

here

Te# 1) —poeeseesnsnnnsones

le+00 ==peesassosssansansssheanssnsassssnssasfheceannsnnssnnns :

0(2“1

le 408 ==pessesnsanssansanseaieanssnnsnnnsensfonshnneansonnnaghanes) [

R S N

T S .

fO(n log 15)

| O(log)

| | | |
10 100 1000 10000

What Complexity is Acceptable?

» So what should be the cutoff between a
“good” algorithm and a “bad” algorithm?

> In the 1960s, it was proposed:

- A “good” algorithm is one whose running time is a
polynomial function of the size of the input

- Other algorithms are “bad”

- This definition was adopted:

- A problem is called tractable if there exists a
“good” (polynomial time) algorithm that solves it.

- A problem is called intractable otherwise.

Is this a Valid Cutoff?

Assuming 1 million
computations per
second

Size n
Time
complexity 10 20 30 40 50 60
function
.00001 .00002 .00003 .00004 00005 .00006
n
second | second second second second second
) .0001 .0004 .0009 0016 0025 0036
n second | second second second second second
3 .001 .008 027 .064 125 216
second second second second second second
5 R 3.2 243 1.7 52 13.0
" second | seconds | seconds minutes minutes minutes
o .001 1.0 17.9 12.7 35.7 366
second | second | minutes days years centuries
3 059 58 6.5 3855 2x108 1.3x10%3
second | minutes years centuries | centuries | centuries

The Class P

» The class P contains all decision problems
that are decidable by an algorithm that runs

in polynomial time in the size of the input.
- Does this define a class of languages?

> Yes:

- Each language is a specific decision problem whose
encodings of “yes instances” (the language) is decided by
a deterministic TM, M, where M decides that particular
language in polynomial time.

- Recall: These languages are decidable

The Class P

» The class P is robust

> It is the same class for all reasonable deterministic

computational models

- All reasonable deterministic computational models are
polynomially equivalent

- So if an algorithm runs in polynomial time using one
given reasonable deterministic computational model, it
also runs in polynomial time using other reasonable
computational models

- This means we don’t have to worry about the specific
computational model in use when showing that a
language is contained in P

The Class P

» To show that a decision problem is in P, we
have to consider two aspects:

- The algorithm runs in polynomial time in the size of
the input string
- A “reasonable encoding” is used to convert objects
Into strings
- Polynomial-time (with respect to the size of the
original input) to convert to a string

The Class P

» Thus to show that a problem is in P, it suffices
to analyze a high-level description
> Describe a TM algorithm
- Describe/assume a reasonable encoding that takes
polynomial time
- Show that the number of stages is polynomial in the
size of the input

- Show that the cost of running each stage is
polynomial in the size of the input

» In doing so, we are discarding polynomial
differences in algorithms.
> Not that these are unimportant!

AN

CFLs in P

» Sipser, pg. 290-291

- Every context-free language is a member of P

> Proof uses dynamic programming technique
(covered in Analysis of Algorithms class)

Polynomially Verifiable

» A verifier for a language A is an algorithm V,
where A = { w | V accepts <w,c> for some
string c}.

» A polynomial time verifier runs in polynomial
time in the length of w.

» The string c is called the certificate, or proof,
that w is in A.

NP

» NP is the class of languages that have
polynomial-time verifiers

» So, it may be that the algorithm can’t run in
polynomial time, but at least a specific
certificate (or proof) that shows that the
string is in the language can be checked in
polynomial time

- (that’s all polynomial verifiability means - given a
certificate, you can use that to confirm in
polynomial time that the string should be accepted)

Another View of the Class NP

» Theorem 7.20:

- A language is in NP if and only if it is decided by
some non-deterministic polynomial time Turing
Machine

Remember that P requires the
language to be decidable in
polynomial time by a deterministic
TM. So NP allows extra flexibility.
There may be an exponential
number of paths, but as long as
they all compute in polynomial time,
it's in NP.

The Class NP

: a deterministic TM is just

» Does P=NP? that only has one branch
' of computation, so

anything in P is in NP)

there something in

After 40+ years of research...nobody
knows for certain

