


}  Running a decision problem on a TM. 
◦  Once encoded, the encoded instance is provided 

as input to a TM. 
◦  The TM must then 
�  Determine if the input is a valid encoding 
�  Run and halt: 

�  In accept state if the answer for the input is yes 
�  In reject state if the answer for the input is no 
 

◦  If such a TM exists for a given decision problem, 
the problem is decidable or solvable.  Otherwise 
the problem is called undecidable or unsolvable. 



}  Suppose we know that a decision problem is 
decidable.  How do we know that there is a 
good algorithm that solves the problem? 

◦  Consider the complexity of a TM that can solve the 
problem. 



}  Complexity refers to the rate at which the 
storage or time required to solve the 
problem grows as a function of the length 
of the input to the algorithm 

◦  T(n) = time complexity (amount of time an 
algorithm will take based on input) 
◦  S(n) = space complexity (amount of space an 

algorithm will take based on input) 

}  We’ll focus on time complexity 



}  Definition 7.1 
◦  Let M be a deterministic TM that halts on all inputs.  

The time complexity of M is the function T: N → N 
where T(n) is the maximum number of steps that M 
uses on any input of length n. 

◦  n is used to represent the length (encoding) of the 
input string 

◦  T(n) can be thought of as the number of TM 
“moves” needed to accept or reject 



}  Based on the idea that as the input to an 
algorithm gets large: 

◦  The complexity will become proportional to a 
known function. 
◦  Only worry about the highest order term 
◦  Notation: 
�  O (Big-O) – upper bound on the complexity 
�  Θ (Big-Theta) – tight bounds on the complexity 



}  Big-O (order of) 
◦  T(n) ∈ O(f(n)) if and only if there are constants: 
�  c > 0 and n0 ≥ 0 such that  
�  T(n) ≤ cf(n)   for all n ≥ n0 
◦  What this means 
�  The algorithm may have some lower order “start-up” 

costs 
�  Eventually, when the size of the input gets large 

enough (n ≥ n0), the runtime will be bounded above by 
a scaled (c > 0) function f(n). 
�  Using c allows us to ignore constant factors when 

discussing asymptotic complexity 



Axes are log scale, 
so all polynomial 
terms look linear 
here 



}  So what should be the cutoff between a 
“good” algorithm and a “bad” algorithm? 

◦  In the 1960s, it was proposed: 
�  A “good” algorithm is one whose running time is a 

polynomial function of the size of the input 
�  Other algorithms are “bad” 
◦  This definition was adopted: 
�  A problem is called tractable if there exists a 
“good” (polynomial time) algorithm that solves it. 

�  A problem is called intractable otherwise. 



Assuming 1 million 
computations per 
second 



}  The class P contains all decision problems 
that are decidable by an algorithm that runs 
in polynomial time in the size of the input. 
◦  Does this define a class of languages? 
◦  Yes: 
�  Each language is a specific decision problem whose 

encodings of “yes instances” (the language) is decided by 
a deterministic TM, M, where M decides that particular 
language in polynomial time. 

◦  Recall: These languages are decidable 



}  The class P is robust 
◦  It is the same class for all reasonable deterministic 

computational models  
�  All reasonable deterministic computational models are 

polynomially equivalent 
�  So if an algorithm runs in polynomial time using one 

given reasonable deterministic computational model, it 
also runs in polynomial time using other reasonable 
computational models 

�  This means we don’t have to worry about the specific 
computational model in use when showing that a 
language is contained in P 



}  To show that a decision problem is in P, we 
have to consider two aspects: 
◦  The algorithm runs in polynomial time in the size of 

the input string 
◦  A “reasonable encoding” is used to convert objects 

into strings 
�  Polynomial-time (with respect to the size of the 

original input) to convert to a string 



}  Thus to show that a problem is in P, it suffices 
to analyze a high-level description 
◦  Describe a TM algorithm 
�  Describe/assume a reasonable encoding that takes 

polynomial time 
�  Show that the number of stages is polynomial in the 

size of the input  
�  Show that the cost of running each stage is 

polynomial in the size of the input 
 
}  In doing so, we are discarding polynomial 

differences in algorithms. 
◦  Not that these are unimportant! 



}  Sipser, pg. 290-291 

◦  Every context-free language is a member of P 

◦  Proof uses dynamic programming technique 
(covered in Analysis of Algorithms class) 



}  A verifier for a language A is an algorithm V, 
where A = { w | V accepts <w,c> for some 
string c}. 

}  A polynomial time verifier runs in polynomial 
time in the length of w. 

}  The string c is called the certificate, or proof, 
that w is in A. 



}  NP is the class of languages that have 
polynomial-time verifiers 

}  So, it may be that the algorithm can’t run in 
polynomial time, but at least a specific 
certificate (or proof) that shows that the 
string is in the language can be checked in 
polynomial time 
◦  (that’s all polynomial verifiability means – given a 

certificate, you can use that to confirm in 
polynomial time that the string should be accepted) 



}  Theorem 7.20: 

◦  A language is in NP if and only if it is decided by 
some non-deterministic polynomial time Turing 
Machine 

Remember that P requires the 
language to be decidable in 
polynomial time by a deterministic 
TM.  So NP allows extra flexibility.  
There may be an exponential 
number of paths, but as long as 
they all compute in polynomial time, 
it’s in NP.  



}  Clearly P is a subset of NP 
}  Does P=NP? 

P 

NP 

Is there something in 
here? 

After 40+ years of research…nobody 
knows for certain 

(a deterministic TM is just 
a special case of a NDTM 
that only has one branch 
of computation, so 
anything in P is in NP) 


