Computational Complexity

Decision Problem

Running a decision problem on a TM.

- Once encoded, the encoded instance is provided as input to a TM.
- The TM must then
 - Determine if the input is a valid encoding
 - Run and halt:
 - In accept state if the answer for the input is yes
 - In reject state if the answer for the input is no
- If such a TM exists for a given decision problem, the problem is <u>decidable</u> or <u>solvable</u>. Otherwise the problem is called <u>undecidable</u> or <u>unsolvable</u>.

What Makes a Good Algorithm?

- Suppose we know that a decision problem is decidable. How do we know that there is a good algorithm that solves the problem?
 - Consider the complexity of a TM that can solve the problem.

Complexity

- Complexity refers to the rate at which the storage or time required to solve the problem grows as a function of the length of the input to the algorithm
 - T(n) = time complexity (amount of time an algorithm will take based on input)
 - S(n) = space complexity (amount of space an algorithm will take based on input)
- We'll focus on time complexity

Complexity

Definition 7.1

- Let M be a deterministic TM that halts on all inputs. The time complexity of M is the function T: $N \rightarrow N$ where T(n) is the maximum number of steps that M uses on any input of length n.
- n is used to represent the length (encoding) of the input string
- T(n) can be thought of as the number of TM "moves" needed to accept or reject

Asymptotic Analysis

- Based on the idea that as the input to an algorithm gets large:
 - The complexity will become proportional to a known function.
 - Only worry about the highest order term
 - Notation:
 - O (Big–O) upper bound on the complexity
 - Θ (Big-Theta) tight bounds on the complexity

Asymptotic Analysis

Big-O (order of)

- $T(n) \in O(f(n))$ if and only if there are constants:
 - c > 0 and $n_0 \ge 0$ such that
 - $T(n) \le cf(n)$ for all $n \ge n_0$
- What this means
 - The algorithm may have some lower order "start-up" costs
 - Eventually, when the size of the input gets large enough ($n \ge n_0$), the runtime will be bounded above by a scaled (c > 0) function f(n).
 - Using c allows us to ignore constant factors when discussing asymptotic complexity

Algorithm Efficiencies

Axes are log scale, so all polynomial terms look linear here

What Complexity is Acceptable?

- So what should be the cutoff between a "good" algorithm and a "bad" algorithm?
 - In the 1960s, it was proposed:
 - A "good" algorithm is one whose running time is a polynomial function of the size of the input
 - Other algorithms are "bad"
 - This definition was adopted:
 - A problem is called <u>tractable</u> if there exists a "good" (polynomial time) algorithm that solves it.
 - A problem is called <u>intractable</u> otherwise.

Is this a Valid Cutoff?

Assuming 1 million computations per second

			Size n	ze n		
Time complexity function	10	20	30	40	50	60
n	.00001	.00002	.00003	.00004	.00005	.00006
	second	second	second	second	second	second
n ²	.0001	.0004	.0009	.0016	.0025	.0036
	second	second	second	second	second	second
n ³	.001	.008	.027	.064	.125	.216
	second	second	second	second	second	second
n ⁵	.1	3.2	24.3	1.7	5.2	13.0
	second	seconds	seconds	minutes	minutes	minutes
2 <i>ⁿ</i>	.001	1.0	17.9	12.7	35.7	366
	second	second	minutes	days	years	centuries
3 ⁿ	.059	58	6.5	3855	2×10 ⁸	1.3×10 ¹³
	second	minutes	years	centuries	centuries	centuries

- The class P contains all decision problems that are decidable by an algorithm that runs in polynomial time in the size of the input.
 - Does this define a class of languages?
 - Yes:
 - Each language is a specific decision problem whose encodings of "yes instances" (the language) is decided by a deterministic TM, M, where M decides that particular language in polynomial time.
 - <u>Recall: These languages are decidable</u>

The class P is robust

- It is the same class for all reasonable deterministic computational models
 - All reasonable deterministic computational models are polynomially equivalent
 - So if an algorithm runs in polynomial time using one given reasonable deterministic computational model, it also runs in polynomial time using other reasonable computational models
 - This means we don't have to worry about the specific computational model in use when showing that a language is contained in P

- To show that a decision problem is in P, we have to consider two aspects:
 - The algorithm runs in polynomial time in the size of the input string
 - A "reasonable encoding" is used to convert objects into strings
 - Polynomial-time (with respect to the size of the original input) to convert to a string

- Thus to show that a problem is in P, it suffices to analyze a high-level description
 - Describe a TM algorithm
 - Describe/assume a reasonable encoding that takes polynomial time
 - Show that the number of stages is polynomial in the size of the input
 - Show that the cost of running each stage is polynomial in the size of the input
- In doing so, we are discarding polynomial differences in algorithms.
 - Not that these are unimportant!

CFLs in P

- > Sipser, pg. 290-291
 - Every context-free language is a member of P
 - Proof uses dynamic programming technique (covered in Analysis of Algorithms class)

Polynomially Verifiable

- A verifier for a language A is an algorithm V, where A = { w | V accepts <w,c> for some string c}.
- A polynomial time verifier runs in polynomial time in the length of w.
- The string c is called the certificate, or proof, that w is in A.

NP is the class of languages that have polynomial-time verifiers

- So, it may be that the algorithm can't run in polynomial time, but at least a specific certificate (or proof) that shows that the string is in the language can be checked in polynomial time
 - (that's all polynomial verifiability means given a certificate, you can use that to confirm in polynomial time that the string should be accepted)

Another View of the Class NP

Theorem 7.20:

 A language is in NP if and only if it is decided by some non-deterministic polynomial time Turing Machine

> Remember that P requires the language to be decidable in polynomial time by a deterministic TM. So NP allows extra flexibility. There may be an exponential number of paths, but as long as they all compute in polynomial time, it's in NP.

Clearly P is a subset of NP Does P=NP?

(a deterministic TM is just a special case of a NDTM that only has one branch of computation, so anything in P is in NP)

