

}  Running a decision problem on a TM.
◦  Once encoded, the encoded instance is provided

as input to a TM.
◦  The TM must then
�  Determine if the input is a valid encoding
�  Run and halt:

�  In accept state if the answer for the input is yes
�  In reject state if the answer for the input is no

◦  If such a TM exists for a given decision problem,
the problem is decidable or solvable. Otherwise
the problem is called undecidable or unsolvable.

}  Suppose we know that a decision problem is
decidable. How do we know that there is a
good algorithm that solves the problem?

◦  Consider the complexity of a TM that can solve the
problem.

}  Complexity refers to the rate at which the
storage or time required to solve the
problem grows as a function of the length
of the input to the algorithm

◦  T(n) = time complexity (amount of time an
algorithm will take based on input)
◦  S(n) = space complexity (amount of space an

algorithm will take based on input)

}  We’ll focus on time complexity

}  Definition 7.1
◦  Let M be a deterministic TM that halts on all inputs.

The time complexity of M is the function T: N → N
where T(n) is the maximum number of steps that M
uses on any input of length n.

◦  n is used to represent the length (encoding) of the
input string

◦  T(n) can be thought of as the number of TM
“moves” needed to accept or reject

}  Based on the idea that as the input to an
algorithm gets large:

◦  The complexity will become proportional to a
known function.
◦  Only worry about the highest order term
◦  Notation:
�  O (Big-O) – upper bound on the complexity
�  Θ (Big-Theta) – tight bounds on the complexity

}  Big-O (order of)
◦  T(n) ∈ O(f(n)) if and only if there are constants:
�  c > 0 and n0 ≥ 0 such that
�  T(n) ≤ cf(n) for all n ≥ n0
◦  What this means
�  The algorithm may have some lower order “start-up”

costs
�  Eventually, when the size of the input gets large

enough (n ≥ n0), the runtime will be bounded above by
a scaled (c > 0) function f(n).
�  Using c allows us to ignore constant factors when

discussing asymptotic complexity

Axes are log scale,
so all polynomial
terms look linear
here

}  So what should be the cutoff between a
“good” algorithm and a “bad” algorithm?

◦  In the 1960s, it was proposed:
�  A “good” algorithm is one whose running time is a

polynomial function of the size of the input
�  Other algorithms are “bad”
◦  This definition was adopted:
�  A problem is called tractable if there exists a
“good” (polynomial time) algorithm that solves it.

�  A problem is called intractable otherwise.

Assuming 1 million
computations per
second

}  The class P contains all decision problems
that are decidable by an algorithm that runs
in polynomial time in the size of the input.
◦  Does this define a class of languages?
◦  Yes:
�  Each language is a specific decision problem whose

encodings of “yes instances” (the language) is decided by
a deterministic TM, M, where M decides that particular
language in polynomial time.

◦  Recall: These languages are decidable

}  The class P is robust
◦  It is the same class for all reasonable deterministic

computational models
�  All reasonable deterministic computational models are

polynomially equivalent
�  So if an algorithm runs in polynomial time using one

given reasonable deterministic computational model, it
also runs in polynomial time using other reasonable
computational models

�  This means we don’t have to worry about the specific
computational model in use when showing that a
language is contained in P

}  To show that a decision problem is in P, we
have to consider two aspects:
◦  The algorithm runs in polynomial time in the size of

the input string
◦  A “reasonable encoding” is used to convert objects

into strings
�  Polynomial-time (with respect to the size of the

original input) to convert to a string

}  Thus to show that a problem is in P, it suffices
to analyze a high-level description
◦  Describe a TM algorithm
�  Describe/assume a reasonable encoding that takes

polynomial time
�  Show that the number of stages is polynomial in the

size of the input
�  Show that the cost of running each stage is

polynomial in the size of the input

}  In doing so, we are discarding polynomial

differences in algorithms.
◦  Not that these are unimportant!

}  Sipser, pg. 290-291

◦  Every context-free language is a member of P

◦  Proof uses dynamic programming technique
(covered in Analysis of Algorithms class)

}  A verifier for a language A is an algorithm V,
where A = { w | V accepts <w,c> for some
string c}.

}  A polynomial time verifier runs in polynomial
time in the length of w.

}  The string c is called the certificate, or proof,
that w is in A.

}  NP is the class of languages that have
polynomial-time verifiers

}  So, it may be that the algorithm can’t run in
polynomial time, but at least a specific
certificate (or proof) that shows that the
string is in the language can be checked in
polynomial time
◦  (that’s all polynomial verifiability means – given a

certificate, you can use that to confirm in
polynomial time that the string should be accepted)

}  Theorem 7.20:

◦  A language is in NP if and only if it is decided by
some non-deterministic polynomial time Turing
Machine

Remember that P requires the
language to be decidable in
polynomial time by a deterministic
TM. So NP allows extra flexibility.
There may be an exponential
number of paths, but as long as
they all compute in polynomial time,
it’s in NP.

}  Clearly P is a subset of NP
}  Does P=NP?

P

NP

Is there something in
here?

After 40+ years of research…nobody
knows for certain

(a deterministic TM is just
a special case of a NDTM
that only has one branch
of computation, so
anything in P is in NP)

